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Abstract: The pretreatment process is an essential step for nanofibrillated cellulose production as it
enhances size reduction efficiency, reduces production cost, and decreases energy consumption. In
this study, nanofibrillated cellulose (NFC) was prepared using various pretreatment processes, either
chemical (i.e., acid, basic, and bleach) or hydrothermal (i.e., microwave and autoclave), followed by
disintegration using high pressure homogenization from oat bran fibers. The obtained NFC were
used as an emulsifier to prepare 10% oil-in-water emulsions. The emulsion containing chemically
pretreated NFC exhibited the smallest oil droplet diameter (d32) at 3.76 µm, while those containing
NFC using other pretreatments exhibited d32 values > 5 µm. The colors of the emulsions were mainly
influenced by oil droplet size rather than the color of the fiber itself. Both NFC suspensions and NFC
emulsions showed a storage modulus (G′) higher than the loss modulus (G′′) without crossing over,
indicating gel-like behavior. For emulsion stability, microwave pretreatment effectively minimized
gravitational separation, and the creaming indices of all NFC-emulsions were lower than 6% for the
entire storage period. In conclusion, chemical pretreatment was an effective method for nanofiber
extraction with good emulsion capacity. However, the microwave with bleaching pretreatment was
an alternative method for extracting nanofibers and needs further study to improve the efficiency.

Keywords: nanofibrillated cellulose (NFC); chemical pretreatment; hydrothermal pretreatment; oat
bran; storage modulus

1. Introduction

Cellulose is a homopolysaccharide consisting of a β-1,4 linked glucopyranose unit
which can have a polymerization degree from 300 to 15,000 [1,2]. Nanocellulose, defined
as less than 100 nm in diameter, has attracted growing interest for many applications
because of its functional properties such as nano size, high surface area, amphiphilic
property, low density, high mechanical strength, eco-friendliness, nontoxicity, and low
cost [3,4]. Nanocellulose functions as a composite film [5], performs the encapsulation and
delivery of vitamin D3 [6], serves as a reinforcement material [1], an emulsifier [7], and
can be used in energy applications [8], active packaging [8], cosmetics [9], and cellulose
nanopapers [10]. Nanocellulose has been classified as three types, including (1) cellulose
nanocrystal (CNC)/nanocrystalline cellulose (NCC) which is a rod-like crystalline region
cellulose; (2) cellulose nanofibril (CNF)/nanofibrillated cellulose (NFC) which is a long
entangled cellulose with amorphous and crystalline regions; and (3) bacterial cellulose
(BC) produced from bacteria [11]. In order to extract cellulose from plant sources regarded
as lignocellulosic biomass, it is necessary to have a pretreatment process to remove non-
cellulosic materials (i.e., lignin, hemicellulose, pectin, and wax) that are embedded within
the cellulose structure [12]. Intensive mechanical disintegration is a final step for producing
NFC which consumes a lot of energy and time. Mechanical processes, such as grinding
or high-pressure homogenizing, are the most common methods used to disintegrate and
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reduce cellulose fibril sizes [13]. The pretreatment is a significant process to improve the de-
fibrillation of the cellulose, reduce energy consumption, and avoid clogging in the machine
from the entanglement of cellulose. Different pretreatment methods (chemical, physical,
physicochemical, and biological) have been used for different purposes depending on the
source of the cellulose and the preferred type of nanocellulose [14,15]. Alkaline pretreat-
ment is regarded as a chemical pretreatment and is an effective method used for removing
the lignin, hemicellulose, and non-cellulosic substances from lignocellulosic materials [13].
Alkaline coupled with acid pretreatment increased the aqueous swelling of cellulose which
assists non-cellulosic removal and depolymerization. However, the use of chemicals for
the pretreatment of cellulose, such as the neutralization of the pretreated cellulose, and the
effects on the environment from chemical waste, chemical recycling, time consumption, and
safety for use as food additive were considered [16,17]. On the other hand, chemical-free
pretreatment has seen increasing interest in many studies. Hydrothermal pretreatment is a
simple and cost-effective physical pretreatment process. Using hydrothermal pretreatment
without chemical addition affected physical changes by the re-localization of lignin on the
cellulose surface, solubilization of hemicellulose, and increased accessibility of the cellulose
structure [18,19].

In general, nanofibrillated cellulose is obtained by extraction from woody plants [1],
[20–22] or agricultural waste [23–26]. The processes of purifying cellulose and defibrillating
are continually carried out when the cellulose is wet. In this study, the cellulose source
for nanofibrillated cellulose production was purified oat bran fiber which contained 98%
dietary fiber. Oat bran is a by-product of oat milling which is counted as 50% whole grain.
Oat bran is an excellent source of dietary fiber. Oat bran fiber is suited for food application
due to its natural source (safety) and neutral taste. The utilization of oat bran as a source of
NFC is also a good selection for low cost and massive NFC production [27,28]. The oat bran
fiber was in the form of a dried white power. There is a challenge in defibrillating from
dried purified cellulose. Many research studies showed that the drying process of cellulose
fibers altered the cellulose structure including the molecular packing. When cellulose is in
a wet state, water forms hydrogen bonds with -OH groups in the structure of the mobile
chain of cellulose, and the cellulose structure is loosely packed. When water is removed,
the mobility of the cellulose chain is reduced by increasing the interchain bonds in the
cellulose chain, so the cellulose structure is shrunken and densely packed [29–31]. The
dry cellulose can be rehydrated by the discharging of the interchain bonds which allows
water to interact with the cellulose structure. However, the drying process causes some
structural changes, and the original swollen state may not be regained because hydrogen
bonds in the wet state are irreversible [32]. Due to pretreatment methods (chemical and
hydrothermal methods) having effects on the cellulose structure, they may increase the
rehydration ability of dry cellulose and also facilitate mechanical stress for defibrillation
into nanofibrillated cellulose.

Pickering emulsion was first described by [33,34] as the utilization of solid particles
as stabilizers. The stabilization of Pickering emulsion involved the particles being partly
wetted by oil and water and the accumulation of the Pickering emulsifier at the oil/water
interface which formed a steric barrier against coalescence. The outstanding properties of
Pickering emulsions are long-term stability due to the particles being irreversibly adsorbed
at the interface which offers stronger attraction than surfactant adsorption, so many of the
particles were easily modified at their surface to provide a beneficial property. Moreover,
some natural particles displayed safety for in vivo usage according to their very low toxicity,
biocompatibility, and environmental friendliness [35,36]. The properties of Pickering
emulsion (i.e., emulsion droplet size, viscosity, and flocculation) are dominated by the
properties of Pickering particles and the arrangement of the particles at the interface.
Pickering emulsions are simply categorized as oil-in-water (O/W) or water-in-oil (W/O)
according to the wettability and the contact angle at the interface of the particles. For
example, for the particles formed at a contact angle of less than 90◦, these particles are
likely to be wetted by water which preferred to form an O/W emulsion [37]. Since the
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trend of using natural emulsifier for stabilizing emulsion has been increasing, cellulose
is commonly used due to its advantages over synthetic emulsifiers i.e., biological origin,
biocompatibility, biodegradability, renewability, sustainability, and nontoxicity [38–40].
Furthermore, the strong points of using cellulose to stabilize emulsions are a high potential
to be an emulsifier due to their amphiphilic property which can turn a hydrophobic or
hydrophilic side to an optimal surrounding, providing high stability by the packing of
dense particle layers at the interface which sterically stabilizes emulsions against droplet
coalescence and forming a network owing to the high aspect ratio [41].

In this research, we focused on the effect of the pretreatment process by chemical
(alkaline and acid) and hydrothermal techniques including microwave and autoclave
treatments to facilitate the mechanical defibrillation of oat fiber and study the emulsion
capacity of NFC extracted from dried purified oat fibers. The oat fibers were pretreated
with either chemical treatment or hydrothermal treatment followed by bleaching with
hydrogen peroxide before being subjected to high-pressure homogenization as mechanical
defibrillation to obtain the NFC. The characteristics of NFC were determined including
microstructure, color, electrical charge (ζ-potential), and apparent viscosity. The O/W
Pickering emulsions were produced using NFC as a single emulsifier by dispersing in the
continuous aqueous phase at 1% w/w. The NFC emulsions were analyzed to assess their
properties and stability including emulsion particle size (d32) with distribution, ζ-potential,
color, viscoelastic property, apparent viscosity, and creaming stability.

2. Materials and Methods
2.1. Materials

Fine type purified oat fiber (98% dietary fiber) extracted from oat spelt bran (JELUCEL-
OF90) was obtained from Brenntag Ingredients (Brenntag Ingredients PLC, Bangkok, Thai-
land). Soybean oil was purchased from local supermarkets and used without further
purification. All chemicals were of analytical grade and prepared using deionized (DI)
water. Potassium hydroxide (KOH) was obtained from Merck (Merck Co., Ltd., Darmstadt,
Germany). 37% Hydrochloric acid (HCl) was obtained from QRëC (Quality reagent chemi-
cal Co., Ltd., Esparreguera, Spain). 30% v/v Hydrogen peroxide (H2O2) was obtained from
Chem Supply (Adelaide, South Australia). Dipotassium hydrogen phosphate (K2HSO4)
and potassium dihydrogen phosphate (KH2SO4) which used to prepare potassium buffer
(pH7) and sodium azide (NaN3) were obtained from Ajax Finechem (Ajax Finechem Pty.,
Ltd., New South Wales, Australia).

2.2. Oat Nanofibers Extraction

Nanofibrillated cellulose (NFC) was extracted from oat fibers by chemical and hy-
drothermal pre-treatments with mechanical defibrillation by high pressure homogenization
as shown in Figure 1.

2.2.1. Chemical Pretreatment

Oat fiber was treated with alkaline and acid treatments following the method of [3].
The oat fiber at a concentration of 10% w/w was dispersed in DI water and then the alkaline
treatment was applied to the oat fiber suspension using 5% w/w of potassium hydroxide
(KOH) at 90 ◦C for 2 h. The oat fiber suspension was then subjected to acid treatment using
1% w/w hydrochloric acid (HCl) at 80 ◦C for 2 h. After the chemical pretreatments, the oat
fiber suspension was rinsed with DI water and neutralized.

2.2.2. Hydrothermal Pretreatment

The oat fiber suspension at 10% w/w with DI water was subjected to hydrothermal
treatments consisting of either autoclave treatment or microwave treatment following the
method of [25,42]. The oat fiber suspension was autoclaved (Autoclave GI54TW, Zealway
Instrument INC, Wilmington, NC, USA) at a temperature of 120 ◦C for 2 h and rinsed with
DI water to remove non-cellulosic materials. The oat fiber suspension was also subjected
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to an 800 W microwave (Sharp R-220, Sharp Thai Co., Ltd., Bangkok, Thailand) for 5 min.
After the microwave process, the oat fiber suspension was stirred (Isotemp stirring hotplate,
Fisher Scientific International INC, Pittsburgh, PA, USA) at 600 rpm for 30 min and rinsed
with DI water to remove non-cellulosic materials. The microwave treatment was repeated
for 5 cycles.
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Figure 1. Schematic of nanofibrillated cellulose (NFC) extraction from oat fibers by chemical and
hydrothermal pretreatments with mechanical defibrillation by high pressure homogenization.

2.2.3. Bleaching Process

The oat fiber suspension which was obtained from chemical treatment was bleached
with 30% v/v hydrogen peroxide (H2O2) at 90 ◦C for 3 h. The oat fiber suspensions from
hydrothermal treatment were either bleached under the same procedure or non-bleached.

2.2.4. Mechanical Process

The solid content of oat bran fiber suspension was adjusted to 5% w/w using DI water.
The oat bran fibers were subsequently defibrillated using the method of [43] who advocated
passing the oat fiber suspension through a high-pressure homogenizer (APV-2000, SPX
Flow Technology INC, Charlotte, NC, USA) at a pressure of 500 bar for 20 passes. The
obtained NFC samples were stored in a water-swollen cellulose state and kept at 4 ◦C for
further study.

2.3. Oil-in-Water (O/W) NFC-Stabilized Emulsion Preparation

The O/W emulsions were prepared by mixing 10% w/w oil phase (soybean oil) and
90% w/w aqueous phase containing 1% w/w NFC in 10 mM potassium buffer (pH 7), and
0.01% w/w sodium azide (NaN3). Coarse O/W emulsions were obtained by combining the
oil and aqueous phases using a homogenizer (HG-15A equipped with stator dispersing
tool HT1025, Daihan Scientific Co., Ltd., Wonju, Korea) at a speed of 10,000 rpm for
2 min. Fine O/W emulsions were obtained by subjecting the coarse O/W emulsions to an
ultrasonic sonicator 650 W (Biosafer 650-92 equipped with 6 mm diameter probe, Nanjing
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Safer Biotech, Co., Ltd., Nanjing, China) at 50% power, pulse on/off 5 s for 5 min. The
NFC-stabilized emulsions were kept at room temperature (25 ◦C) for further analysis.

2.4. Scanning Electron Microscope (SEM)

Dried purified oat fiber powder was placed on carbon tape and the microstructure was
observed under a scanning electron microscope and energy-dispersive X-ray spectrometer
(JSM-IT-300, JEOL, Tokyo, Japan). In the case of water in the NFC suspensions, these were
substituted with absolute ethanol prior to being dropped on a glass cover slip. Samples
were dried before coating with gold using an ion sputter instrument (SCD 040, Balzers,
Bal-Tec GmbH, Pfäffikon, Switzerland). The microstructure of the NFC was then observed
under a scanning electron microscope and energy-dispersive X-ray spectrometer (JSM-IT-
500HR, JEOL, Tokyo, Japan).

2.5. Particle Size and Size Distribution

Particle size (oil droplet diameter) and distribution of freshly prepared NFC-emulsions
were measured using a laser particle size distribution analyzer (Mastersizer 3000, Malvern
Instruments Ltd., Worcestershire, UK). Emulsion samples were dispersed in DI water to
avoid multiple scattering. Refractive indices of oil and water were applied at 1.46 and 1.33,
respectively, and absorption was assumed to be 0.

2.6. ζ-Potential

NFC suspension at a concentration of 1% w/w and NFC-emulsions were measured for
ζ-potential using a zeta potential analyzer (Zetasizer Nano ZS, Malvern Instruments Ltd.,
Malvern, Worcestershire, UK). The NFC-emulsions were dispersed in DI water at an oil
concentration of 0.6% w/w prior to measurement.

2.7. Color

The 1% w/w NFC solutions and NFC emulsions were measured for color using a
colorimeter with the L*, a*, b* system applied with quartz cuvette (ColorFlex EZ, Hunter
Associates Laboratory, Inc., Reston, Virginia, USA). L* represents lightness where L* is
0 = black and L* is 100 = white. Meanwhile, a* and b* represent redness and yellowness
where a* + and − values are red and green and b* + and − values are yellow and green.

2.8. Rheological Properties

The NFC suspensions (1% w/w) and NFC-emulsions were measured for viscoelastic
properties and viscosity using a controlled-strain rheometer (Physica MCR 302, Anton
Paar GmbH, Graz, Austria) equipped with a cone and plate sensor (1◦ cone angle, 50 mm
diameter, and 0.01 mm gap) at room temperature (25 ◦C). The viscoelastic measurement
was conducted by applying a constant strain at 0.5%, with an angular frequency range of
0.1–100 rad s−1. The viscosity measurement was taken by increasing the applied shear
rate from 0.1–300 s−1 for 3 min and decreasing the applied shear rate from 300–0.1 s−1 for
3 min.

2.9. Creaming Stability

The NFC-emulsions were transferred into a screw-capped glass bottle (20 mm diameter
and 70 mm height). The samples were kept under room temperature (25 ◦C) for 60 days.
The creaming stability of the samples was evaluated by observing the phase separation
between the serum (bottom) and emulsion (top) phases and calculating the percentage for
the creaming index (%CI) via the following equation:

%CI = (HS/HT) × 100

where HS refers to the height of the serum phase and HT refers to the total height of the
emulsion samples.
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2.10. Statistical Analysis

All measurements were conducted via three replications. The results are shown as
mean ± standard deviation. A one-way analysis of variance (ANOVA) with Duncan’s
multiple range test at a significance level of p ≤ 0.05 was used to indicate significant
differences among samples. The statistical analysis was performed using the SPSS version
18.0 Windows program (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Microstructure of Oat Fibers and NFC

The microstructure of the original purified oat fiber and NFC pretreated with chemical
and hydrothermal treatments is showed in Figure 2. The shape of the initial oat fiber before
extraction is exhibited as densely packed fibers in a cylindrical sheet shape. There was
no expansion or entanglement of fine micro/nanofibers. The chemically pretreated NFC
exhibited a lot of fine fibers, probably in the nano size range, and the structure of the
nanofibers was entangled as a web-like structure. However, there were a few microfibers
(≤10 µm diameter) mingled amongst the nanofibers due to inhomogeneity during the
defibrillation process. Xiao et al. [3] reported that the cellulose structure obtained by
chemical pretreatment separated into individual fibers and formed a three-dimensional
network as interconnected fibers. The study of [44] reported in agreement that the alkaline
with hydrogen peroxide pretreatment involved the detaching of the cellulose structure
which increased the surface area for further processes. The chemical pretreatment greatly
facilitated the defibrillation process by high-pressure homogenizer. The microstructures of
hydrothermal pretreatments with bleaching and without bleaching were distinguishable.
The bleached fibers showed a higher ratio of nanofibers than microfibers and also exhibited
web-like entanglement in the structure, while non-bleached fibers exhibited loosely packed
microfiber sheets with moderate nanofibers. The result clearly showed that hydrogen
peroxide (H2O2) strongly affected the disclosure of the cellulose structure to enhance the
disruption efficiency of the high-pressure homogenizer. The study of [45] found that H2O2
supplementation for alkaline pretreatment exhibited a higher deterioration of fibrils which
indicated that bleaching by using H2O2 was a significant step for the pretreatment of
cellulose. Between two different hydrothermal pretreatments, the fibers obtained from
the autoclave were loose and outstretched in contrast to the microwave due to the fact
that steam in the autoclave process could better penetrate and severely disintegrate the
fiber structure when compared to the microwave process. The microstructure of NFC
observed using SEM showed that most fibers were still agglomerated, undivided, and
not completely in the form of nanocellulose, which may restrict their dispersion and
emulsification properties. These might be caused by the sample preparation step for SEM
measurement. The samples had to dry prior to the SEM measurement which caused
the structure to collapse and be packed. Somehow SEM may not represent the actual
microstructure of the sample in a wet state (either suspension or solution). It is suggested
that transmission electron microscopy (TEM) is a more suitable and effective method to
observe the microstructure of NFC. In addition, the appropriate concentration of cellulose
suspension before subjecting to mechanical defibrillation is also a critical factor affecting
the degree of defibrillation. In our study, the oat fiber suspensions were defibrillated at a
concentration of 5% w/w which may restrict the dispersion of cellulose fiber suspension
and also obstruct the disintegration step by hindering the disruption force and turbulence
flow inside a high-pressure homogenizer. It is suggested that the preparation conditions
and process optimizations of several nanocellulose are needed for further study.
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The size of nanocellulose is a critical factor indicating emulsifying activity and stability
as well as their applications. Unfortunately, the size distribution of NFCs was not included
in this study, but the diameter and length of nanocellulose are affected by pretreatment
methods and the strength of the mechanical force used for disintegration. The study
from [46] showed that NFC from wood pulp by a mechanical method (using a rotor-
stator and a microfluidizer) has a diameter of between 20 to 100 nm with a degree of
polymerization (DP) at 643, as well as, NFC from wood pulp by chemical pretreatment
followed by mechanical method (10%sulfuric acid and microfluidizer) has diameter below
50 nm with DP at 304. It is suggested that size of NFC extracted with chemical pretreatment
and mechanical methods provided a smaller size and lower DP which is the same agreement
as microstructure showed in this study. Paschoal et al. [47] reported that NFC extracted from
oat hull using bleaching, acid hydrolysis (63.7% sulfuric acid), and ultrasonication exhibited
interconnected webs of tiny nanofibers with diameters of 70–100 nm and lengths of several
micrometers. Furthermore, hydrolysis time did not influence the morphology of extracted
NFC. It is also supported that chemical pretreatment before mechanical disintegration
could facilitate the breakdown of cellulose fiber.

3.2. Particle Size and Distribution

The particle size of NFC emulsions was reported as a d32 value (volume–surface mean
diameter) which is sensitive to the presence of small oil droplets. As mentioned, this study
used NFC as the single emulsifier for O/W stabilization. The NFC itself is a cellulose
molecule which stabilized emulsion via the Pickering mechanism. Pickering emulsions
(particle-stabilized emulsions) were mainly stabilized by covering the solid particles around
the oil droplet surface and forming a steric barrier to prevent droplet coalescence [35,41].
Typically, the oil droplet size presented in Pickering emulsions stabilized by nano-size
solid particles was a micrometer in diameter [48]. The results in Table 1 showed that the
emulsions stabilized with NFC were in micro size as a common Pickering emulsion. The
chemically pretreated NFC emulsion exhibited the smallest oil particles (3.76 ± 0.06 µm).
The hydrothermal pretreated NFC emulsion using a microwave with bleaching exhibited
larger oil particles compared to non-bleaching. This phenomenon occurred in autoclave
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pretreatment of NFC emulsion, and it was found that autoclave-pretreated NFC tended to
produce bigger emulsion particles than microwave-pretreated NFC. The largest oil particle
size was found in emulsion stabilized with bleached autoclaved NFC at 7.28 ± 0.015 µm.
The particle size distribution of all emulsions exhibited as multimodal distributions which
had 3 peaks in the distribution curve within a range of 1 to 100 µm (Figure 3), because
each NFC contained both micro and nano size fibers. Moreover, the difference ratio of
microfibers and nanofibers affected the emulsion oil droplet size with the observation that
all emulsions produced by NFC contained a heterogeneous oil droplet size. Albert et al. [36]
mentioned that the particle size of the Pickering emulsifier influences the emulsion droplet
size and stability because the emulsifier size influences the ability to adsorb at the interface
during emulsion formation. The nanofibers had the effect of adsorbing at the oil droplet
surface rather than microfibers due to their molecular size. Considered from the distribution
curve, the chemically pretreated NFC emulsion exhibited smaller oil particle sizes than
those hydrothermally treated NFC emulsions because of the higher ratio of nanofibers
contained in chemically pretreated NFC. For the same reason, the bleached hydrothermally
pretreated NFC emulsions (both microwave and autoclave) exhibited smaller oil particle
sizes than non-bleached samples.

Table 1. The mean particle size (d32), ζ-potential, colors (L*, a*, b*), and apparent viscosity (at shear
rate 300 1 s−1) of emulsions stabilized with NFC pretreated by chemical and hydrothermal treatments.

Emulsions d32 (µm) ζ-Potential
(mV) L* a* b* ηγ=300 (Pa·s)

emulsion_CH 3.76 ± 0.006 e −39.82 ± 1.51 b 51.56 ± 0.22 ab −0.11 ± 0.01 a −0.04 ± 0.03 e 0.0088 ± 0.0003 a
emulsion_MW 5.28 ± 0.015 d −37.00 ± 2.06 b 52.04 ± 0.01 a −0.09 ± 0.00 b 0.43 ± 0.02 c 0.0144 ± 0.0006 a
emulsion_MH 6.70 ± 0.010 b −54.90 ± 3.34 a 49.23 ± 0.67 c −0.05 ± 0.01 c 0.85 ± 0.08 a 0.0077 ± 0.0001 a
emulsion_AC 6.00 ± 0.012 c −37.05 ± 1.77 b 51.35 ± 0.11 b −0.12 ± 0.01 a 0.30 ± 0.05 d 0.0407 ± 0.0109 a
emulsion_AH 7.28 ± 0.015 a −54.85 ± 3.40 a 49.25 ± 0.22 c −0.09 ± 0.01 b 0.65 ± 0.04 b 0.0087 ± 0.0023 a

Results were presented as mean ± SD. In the same column, the values with the different letters (a–e) were signifi-
cantly different from the others (p≤ 0.05). Note: CH—chemical pretreatment; MW—microwave without bleaching
pretreatment; MH—microwave with bleaching pretreatment; AC—autoclave without bleaching pretreatment;
AH—autoclave with bleaching pretreatment.
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Figure 3. Particle size distribution of emulsions stabilized by NFC pretreated using chemical (CH) and
hydrothermal treatments including microwave without bleaching pretreatment (MW), microwave
with bleaching pretreatment (MH), autoclave without bleaching pretreatment (AC), and autoclave
with bleaching pretreatment (AH).
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3.3. ζ-Potential

ζ-potential was used to define the charge of NFC suspensions and the stability of
the NFC-stabilized emulsions. ζ-potential of NFC emulsions and NFC suspensions are
shown in Tables 1 and 2, respectively. The ζ-potential of nanocellulose is influenced by
extraction methods due to the involvement of ionic chemicals and exposure of COO- in
the nanocellulose structure. Originally, cellulose is an anionic polysaccharide that shows a
negative charge. In this study, oat bran NFCs with various pretreatments also exhibited
negative charge which varied from −17 mV to −27 mV. Overall, the ζ-potential of NFCs in
this study exhibited similar values as many previous studies which used different sources of
cellulose such as wood and hemp [13], eucalyptus [2], and fluff pulp from commercial paper
mills [49]. Moreover, the charge of the NFC dominated the charge of NFC emulsions. In
general, the polysaccharide emulsifier stabilized the emulsion by forming a thick interface
which stabilized the emulsion through steric repulsion [50]. Since NFC itself exhibited
electrical properties, it also stabilized emulsion droplets through electrostatic repulsion.
All NFC emulsions exhibited ζ-potential between −37 to −54 mV which pointed to stable
emulsions. Interestingly, emulsions stabilized with NFC pretreated by bleached–microwave
and bleached–autoclave treatment exhibited very large magnitudes compared with NFC
emulsions with unbleached microwave and autoclave pretreatment. The reason was that
the hydrogen peroxide used for bleaching revealed the cellulose structure, hence the anionic
group (COO-) on cellulose was pronounced.

Table 2. The ζ-potential, colors (L*, a*, b*), and apparent viscosity (at shear rate 300 1 s−1) of NFC
suspension pretreated by chemical and hydrothermal treatments.

Nanofibrillated
Cellulose (NFC) ζ-Potential (mV) L* a* b* ηγ=300 (Pa·s)

NFC_CH −20.12 ± 5.28 cd 36.76 ± 0.13 c −0.76 ± 0.01 a −4.11 ± 0.02 a 0.2413 ± 0.1227 a
NFC_MW −26.73 ± 1.41 ab 38.56 ± 0.51 b −0.71 ± 0.01 b −3.38 ± 0.06 c 0.2413 ± 0.1963 a
NFC_MH −23.08 ± 3.72 bc 40.09 ± 0.20 a −0.70 ± 0.01 b −3.53 ± 0.02 b 0.0250 ± 0.0045 b
NFC_AC −27.95 ± 3.58 a 39.29 ± 0.56 ab −0.78 ± 0.02 a −3.56 ± 0.02 b 0.2453 ± 0.0412 a
NFC_AH −17.05 ± 1.94 d 39.80 ± 0.56 a −0.72 ± 0.01 b −3.52 ± 0.04 b 0.0288 ± 0.0134 b

Results were presented as mean ±SD. In the same column, the values with the different letters (a–d) were signifi-
cantly different from the others (p≤ 0.05). Note: CH—chemical pretreatment; MW—microwave without bleaching
pretreatment; MH—microwave with bleaching pretreatment; AC—autoclave without bleaching pretreatment;
AH—autoclave with bleaching pretreatment.

3.4. Color

The color parameters of NFC emulsions and NFC suspensions are shown in Tables 1 and 2,
respectively. The appearance of NFC exhibited a white suspension by visual observation.
Lightness (L*) of NFC treated with bleaching tended to be higher than unbleached NFC. The color
(a* and b*) of all NFC exhibited a sparse yellow even though there were significant differences,
but these could not be detected by the human eye (Figure 4). The color of emulsions performed
by NFC also exhibited white color as the NFC color. Not only the color of the NFC influenced
the color of emulsions, but also the oil particle size contained in the sample had an impact on the
emulsion color. Since the color measurement is based on the principle of light scattering, small
oil particles have the ability to scatter light rather more than large oil particles. Thus, emulsion
containing small oil droplets tended to have a higher L* than emulsion containing large oil
droplets. For this reason, the emulsions containing small oil droplets were the chemically treated
NFC emulsion and the hydrothermal without bleaching-treated NFC emulsions. Moreover,
chemically treated NFC emulsions exhibited little yellowness among all emulsions. In addition
to NFC suspensions, NFC emulsions showed no detectable color difference by appearance,
although they were significantly different according to the L*, a*, and b* values.
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3.5. Rheological Properties

The viscoelastic properties and viscosity of NFC-emulsions are shown in Figure 5. In
the case of dilute emulsion (low droplet volume fraction), the viscosity of the emulsion was
influenced by the viscosity of the continuous phase [51]. The viscosity of NFC emulsions,
regarded as dilute emulsions, conformed to the viscosity of the NFC suspension as shown
in Tables 1 and 2. The viscosities of the NFC suspensions pretreated chemically and by
hydrothermally without bleaching were not significantly different. The NFC suspensions
with bleaching (microwave and autoclave) showed significantly decreased viscosity which
may be due to the detachment of the fibrils. However, there were no differences found in the
viscosity of NFC emulsions produced by different pretreatment methods. Interestingly, the
emulsions stabilized by NFC exhibited lower viscosity than NFC suspensions. The reason
was that NFC emulsions had higher magnitudes of ζ-potential. Taheri and Samyn [52]
mentioned the decrease of viscosity related to an increase in the ζ-potential value. The
repulsion force by ζ-potential acted as a lubricant which caused surface slip [53]. Therefore,
the high surface charge emulsions stabilized by NFC treated with microwave with bleaching
and autoclave with bleaching exhibited lower viscosity than others. The viscosity of the
NFC emulsions pointed out the shear thinning behavior (apparent viscosity decreased as
shear rate increased) which is a typical behavior in emulsions occurring via the deformation
and disruption of flocs [54]. Since the viscosity of NFC emulsions was influenced by the
viscosity of the NFC that presented in the continuous phase, the viscoelastic property
was also dominated by the NFC. The NFC emulsions exhibited a G’, or storage modulus
(referring to a solid-like property), that was over the G”, or the loss modulus (referring
to a liquid-like property), without crossing over the measured angular frequency range
(0.1–100 rad s−1) which was a characteristic of the gel-like property. Due to an expansion of
the NFC in the continuous phase, not only was viscosity provided to the NFC emulsions
but was a three-dimensional network which exhibited gel-like properties was also formed.
The study of [55] reported that the emulsion prepared with microfibrillated cellulose (MFC)
from mangosteen rind exhibited gel-like behavior. The reasons were: (1) the formation of a
three-dimensional gel network from MFC in the continuous aqueous phase of emulsion,
and (2) the flocculation of oil droplets induced by fibers. As observed in oil particle size
distribution (Figure 3), the emulsion stabilized by autoclaving without bleaching NFC
exhibited higher flocs than others. Therefore, it tended to exhibit stronger gel behavior
than others.
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3.6. Creaming Stability

The creaming index (%CI) of NFC emulsions is shown in Figure 6. The creaming index
was used to describe instability of the emulsions by observing gravitational separation.
The emulsion layer would be located above the serum layer according to their densities. It
was possible that the large oil droplet would move upwards leading to the loss of emulsi-
fier wall integrity which caused the oiling off phenomenon. The results showed that the
emulsion prepared with autoclave-pretreated NFC would exhibit separation from day 1 at
1.67 ± 1.44%. On day 7, the emulsion prepared with autoclave with bleaching pretreatment
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and the chemically pretreated NFC started to cream at 1.67 ± 0.72% and 1.25 ± 1.77%,
respectively. The emulsions prepared using an autoclave treated with and without bleach-
ing, and chemically pretreated NFC were slightly extended until completing the storage
period (60 days) at 3.13 ± 2.65%, 5.42 ± 1.44%, and 3.75 ± 2.17%, respectively. Remarkably,
the emulsions using microwave with and without bleaching pretreated NFC started to
cream after day 28 and exhibited final %CI at 0.83 ± 0.72% and 1.67 ± 0.72%, respectively.
The microwave-pretreated NFC decelerated the phase separation rate which improved the
long-term stability of the emulsions. All NFC emulsions exhibited relatively low phase
separation (less than 6% of CI) and no evidence of oiling off was found. This could indicate
that emulsions produced by NFC expressed good performance in terms of stability due
to the ability of NFC to retard droplet movement by its entangled network located in the
continuous phase, the thickening effect, and electrostatic repulsion. It is suggested that key
parameters indicating emulsion stability are oil droplet size, interfacial layer at oil–water
interfaces (ζ-potential and storage modulus, G’), and viscosity of continuous phase. The
chemically pretreated NFC emulsion exhibited the smallest oil droplet size, but it showed
lower stability than the microwave with bleaching-pretreated NFC emulsion due to lower
ζ-potential magnitude, storage modulus, and viscosity. On the other hand, the autoclave
with bleaching-pretreated NFC emulsion exhibited an excellent ζ-potential magnitude, but
it had the biggest oil droplet size together with the lowest storage modulus, thus, it showed
the lowest gravitational stability.
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using chemical (CH) and hydrothermal treatments including microwave without bleaching pretreat-
ment (MW), microwave with bleaching pretreatment (MH), autoclave without bleaching pretreatment
(AC), and autoclave with bleaching pretreatment (AH).

4. Conclusions

Nanofibrillated cellulose (NFC) was extracted from purified oat fibers using five dif-
ferent pretreatment methods, including chemical (potassium hydroxide, hydrochloric acid,
and hydrogen peroxide), microwave with and without hydrogen peroxide, and autoclave
with and without hydrogen peroxide, before being subjecting to a high-pressure homoge-
nizer to defibrillate the fiber. The chemical pretreatment and hydrothermal pretreatment
with hydrogen peroxide significantly affected the properties of NFC and its emulsion
capacity. Our findings point out that the bleaching step by hydrogen peroxide facilitated
the mechanical defibrillation step observed by SEM micrograph. The results found the
detaching of fibers and increasing of nano size fibers. However, NFC pretreated with
either chemical or hydrothermal methods exhibited micro- and nano-size fibers in various
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ratios. The NFC-stabilized emulsion was prepared through the Pickering mechanism
(solid-stabilized emulsion) by means of steric (forming a thick interfacial layer) and electro-
static (providing a negative charge) repulsions. The chemically pretreated NFC exhibited
desirable emulsion capacity by producing the smallest emulsion droplet size. All NFC
emulsions exhibited multimodal distribution due to the heterogeneous fiber size of NFC
having different capacities to adsorb at the interfacial layer. The ζ-potential indicated that
the emulsions stabilized by NFC were stable by sufficient electrostatic repulsion. The colors
of the NFC emulsions were influenced by the NFC color and emulsion droplet size. The
rheological properties of NFC emulsions were strongly influenced by NFC. Since NFC
formed three-dimensional networks in the continuous phase, it increased viscosity and
also exhibited the gel-like properties of NFC emulsions. The creaming stability showed
that NFC pretreated with microwave with bleaching showed the lowest phase separation
which indicated the long-term stability. Even though the NFC with chemical pretreatment
facilitated the defibrillation process and exhibited good emulsion capacity and moderate
emulsion stability, the NFC pretreated with microwave with bleaching showed similar
emulsion capacity and stability. Therefore, microwave with bleaching would be an alterna-
tive pretreatment process which is environmentally friendly, reduces the processing time,
and involves a mild reaction.
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