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Hôpital Tenon AP-HP, France
Hamid Mammar,

Institut Curie, France
Alexandre Escande,

Oscar Lambret Cancer Center, France

*Correspondence:
Pierre Decazes

pierre.decazes@chb.unicancer.fr

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 04 October 2020
Accepted: 22 December 2020
Published: 04 February 2021

Citation:
Decazes P, Hinault P, Veresezan O,

Thureau S, Gouel P and Vera P (2021)
Trimodality PET/CT/MRI and
Radiotherapy: A Mini-Review.

Front. Oncol. 10:614008.
doi: 10.3389/fonc.2020.614008

MINI REVIEW
published: 04 February 2021

doi: 10.3389/fonc.2020.614008
Trimodality PET/CT/MRI and
Radiotherapy: A Mini-Review
Pierre Decazes1,2*, Pauline Hinault 2, Ovidiu Veresezan3, Sébastien Thureau1,2,3,
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Computed tomography (CT) has revolutionized external radiotherapy by making it
possible to visualize and segment the tumors and the organs at risk in a three-
dimensional way. However, if CT is a now a standard, it presents some limitations,
notably concerning tumor characterization and delineation. Its association with functional
and anatomical images, that are positron emission tomography (PET) and magnetic
resonance imaging (MRI), surpasses its limits. This association can be in the form of a
trimodality PET/CT/MRI. The objective of this mini-review is to describe the process of
performing this PET/CT/MRI trimodality for radiotherapy and its potential clinical
applications. Trimodality can be performed in two ways, either a PET/MRI fused to a
planning CT (possibly with a pseudo-CT generated from the MRI for the planning), or a
PET/CT fused to an MRI and then registered to a planning CT (possibly the CT of PET/CT
if calibrated for radiotherapy). These examinations should be performed in the treatment
position, and in the second case, a patient transfer system can be used between the PET/
CT and MRI to limit movement. If trimodality requires adapted equipment, notably
compatible MRI equipment with high-performance dedicated coils, it allows the
advantages of the three techniques to be combined with a synergistic effect while
limiting their disadvantages when carried out separately. Trimodality is already possible
in clinical routine and can have a high clinical impact and good inter-observer agreement,
notably for head and neck cancers, brain tumor, prostate cancer, cervical cancer.

Keywords: computed tomography, magnetic resonance imaging, positron emission tomography, radiotherapy,
hybrid imaging
INTRODUCTION

External radiotherapy consists of treating an internal lesion, superficial and/or external lesion with
an external source of radiation. In the nineties, computed tomography (CT) has revolutionized
external radiotherapy by making it possible to visualize the tumor(s), corresponding to the target
volume, and the organs at risk (OARs), which are normal tissues whose sensitivity to radiation can
significantly influence treatment planning and/or prescribed dose. Because the treatment beams can
be afterwards individually oriented on the tumor in a three-dimensional (3D) approach, this
marked the beginning of 3D conformal radiotherapy (1).
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A following improvement was the control of the intensity of
the treatment beams which opened in the new millennium the
era of the intensity-modulated radiotherapy (IMRT) whose aim
is to deliver a high dose to the target volume while sparing the
adjacent tissues, notably OARs (2). With this technique, a
homogeneous dose is prescribed to the planning target volume
(PTV) that considers uncertainty in treatment planning by
encompassing the gross tumor volume (GTV, corresponding to
the delineated macroscopic and radiologically measurable
tumor) and the clinical target volume (CTV, which adds a
margin to the GTV to cover nearby areas at risk of hosting
microscopic disease) (3). The accuracy of anatomical localization
is of particular importance for stereotactic radiotherapy (SRT),
corresponding to an external beam radiotherapy used to deliver a
high dose of radiation very precisely, as a single dose or a small
number of fraction (4).

However, if CT imaging is a now a standard for radiotherapy,
it presents some limitations, notably concerning tumor
delineation which can be difficult, especially for soft tissues (3)
or for the characterization of the lesions. Other 3D imaging
modalities have therefore emerged for radiotherapy, in
particular, positron emission tomography (PET) and magnetic
resonance imaging (IRM). PET and MRI can notably visualize
biological processes distinct and complementary to purely
anatomical imaging. This led to the concept of biological target
volume (BTV) focused on a metabolic function. For example, a
boost radiotherapy can be performed on hypoxic tumors more
resistant to radiation, identified by 18F-fluoromisonidazole
(FMISO) PET/CT (5). Finally, CT, PET, and MRI can be used
to follow the patient during the radiotherapy, at the end of the
treatment, or during the follow-up (6)

If these 3D imaging modalities (CT, PET, and MRI) can be
considered separately, they can also be associated to form a
hybrid imaging, two by two (PET/CT, CT/MRI, PET/MRI) but
also as a trimodality PET/CT/MRI. Multimodality is already
possible in clinical routine with a high clinical impact and good
inter-observer agreement (7).

The aim of this mini-review is to present the concept of PET/
CT/MRI trimodality, its rationale for radiotherapy, and its
potential interest in characterizing tumor, performing
treatment planning, and doing ART.
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TECHNICAL PARTS

CT, MRI, and PET
CT is the reference imaging used by radiation oncologists for
target volumes and organs at risk delineation for radiotherapy
treatment planning. It is a high spatial resolution imaging
modality that provides anatomical information with good
spatial accuracy which is unaffected by geometric distortions.
CT also provides a mapping of tissue electron density necessary
for dosimetric calculations in radiotherapy. However, CT is an
irradiating imaging modality with certain disadvantages such as
lack of contrast in soft tissue and artifacts due to the presence of
metal (8).

MRI is an anatomical and functional imaging modality that
provides very good soft tissue contrast with millimetric spatial
resolution. Although it has the advantage of being non-irradiating,
the acquisition process is time consuming and this technique
presents many contraindications (9). The possibility of using only
MRI for radiotherapy treatment planning is however limited by
the absence of information on tissue electronic density, a non-
constant intensity of the images, and the presence of geometric
distortions that deform images, including the volumes of interest.

CT and MRI are often associated with PET, a functional
imaging modality. It provides a very good tumor/node contrast
and the possibility to acquire large field of view. However, it is an
irradiating examination with poor spatial resolution. In addition,
the presence of partial volume artifacts creates blurred edges
making more difficult the segmentation of volumes of interest.

Therefore, trimodality appears to be a technique of choice in
the treatment of cancer in radiotherapy. It provides anatomical
and functional information of high spatial resolution and allows
improving the definition of target volumes in radiotherapy (10–
12). A summary of the advantages and disadvantages of CT,
MRI, and PET separately and combined in PET/CT/MRI is
presented in Table 1.

Trimodality PET/CT/MRI
As trimodality allows obtaining additional information on
disease and tumors; images of each modality must be
performed in radiotherapy treatment position (13). Each
machine is equipped with a rigid table that is positioned on
TABLE 1 | summary of the advantages and disadvantages of CT, MRI and PET separately and combined in PET/CT/MRI.

CT MRI PET Trimodality PET/CT/MRI

Advantages Anatomy
Spatial resolution (1 mm)
Fast acquisition

Anatomy and function
Spatial resolution (1 mm)
Contrast (soft tissue)
Non-irradiating

Function
Tumor/Background Contrast
Acquisition field

Anatomy and function
Spatial resolution
Tumor characterization
Assessment of disease spread
Dosimetry for RT

Limitations Irradiating
Contrast
Artefacts (metal, teeth, etc.)

Long acquisition
Compatible MRI equipment with
high-performance dedicated coils
Contraindications
Artefacts (Distortions, no
uniformity, etc.)

Irradiating
Spatial resolution (>3–4 mm)
Partial volume (blurred edges)

Irradiating
Long acquisition
Image registration
Compatible MRI equipment with
high-performance dedicated coils
Contraindications MRI
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the device table. Each of these rigid tables has markers and an
indexing system that allows fixing radiotherapy immobilization
solutions. In order to have exactly the same position for all
acquisitions, it is essential that the equipment used is compatible
with all the installations and in particular non-magnetic
equipment for MR. Patient repositioning on each device is
done using markers on the skin (i.e. the positioning referential)
made during the planning CT and external positioning lasers.

Currently, no medical device allows simultaneous acquisition
of all three imaging modalities. The solution is to use two
separate imaging devices, a bimodal hybrid machine and an
independent machine. Two trimodality systems are possible: a
PET/MRI coupled with a CT or a PET/CT coupled with an MRI
(14). For each of them, image registration will be indispensable to
delineate volumes of interest and to perform radiotherapy
treatment planning (15).

For the solution with PET/MR, precautions must be taken for
data acquisition and processing. The patient is positioned on the
device with MR coils compatible with radiotherapy
immobilization fixations (16). To perform attenuation correction
on the PET image, an attenuation mapping of MR coils must be
performed before (17). The PET/MR images and the planning CT
are then registered before volume delineation and dosimetric
planning. An alternative to this solution is to replace the
planning CT by a synthetic CT, commonly referred as pseudo-
CT (18, 19). With the emergence of artificial intelligence, new
robust algorithms such as GANs (Generative Adversial Networks)
(20, 21) allow the creation of attenuationmaps, synthetic CT, from
the different MR images. Treatment planning can then be
performed without proceeding to the image registration step.

The second PET/CT + MRI solution is performed following
the same process; the patient has these two examinations one
after the other in the radiotherapy treatment position. Two
techniques can be used for this PET/CT + MRI workflow. The
first is to use a transfer system compatible with both imaging
devices (22). This consists of an air cushion bed with low
attenuation and a non-magnetic stretcher that allows the bed
to be moved from one device to the other without moving the
patient. The air-cushioned bed is placed on the rigid tabletop of
Frontiers in Oncology | www.frontiersin.org 3
the first imaging device, and the patient is positioned in a
position in agreement with the positioning referential realized
for planning CT. At the end of the acquisition, the patient on the
air-cushioned bed is moved to the stretcher with the help of a
suction system and is then transferred to the second imaging unit
from the stretcher to the examination table using the same
suction system. In the end, the system allows the realization of
multi-modal acquisitions while keeping the patient in the
same position.

For the second technique, the PET/CT and MRI images are
also performed in radiotherapy planning conditions, but the
patient stands up between the two acquisitions. The patient is
positioned on the first imager in radiotherapy treatment
conditions using markers determined during planning CT
acquisition and external lasers. He is then positioned in the
same conditions to the second device. A summary of the
methods of achieving PET/CT/MRI trimodality for radiotherapy
is presented in Figure 1.

Image registration is the last step in the trimodality process.
By placing the acquisitions in a common coordinate system,
image registration allows correlating the information of each
modality and thus improving clinical interpretation (see Figure
2). The image registration can be considered by two
complementary approaches. The first one is material-based
and consists in carrying out all the acquisitions under exactly
the same conditions. First of all, the patient keeps the same
position for each acquisition with the same radiotherapy
immobilization fixations (23). The acquisition parameters will
also allow obtaining the best possible alignment of the images by
keeping the table height and choosing the same slice thickness,
the same acquisition plane or 3D acquisitions with a large field of
view (24).

This first approach facilitates the second software-based
approach. The image registration is done manually by a
physician or with the help of an automatic registration
algorithm. In this second case, it is necessary to first evaluate the
accuracy of the algorithm used. Several studies have evaluated CT-
MRI or trimodality registration algorithms, either on phantom or
from patient data (25–28). The average errors obtained are
FIGURE 1 | Diagram of the process for performing the PET/CT/MRI trimodality in the radiotherapy treatment position.
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between 0.4 and 2 mm. Eventually, a dedicated trimodality image
fusion method can be used for better target delineation (29). A
visual validation remains essential before proceeding with the
planning of radiotherapy treatment, since humans are capable of
detecting transformations of at least 1 mm and 1° (30). Image
fusion is the last step in this process of trimodality; it allows
correlating the information of each modality and improving the
clinical interpretation (see Figure 2).

The registration can however be altered by the presence of
artifacts, notably dental artifacts for CT (31, 32). Concerning
MRI, the presence of geometric distortions, related to the system
or the patient (33), can alter the registration. Algorithms can be
used to correct distortions, but the presence of residual
distortions has been mentioned (34). These distortions will
affect the registration as well as the resulting treatment
planning, in particular the target volume coverage in the case
of stereotactic treatment (35, 36). In the context of multimodality
for radiotherapy, the optimization of acquisition parameters is a
crucial step to facilitate image registration.
CLINICAL APPLICATIONS

Characterization
Combining PET/CT/MRI could provide complementary
information at baseline to assess the disease spread but also to
guide biopsy and characterize the tumor to help decision making.

For glioma, many MRI sequences, notably perfusion and
multiparametric and PET radiotracers, notably radiolabeled
amino-acid like 18F-FDOPA (FDOPA) and 18F-FET (FET), are
available (37). By their combination, it has been found that
metabolic (FDOPA PET/CT) and anatomic (MRI) could aid in
choosing the target to be biopsied under stereotactic conditions
in tumors without MR enhancement (38). In glioblastoma,
another study including multiparametric imaging with FET
Frontiers in Oncology | www.frontiersin.org 4
PET/CT and FDG PET/MRI (including diffusion and dynamic
contrast enhanced perfusion) has shown that combining
parameters in a multivariate model enabled patient-specific
maps of recurrence probability, where FET was the most
important parameter (39). Comparable results were observed
in a study showing that combination of apparent diffusion
coefficient (ADC) and FET was more accurate to detect glioma
infiltration than standard MRI in enhancing gliomas (38); such
an approach could allow risk-adapted radiotherapy planning
(39). Finally, for brain metastasis, FDG PET associated with MRI
could be interesting for lesion targeting of stereotactic radiation
therapy in case of a previously irradiated recurrent tumor (40);
place of FDOPA in this indication has yet to be evaluated.

For cervical cancer, low ADC value in MRI and high FDG
SUV of the primary tumor are also predictive factors for
identifying high-risk patients (41). More complex parameters
with a radiomics analysis combining PET and MRI parameters
have also been found interesting to improve the prognostic
determination in locally advanced cervical cancer treated with
chemoradiotherapy (42).

Finally, for lung cancers, combination of MRI and PET can
help to determine the prognostic with poor issues when low
ADC value in MRI and high FDG SUVmax in PET are associated
before stereotactic body radiotherapy (43) or when parameters
derived from DCE and FDG PET parameters are associated (44).

Planning
For Head and Neck Cancers, it has been known for a long time
that image fusion between FDG PET and MRI/CT is useful with
regard to the determination of GTV and CTV for 3D conformal
radiotherapy with preservation of normal tissues for the majority
of the cases (45), with an interest to do them in treatment
position, notably in case of intra-cranial tumor extension, heavy
metal dental work, or contraindication of contrast enhanced CT
(46). A special irradiation setup including thermoplastic mask,
FIGURE 2 | Trimodal acquisition of a cancer of the base of the tongue with in (A) the frontal maximum intensity projection PET image, in (B) the axial PET FDG
acquisition, in (C) the axial T2 MRI acquisition, in (D) the axial CT acquisition, in (E) the axial PET/CT fusion and in (F) the axial PET/MRI fusion.
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flat table, and head support can be used to allow a precise image
co-registration of trimodality PET/CT MRI (47). As, according
to pathological correlative series, no imaging modality
completely encompasses the tumor, it can be useful to create a
composite target volume derived from multi-modal imaging
(48–51), notably for dose painting, consisting of delivering a
heterogeneous irradiation within the tumor volume, as FDG PET
and multiparametric MRI, in particular DWI, contain correlated
but also independent information (47, 52–54). Concerning PET,
other radiotracers than FDG can be used, such as FDOPA for
skull base paraganglioma (55).

At the brain level, for gliomas treated with 3D conformal
radiotherapy, or even by stereotactic radiotherapy by gamma-
knife (9), the integration of both MRI and amino-acid PET/CT
may help to improve GTV coverage by avoiding larger
discrepancies between physical and biological imaging techniques
(56–60), notably for the area of suspected non-enhancing tumor
(61). Moreover for meningioma, 68Ga-DOTATOC PET, exploring
the expression of SST2 receptors, can be usefully associated with
CT and MRI for the treatment planning (62), notably to detect and
assess the extent of infracranial meningioma invasion (63) andwith
an impact on sparing normal tissues (64), although all locations do
not benefit from this trimodality (65).

For lung cancer, improvements in radiotherapy techniques
(IMRT) make it important to manage the definition of volume
and its mobility (66). The delineation of tumor lesions in lung
cancer patients based on PET/CT is advisable in radiotherapy
treatment planning and for locally advanced non-small cell lung
cancer treated with IMRT or SRT, PET/CT being regarded as an
indispensable staging procedure. Respiratory gating techniques
(4D PET/CT) optimize radiotherapy of lung cancer to reduce
toxicities especially the pulmonary and cardiac late toxicities (67,
68). The place of trimodality PET/CT/MRI has however to be
defined in this indication.

For cervical cancer, a study on a cohort of 134 patients has
shown that dose delivered to the primary cervical tumor by the
combination of MRI-guided high-dose-rate PET/CT-guided
IMRT brachytherapy was highly correlated with local tumor
control (69). However, the delineation stays difficult as tumor
volume discrepancies are observed between MRI and PET/CT
GTV (70) even if it could decrease inter-observer variability (71).
If FDG PET/CT appears superior as a functional imaging
modality when compared with DW MRI in tumor contouring
(72), a threshold around 30% of the FDG SUVmax appears to
provide the best segmentation for this cancer (73).

Concerning prostatic cancer, multimodality, in particular
multiparametric MRI and 68Ga-PSMA PET/CT, offers now
large possibilities whatever the risk of the disease. In low-risk
patients, selection of patients for active surveillance or treatment
is improved; for intermediate-risk patients, it can help to select
patients for supplemental brachytherapy; for high-risk patients it
can help to guarantee adapted tumor volume segmentation, and
finally, for recurrent or metastatic disease, it offers opportunities
for more accurate assessment of tumor burden and treatment
response (74). Therefore, it was found in a prospective study that
combination of PSMA PET and multiparametric MRI provided a
Frontiers in Oncology | www.frontiersin.org 5
reliable TNM staging in patients with prostate cancer with a
change in the therapeutic management for almost one third of
the patients (75), PSMA PET being particularly interesting to
delineate lymph node metastases (76). Moreover, for focal dose
escalation to the dominant intraprostatic lesions, 68Ga-PSMA
PET/CT and multiparametric MRI provide concordant results
for delineation in nearly 50% of the lesions, with a PET GTV
significantly larger than MRI GTV and which could have a role
in treatment planning with intraprostatic dose escalation (77),
notably because dose distribution within dominant intraprostatic
lesions defined by multiparametric MRI and/or PSMA PET
imaging is an independent risk factor for biochemical failure
after primary external beam radiation therapy (78). If further
studies are needed to confirm the optimal imaging techniques
(79), it is already possible to combine multiparametric MRI and
PSMA PET with higher tumor control probability with minimal
to no increase of normal tissue complication probability
compared to dose escalation on GTV defined on only one
imaging modality (80, 81). Moreover trimodality with PSMA
PET/CT/MRI can be used to orient the therapy in case of
biochemical relapse after treatment (82).

For rectal cancer, trimodality PET/CT/MRI has been known
to be possible for a relatively long time, notably to allow dose
escalation on primary tumor (83). As a mobile organ, non-rigid
registration between PET/CT and MRI shows good results, but
this must be considered for the treatment planning (83). FDG
PET/CT adds therefore information to MRI, with potentially a
larger GTV in total when using the union of MRI and PET, and
new or differently evaluated lesions in as many as 15% of the
patients, potentially changing the treatment (84); further studies
are necessary to well define the place of FDG PET in this
indication (85, 86).

Adaptative Radiotherapy
Functional and anatomical data can be used not only prior to
treatment, but also during and after treatment to guide ART, by
improving the tumor targeting while better sparing the OARs, as
well as determine tumor response (87). If the ART approach has
been based first historically on per-treatment CT and/or CBCT
images, it is now possible with MRI-linear accelerator (MRI-
linac), combining an MRI and a linear accelerator, allowing an
MRI acquisition before each treatment delivery (88). PET-linac is
also emerging even if it remains less mature than MRI-linac (89).
While extremely promising, the utilization of functional
adaptation in radiation therapy is only beginning and needs
more prospective clinical validation (90).
PERSPECTIVES

If trimodality can already be used in some indications, its
usefulness remains to be confirmed. To this goal, several
clinical studies are in progress. Concerning prostate cancer,
our team is exploring in the ongoing DEMETER study
(NCT03734757), which will include 20 patients, the interest of
the association of PET/CT with 18F-choline and MRI compared
February 2021 | Volume 10 | Article 614008
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to standard initial staging (CT, MRI and bone scan) to determine
radio-therapeutic volumes. Another recently opened phase 2
study (NCT04402151), which aims to include 50 patients, will
explore the interest of combination of PSMA PET/MRI to
radiation delivery with a MRI-Linac. This study is based on
the principle that the combination of PET PSMA andMRI allows
for better delineation of intraprostatic nodules and greater
diagnostic accuracy for the detection of metastatic disease.
Moreover, MRI-Linac also allows adaptive radiotherapy in
addition to the planning. For cervical cancer, a prospective
observational study including 237 patients (NCT01992861) is
exploring the role of MRI, including DCE, DWI, and
spectrometry, and FDG PET performed before, during and
after radiotherapy and chemotherapy. These could help to
predict patient’s response to treatment and plan treatment.
Finally, for head and neck cancers, our team is performing a
prospective observational study with 60 inclusions planned
called TRIMODAL (NCT03897166). Many questions will be
explored in this study, including the comparison of the
volumes determined on FDG PET/CT and on FDG PET/CT/
MRI, the quality of image registration (in particular by using an
air-cushion transfer system) and the use of algorithms for
Frontiers in Oncology | www.frontiersin.org 6
anthropometric measurements in MRI and CT scanners (with
Dual x-ray absorptiometry as reference standard).
CONCLUSION

We have shown in this brief review the ways of carrying out a
trimodality PET/CT/MRI for radiotherapy and potential clinical
applications. Trimodality PET/CT/MRI, combining the strengths of
the techniques and limiting the respective weaknesses, reinforces the
role of imaging in guiding radiation therapy. Although this
multimodality is recent, it is already possible in clinical routine
with a high clinical impact and good inter-observer agreement.
Clinical studies are still needed to confirm its role in clinical routine.
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