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Abstract: The heterogeneity of asthma involves complex pathogenesis leading to confusion regarding
the choice of therapeutic strategy. In the clinic, asthma is commonly classified as having either
eosinophilic asthma (EA) or non-eosinophilic asthma (NEA) phenotypes. Microbiota colonizing in
airways has been demonstrated to induce distinct phenotypes of asthma and the resistance to steroids.
Rhodiola wallichiana var. cholaensis (RWC) has the potential to alleviate asthmatic inflammation
according to recent studies, but its pharmacological mechanisms remain unclarified. In our study,
murine asthmatic phenotypes were established and treated with RWC and/or dexamethasone (DEX).
Combined treatment with RWC and DEX could improve spirometry and airway hyperresponsiveness
(AHR) in asthmatic phenotypes, alleviate steroid resistance in NEA, and reduce the inflammatory
infiltration of the both phenotypes. The combined treatment increased Th1, regulated the imbalance
of Th2/Th1, and decreased the related cytokines in EA. As for NEA, the combined treatment reduced
Th17 and promoted the accumulation of regulatory T cells (Tregs) in lung. A microbiome study
based on 16S rDNA sequencing technique revealed the significantly changed structure of the lower
airway microbiota after combined treatment in NEA, with 4 distinct genera and 2 species identified.
OPLS-DA models of metabolomics analysis based on UPLC-Q/TOF-MS technique identified 34
differentiated metabolites and 8 perturbed metabolic pathways. A joint multiomics study predicted
that the colonized microbiota in airways might be associated with susceptibility of asthma and
steroid resistance, which involved systematic and pulmonary metabolic perturbation. In summary,
the pharmacological network of RWC included the complicated interaction mechanisms of immune
regulation, microbiota change, and metabolic perturbation.

Keywords: asthma; Rhodiola wallichiana var. cholaensis; dexamethasone; phenotype; multiomics

Int. J. Mol. Sci. 2019, 20, 4216; doi:10.3390/ijms20174216 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-1654-7556
https://orcid.org/0000-0002-0166-8243
https://orcid.org/0000-0002-6640-0846
https://orcid.org/0000-0003-4020-879X
https://orcid.org/0000-0003-0871-3454
http://www.mdpi.com/1422-0067/20/17/4216?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20174216
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 4216 2 of 28

1. Introduction

Asthma, as a heterogenous disease, displays different biological phenotypes which are tightly
associated with prognosis [1,2]. The phenotypes are often identified based on clinical characteristics
or the inflammatory status of asthmatics [3]. Inflammatory phenotyping according to the relative
counts of eosinophils and neutrophils in the induced sputum or peripheral blood of patients has been
widely used in clinical practices [4–6]. Typical asthmatic phenotypes include eosinophilic asthma (EA)
and non-eosinophilic asthma (NEA) mainly consisting of neutrophilic asthma [7,8]. As previously
described, eosinophilic asthma has a higher risk of exacerbation, but non-eosinophilic asthma usually
shows steroid resistance and poorly controlled status [9].

Asthma is an airway-restricted disease involving significant mucus inflammation. Recent
studies have focused on the pathogenesis of asthma and clarified more immune details of asthmatic
phenotypes than ever before. Briefly, the airway inflammation of EA is related to the imbalance of
Th1/Th2 [10]. Environmental allergens can stimulate airway epithelia and induce the recruitment of
eosinophils and huge release of cytokines, including IL-4, IL-5, and IL-13, which are dominated by
Th2 and downregulated by Th1 [11,12]. However, Th17 is activated under the influence of microbial
colonization and smoking with the release of IL-17, which could recruit neutrophils into airways [11,13].
Regulatory T cells (Tregs) suppress the inflammation from Th17 with fibrinogen-like protein 2 and play
a critical negative regulation on the neutrophilic inflammation [14]. Despite the use of dexamethasone
and various monoclonal antibody medicines that have been developed to control Th2-dominated
asthmatic inflammation, the neutrophilic phenotype has barely been controlled in the clinic [15,16].

Root aqueous extracts of Rhodiola wallichiana var. cholaensis (RWC) are a natural plant medicine
traditionally used to strengthen myocardial contractility and reduce the myocardial oxygen [17].
However, the extensive pharmacological activities of RWC have rarely been reported. Recently,
it was found that the main component of RWC, salidroside, could inhibit ovalbumin (OVA)-induced
airway inflammation and alleviate airway hyperresponsiveness (AHR) of murine asthma and reduce
the phosphorylation of p38 MAPK, involved a critical signaling pathway related with steroid
resistance [18–20]. Moreover, a number of signaling pathways related to the pathogenesis of asthma
have also been discovered to be regulated by the main chemical components of RWC, salidroside and
tyrosol [21,22]. However, the detailed therapeutic effect of RWC on asthma or asthmatic phenotypes
have never been evaluated. Dexamethasone (DEX), as the most characteristic therapeutic agent for
treating asthma, can systemically reduce inflammation, decrease mucus production, and enhance
the effects of β-agonists on asthma [23]. Whether RWC together with DEX can synergistically
improve the syndrome of a specific asthma phenotype and contribute to reducing steroid resistance
needs investigation.

Systematic biology has focused on the comprehensive details of diseases and made great progress
in elucidating the pathogenesis of asthma. Using microbiome techniques, Hilty et al. first observed that
Proteobacteria species were increased in the lower airway of asthmatics, especially Haemophilus [24].
Some of the specific pathogens that colonized in lower respiratory tracts, like Haemophilus influenzae,
participate in the regulation of Th1/Th2/Th17 inflammation in asthma [25]. Our previous study
has also reported on a significant distinction in microbiota between the two asthma phenotypes [2].
In addition, metabolomics has been used to identify changed metabolic patterns and to further clarify
the pathogenesis of asthma. Various metabolites such as amino acids and phospholipids have been
identified [26,27]. Differences in metabolic profile between the asthmatic phenotypes have also been
confirmed by our team [28]. Environmental factors and metabolic markers in vivo of asthma might be
novel points to illustrate the pathogenesis of asthmatic phenotypes and the possible pharmacological
mechanism of a potential medicine for asthmatic therapy. Furthermore, integration of microbial and
metabolomics data may have promise for identifying the microbial influence on host physiology
through production, modification, or degradation of bioactive compounds [29].
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OVA-induced experimental murine asthma models display similar inflammatory and immune
dysregulated status as the asthmatic patients with distinct phenotypes [30,31], including
eosinophil-dominated asthma-like airway inflammation and neutrophil-dominated asthma-like airway
inflammation [32]. Therefore, in the present study, we established OVA-induced murine asthma
models with different phenotypes, assessed the therapeutic effect of RWC on the experimental asthma,
and explored the immune pharmacological mechanism of RWC on the inflammatory phenotypes.
Furthermore, the pharmacological network based on multiomics was also constructed for an in-depth
understanding of the mechanism of RWC.

2. Results

OVA-induced murine models of airway inflammation with different phenotypes, including EA
and NEA, were established according to the flowcharts displayed in Figure 1A under a previous
modeling theory [32]. The pharmacological mechanism of RWC, including under combined treatment
with steroid, was further investigated using immunological and systematic biological techniques.
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model; ER: EA treated with RWC; ED: EA treated with DEX; ERD: EA treated with RWC and DEX; 
NEA: non-eosinophilic asthma murine model; NR: NEA treated with RWC; ND: NEA treated with 
DEX; NRD: NEA treated with RWC and DEX. * p < 0.05 vs. HC; ** p < 0.01 vs. HC; ## p < 0.01 vs. EA; 

Figure 1. Flowchart and administration of establishing asthmatic phenotypes, including sensitization,
challenge, and sacrifice (A). The characteristic chromatographic chart of testing injection samples
after 20 consecutive injections (B). The statistics of functional residual capacity (FRC) (C) and forced
expiratory volume in 0.1 s (FEV0.1) (D) of mice in all groups. i.p: intraperitoneal; a.i: atomized
inhalation. HC: healthy control; EA: eosinophilic asthma murine model; ER: EA treated with RWC; ED:
EA treated with DEX; ERD: EA treated with RWC and DEX; NEA: non-eosinophilic asthma murine
model; NR: NEA treated with RWC; ND: NEA treated with DEX; NRD: NEA treated with RWC and
DEX. * p < 0.05 vs. HC; ** p < 0.01 vs. HC; ## p < 0.01 vs. EA; N p < 0.05 vs. NEA; NN p < 0.01 vs. NEA.
The statistics between ED and ERD and ND and NRD were provided directly in the plot.



Int. J. Mol. Sci. 2019, 20, 4216 4 of 28

2.1. Improvement of Spirometry of Asthmatic Models and Quality Assessment on RWC

The quality of RWC injection based on the water extract of RWC root was evaluated according the
quantitative levels of salidroside using optimized HPLC (high-performance liquid chromatography)
conditions, as listed in Table S1. The stability and durability of the HPLC conditions (including
stability, repeatability, intermediate precision, linear, and accuracy) was firstly assessed and displayed
in Figures S1–S6 and Tables S2–S6. The level of salidroside in the injection of RWC was estimated
corresponding to the retention time of 16.401 min, as displayed in Figure 1B, and was quantified as
6.1 mg/mL, which met the quality requirement in Chinese Pharmacopoeia (version 2015) on the quality
of RWC injection.

Spirometry was used to assess lung function, as shown in Figure 1C,D. EA groups and NEA
groups displayed similar general changing trends. Compared to healthy control (HC), EA and NEA
model groups showed a higher level of pulmonary functional residual capacity (FRC). In EA groups,
individual treatment with RWC did not alleviate the high FRC, though DEX alone could decrease
it significantly, while the combined administration with dexamethasone (DEX) further remarkably
reduced FRC. Despite that, FRC in the combination treatment group is still higher than HC. In the
NEA groups, the high level of FRC could be not only be reduced by RWC but also by the combination
treatment, which nearly lowered the level of FRC to HC (p > 0.05). As displayed in Figure 1D, the effect
on FEV0.1 (forced expiratory volume in 0.1 s) after treatment in EA and NEA groups was similar to
FRC. However, the combined treatment in NEA groups did not result in recovery of FEV0.1 to normal
levels (p < 0.05 vs. HC).

2.2. Alleviatory Effect of RWC on AHR and Asthmatic Inflammation

The phenotype-specific evaluation of AHR is shown in Figure 2. Compared with HC, the airway
resistance of inspiration (RI) indexes were remarkably increased in both model groups (EA and NEA),
which indicted successful establishment of the OVA-induced asthma-like murine models with different
inflammatory phenotypes. As for the treatment groups of EA, single administration with RWC did not
inhibit AHR, while DEX and combined treatment could significantly reduce the high level of AHR in
EA (Figure 2A). In NEA groups, however, compared to the model, DEX did not significantly alleviate
AHR until combined with RWC. Moreover, single treatment with RWC also inhibited AHR of NEA at
a large scale (Figure 2C).

In addition, pulmonary dynamic compliance (Cdyn) was also examined (Figure 2B,D). Compared
with HC, Cdyn of the murine models decreased significantly, especially in NEA, which further indicated
the success of experimental murine asthma models. In EA groups, combined treatment protected
Cdyn from decreasing. However, all treatments did not recover Cdyn to the level of HC (p < 0.01 vs.
HC, 50 mg/mL).

Formalin-fixed paraffin-embedded lung tissues of all groups were stained with H&E (hematoxylin
and eosin) and displayed in Figure 3. The inflammation status was also quantitively scored and
statistically assessed (Figure 3). In the HC groups, the frame of lung tissues and the structure of
alveolus is clear and without significant infiltration of inflammatory cells. In EA model, the structure of
lung is disordered and infiltered with eosinophils severely. RWC only could not alleviate eosinophilic
inflammation (p > 0.05), but single DEX and combined treatment with RWC reduced the inflammation
status. In the NEA groups, the morphology of the lung tissues of model group was obviously
and significantly disordered, with significant infiltration of neutrophils and fewer normal bronchus
structures observed. Individual and combined treatments with RWC and DEX alleviated neutrophilic
inflammation and improved bronchus structure, especially in the combined treatment group (p < 0.01).
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Figure 2. The testing results of airway hyperresponsiveness (AHR) of mice in the groups based on
the inflammatory phenotypes. The airway of mice was stimulated with methacholine at different
concentration (PBS, 6.25 mg/mL, 12.5 mg/mL, 25 mg/mL, and 50 mg/mL). Airway resistance of
inspiration (RI) in EA (A) and NEA (C) and dynamic compliance (Cdyn) in EA (B) and NEA (D) were
statistically evaluated based on the data of 50 mg/mL treatment. * p <0.05 vs. HC; ** p <0.01 vs. HC;
# p <0.05 vs. EA; ## p <0.05 vs. EA; N p < 0.05 vs. NEA; NN p < 0.01 vs. NEA.

2.3. Improvement of Th2/Th1 Imbalance and Regulatory Effect on Th17/Tregs

The Th2/Th1 imbalance and the level of Th17 in mice lungs was also evaluated with flow cytometry
and gated as Figure 4A–C and Figure 5A,B. Compared with HC, the level of Th1 in the EA model
decreased but improved significantly after treatments in all administration strategies (p < 0.01).
Th2 cells in the EA and NEA model groups increased significantly but decreased remarkably in EA
after all treatments, in particular, with combined treatment, which nearly lowered Th2 to normal levels
(p > 0.05 vs. HC). However, as for NEA groups, none of were able to alleviate the high levels of Th2.
The imbalance of Th2/Th1, referred as the ratio of Th2/Th1 cells, was most significantly dysregulated in
the EA model group. EA mice treated with RWC displayed a trend of lowering this imbalance (p = 0.07
vs. HC). However, when treated with DEX, the imbalance was downregulated significantly, especially
for the combination treatment. However, in NEA groups, the ratios of Th2/Th1 have an increasing
trend but was not considered statistically significant, even after treating with RWC either individually
or in combination. The changing trends of these T lymphocytes were not consistent between EA and
NEA groups. Similar results were also observed in the spleen, as shown in Figure S7.
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Figure 3. The H&E staining results of the left lung of mice in all groups under different magnifications
(200× and 400×). The histopathological assessment score of inflammatory status of all groups was
based on the assessment criteria provided in Section 4. ** p < 0.01 vs. HC; ## p < 0.05 vs. EA; N p < 0.05
vs. NEA; NN p < 0.01 vs. NEA.
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Figure 4. Typical flow cytometry dot plots of helper T cell clusters (including Th1/Th2/Th17, from
one of the samples of all groups). (A) Th1 (CD4+–IFN-γ+) in lung tissue; (B) Th2 (CD4+–IL-4+) in
lung tissue; (C) Th17 (CD4+–IL-7+) in lung tissue. The statistical data of (D) Th1 cells, (E) Th2 cells,
(F) Th2/Th1 ratio and (G) Th17 cells in mice lung tissues with flow cytometry technique. * p < 0.05 vs.
HC; ** p < 0.01 vs. HC; ## p < 0.01 vs. EA; # p < 0.05 vs. EA; NN p < 0.01 vs. NEA.

As for Th17, compared to HC, its level in EA increased slightly but increased more significantly in
NEA. All treatment methods in the EA groups did not reduce the high level of Th17 but were increased
after treatment with DEX. From this increase, RWC seems to be protective. However, in NEA groups,
the administration of RWC alone could reduce Th17 to the level of HC (p > 0.05 vs. HC). Although
DEX alone and the combination method could also regulate the level of Th17 in NEA significantly,
these treatments did not recover levels to those observed in normal.

Tregs in lung tissues were also detected with flow cytometry and gated as Figure 5A,B. Compared
to HC, Tregs in EA decreased slightly and did recover to normal level under the treatment with RWC
or DEX separately (p > 0.05 vs. HC). The combined administration only increased Tregs to normal level
at a small scale (p > 0.05 vs. HC or vs. EA). However, Tregs of the NEA model decreased remarkably
in comparison with HC. After the treatment with either RWC, DEX, or their combination, pulmonary
Tregs increased sharply (p < 0.01 vs. NEA), especially after the combined administration, even higher
than HC (p < 0.01 vs. HC). But the levels of Tregs in spleen seem to have a trend of decreasing after the
treatments in both phenotypes, as shown in Figure S8.
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Figure 5. Typical flow cytometry dot plots of regulatory T cell clusters. (A) CD4 positive and negative
cells in lung tissue; (B) Treg cells (CD4+–CD25+–Foxp3+) in lung tissue. (C) The statistical data of
Tregs cells in mice lung tissues with flow cytometry technique. * p < 0.05 vs. HC; ** p < 0.01 vs. HC;
NN p < 0.01 vs. NEA.

2.4. Influence on Th1/Th2/Th17-Related Cytokines

Th1/Th2/Th17 related cytokines were quantified with ELISA assay, and results are shown in
Figure 6. Compared to HC, IL-4, IL-5, and IL-13 in the EA groups increased significantly in the model
group and were inhibited significantly by DEX. Single RWC treatment could only reduce the level of
IL-13 (p < 0.05 vs. EA). In the EA model, the combined treatment sharply decreased the level of IL-4,
IL-13, and especially IL-5. In the NEA model, IL-4 and IL-13 increased significantly in comparison to
HC, but decreased after the treatments. IL-5 in NEA only showed an obvious increase after treatment
with DEX.

Besides, IL-17 in EA did not change significantly in the model group but increased after therapy.
However, in the NEA groups, the level of IL-17 evidently increased sharply in the model group (p < 0.01
vs. HC). Treatment with either RWC, DEX, or their combination could significantly reduce the level of
IL-17 in NEA. Despite that, they were still higher than in HC (p < 0.01 vs. HC).

2.5. α-Diversity and β-Diversity of the Microbiota in Lower Airway

Microbiota in the lower airway of the OVA-induced murine models was detected using 16S
rDNA sequencing techniques. The quality of the sequencing was over QC20 (Figure S9) and met the
requirement for further analysis. An initial bioinformatic evaluation of the microecological features
including α-diversity and β-diversity was performed.
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in Table S7–S9, only NEA treated with DEX showed a significantly lower level when compared with 
EA phenotype treated with DEX, and passed the FDR test. 

The diversity index based on phylogenetic diversity (PD), Faith’s PD diversity index, was also 
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Figure 6. The results of asthma-related cytokines, including IL-4 (A), IL-5 (B), IL-13 (C), and IL-17
(D) in mice bronchoalveolar lavage fluid (BALF) of all groups. * p < 0.05 vs. HC; ** p < 0.01 vs. HC;
# p < 0.05 vs. EA; ## p < 0.01 vs. EA; N p < 0.05 vs. NEA; NN p < 0.01 vs. NEA.

Compared to HC, as displayed in Figure 7A–C, the diversity (OBS, observed species index),
richness (Shannon index) and evenness (Pielou’s evenness index) of all EA and NEA groups increased
significantly, indicating a huge quantity of microorganisms in the airway of the OVA-induced mice.
Although the multiple pairwise comparisons among many groups showed good significance (p < 0.05),
few pairs passed the false discovery rate (FDR) test (q < 0.05). As shown in Tables S7–S9, only NEA
treated with DEX showed a significantly lower level when compared with EA phenotype treated with
DEX, and passed the FDR test.

The diversity index based on phylogenetic diversity (PD), Faith’s PD diversity index, was also used
here to evaluate the diversity of the microbiota. As shown in Figure 7D and Table S10, the diversity of
microbiota in all experimental asthma groups was significantly higher than HC. However, as reflected
by Faith’s PD index, the diversity of EA phenotype treated with the combined strategy increased
significantly compared with EA model (p < 0.05 and q < 0.05). However, no diversity changes were
observed in the treated NEA groups when comparing with the NEA model. Moreover, other typical
α-diversity indexes were all calculated (Figure S10) and similar results were also reported.

β-Diversity based on principal coordinates analysis (PCoA) was evaluated according to each
phenotype. The OVA-induced murine models and HC group were separately distributed in the plot
and clustered within their groups (Figure S11). PCoA based on phenotypes revealed that there was
no significant difference in the general structure of microbiota among the EA groups as displayed in
Figure 8C,D. However, in the NEA groups, the groups with treatment are significantly different from
NEA model group because they are separated from NEA model. However, as shown in Figure 8E,F,
NEA administrated with DEX or the combination treatment seemed to be more similar. The difference
among NEA groups was further confirmed using the NMDS (non-metric multidimensional scaling)
method (Figure S12). Moreover, Adonis/PERMANOVA also determined a significant difference among
the NEA groups (p < 0.0001).
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PCoA plots (PCoA1 = 37.3%, PCoA2 = 12.3%, PCoA3 = 11.1%) of EA groups in (A) 2D and in (B) 3D.
PCoA plots (PCoA1 = 38.5%, PCoA2 = 17.3%, PCoA3 = 8.2%) of NEA groups in (C) 2D and in (D) 3D.
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2.6. Taxonomic Differences in Microbiota after Treatment

Differentiated taxonomies of the microbiota in different groups and phenotypes were analyzed
with LEfse (linear discriminant analysis (LDA) effect size), a newly developed method which combines
LDA with Kruskal–Wallis and Wilcoxon tests. Different taxonomies were identified among the model
groups (including the EA model, NEA model, and HC group), EA groups (including EA model,
ED group, ER group and ERD group), and NEA groups (including the NEA model, ND group, NR
group, and NRD group).

In the model groups, the distinct taxonomies are summarized in Figures S13–S14 and Table S11.
In the EA groups, we did not report any significant difference of taxonomies in the levels of phylum,
genus, and species. In NEA, no significant differences were observed at the level of phylum (p > 0.05
or LDA < 4). However, a distinction involving 4 genera (Figure 9A–D) and 2 species (Table 1) was
observed. The cladogram relationship of the different taxonomies in the NEA group is displayed in
Figure 9E.Int. J. Mol. Sci. 2019, 20, x 11 of 28 
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Table 1. Different species using LEfse in NEA.

Species P Values FDR ND NDR NEA NR LDA Score

Proteus mirabilis 6.44 × 10−4 0.036724 116,110 162,152 14,237 9937 4.88
Lactobacillus hamsteri 0.0014144 0.040311 108,397 73,790 3508 3417 4.72
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2.7. Difference of Systematic and Pulmonary Metabolic Pattern

To further identify the pathogenesis of asthma and the potential metabolic function of
the differentiated microbiota in lower airway, non-targeted metabolomics was performed using
UPLC-QTOF-MS/MS. The durability and stability of the chromatographic and spectrometric system was
first evaluated. As displayed in Table S12, the relative standard deviation (RSD) of the mass-to-charge
ratio was less than 0.001%, the RSD of the retention time of the chromatography was less than 1%,
and the RSD of the chromatographic peak area was less than 6%. These data indicated a stable
chromatographic and spectrometric system well-suited for following metabolomics analysis.

Principal component analysis (PCA) of the serum metabolomics was well-fitted (R2X = 0.921,
Q2 = 0.712) and as displayed in Figure S15A,C, QC samples were highly clustered at the center of the
plot, which further indicated the good stability of the metabolomics system. Generally, the treated
groups with the exception of NRD obviously separated with the models and HC. As for NRD, it was
closer to the HC and models, which indicted a potential significant change in metabolic profile.
However, as displayed in Figure S15B,D, the metabolic profile of BALF showed significant differences
among the different groups.

OPLS-DA models of serum were first established and displayed good separation (Figure 10A,B).
CV-ANOVA and permutation tests showed a high significance and confidence for further identification
of the distinct metabolites (Figure 10C,D). Similar discriminant models of BALF samples were also
established and validated with the CV-ANOVA and permutation (Figure 11). The permutation line
was under the random line, which indicated a series of well-fitting discriminant models. Moreover,
the OPLS-DA models of EA vs. NEA, EA vs. HC, and NEA vs. HC of serum or BALF samples
were also established to further clarify the pathogenesis of the experimental asthmatic inflammation
phenotypes as shown in Figures S16−S18.

All differentiated metabolites in either serum or BALF were identified and displayed with S-plots
in Figure 10E,F and Figure 11E,F, respectively. More details of the identified metabolites according to
their MS/MS fragmentation pattern are summarized in Table 2. Total ion chromatogram and base peak
ion chromatogram of serum and BALF samples are displayed in Figures S19 and S20, respectively.
The identification and comparison details of the metabolites are provided in Figures S21–S54.

2.8. Perturbed Metabolic Pathways

The perturbed metabolic pathways of serum and BALF were analyzed using MetaboAnalyst 4.0
as based on the identified metabolites and results are displayed in Figure 12. A total of 7 significantly
changed pathways in serum and 3 in BALF were observed. However, the extent of perturbation differed
for the different metabolic pathways. In detail, 3 of the changed metabolic pathways displayed extreme
significance (impact > 0.1 and −log(p) > 4). Some pathways showed potential significance (impact
> 0.1 or −log(p) > 2), but other pathways only had a trend of association (−log(p) > 2). Moreover,
different OPLS-DA models involved different perturbed metabolic pathways because of their specific
differentiated metabolites. The identified metabolic pathways are summarized in Table S13.
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Figure 10. OPLS-DA score plots and the permutation tests of serum metabolomic profile with the
identified metabolites displayed in the groups. OPLS-DA models of (A) ERD vs. EA, p < 0.001 and
(B) NRD vs. NEA, p < 0.001. The permutation test on the OPLS-DA of (C) ERD vs. EA and (D) NRD
vs. NEA. The S-plots based on OPLS-DA of (E) ERD vs. EA and (F) NRD vs. NEA and identified
metabolites in serum. All p-values were estimated using the CV-ANOVA test. Ellipse in the OPLS-DA
panels represents Hotelling’s T2 test with a confidence interval of 0.95. The counts of permutation tests
are 999.
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Figure 11. OPLS-DA score plots and the permutation tests of BALF metabolomic profile with the
identified metabolites displayed in the groups. OPLS-DA models of (A) ERD vs. EA, p < 0.001 and
(B) NRD vs. NEA, p < 0.001. The permutation test on the OPLS-DA of (C) ERD vs. EA and (D) NRD
vs. NEA. The S-plots based on OPLS-DA of (E) ERD vs. EA and (F) NRD vs. NEA and identified
metabolites in BALF. All p-values were estimated using the CV-ANOVA test. Ellipse in the OPLS-DA
panels represents Hotelling’s T2 test with a confidence interval of 0.95. The counts of permutation tests
are 999.
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Table 2. Distinct metabolites identified in serum and BALF samples.

M Mass RT Compound Name KEGG_ID ∆m Pathways Sample

1 327.2008 2.04 Hydroxydehydroepiandrosterone/
Hydroxytestosterone C18045/C05139/C05291/C05294 2 Steroid hormone biosynthesis Serum

2 327.2008 2.04 LysoPC(18:3(9Z,12Z,15Z)) C04230 2 Glycerophospholipid metabolism Serum
3 371.2275 3.02 Dihydroxypregnenolone C05487/C05478 0 Steroid hormone biosynthesis Serum
4 248.0278 5.67 Pyridoxal 5’-phosphate C00018 0 Vitamin B6 metabolism Serum
5 745.416 6.11 Octaprenyl diphosphate C04146 4 Terpenoid backbone biosynthesis Serum
6 435.2578 6.87 LysoPA (18:2(9Z,12Z)/0:0) C00416 17 Glycerophospholipid metabolism Serum
7 465.247 6.87 Testosterone glucuronide C11134 2 Steroid hormone biosynthesis Serum
8 655.3898 8.1 All-trans-heptaprenyl diphosphate C04216 2 Terpenoid backbone biosynthesis Serum

9 339.1873 8.12 Hydroxyretinoic/Epoxyretinoic
acid/Deoxy-PGJ2 C16677/C16679/C16680/C14717 17 Retinol metabolism & Arachidonic acid Serum

10 361.2005 8.29 Cortisone/Aldosterone C00762/C01780 1 Steroid hormone biosynthesis Serum
11 318.3007 12.79 Phytosphingosine C12144 1 Sphingolipid metabolism Serum
12 302.3065 14.99 Sphinganine C00836 4 Sphingolipid metabolism BALF
13 303.2323 18.12 Bovinic acid/Linoleic acid/Retinyl ester C04056 1 Linoleic acid metabolism Serum
14 298.1327 18.42 Phenethylamine glucuronide C03033 13 Starch and sucrose metabolism BALF
15 349.2352 19.13 Dihydroxypregnanedione C05478 1 Steroid hormone biosynthesis Serum
16 626.2956 19.19 Leukotriene C4 C02166 20 Arachidonic acid metabolism Serum
17 609.3009 20.04 All-trans-hexaprenyl diphosphate C01230 6 Terpenoid backbone biosynthesis Serum
18 499.2297 20.3 Retinoyl b-glucuronide C11061 1 Retinol metabolism Serum
19 450.3213 22.01 Chenodeoxycholic acid glycine conjugate C05466 0 Primary bile acid biosynthesis BALF
20 265.2516 22.01 1-Hexadecanol C00823 4 Fatty acid metabolism BALF
21 433.2227 23.08 LysoPA (16:0/0:0) C00416 1 Glycerophospholipid metabolism BALF
22 555.2908 23.12 5b-Cyprinol sulfate C05468 4 Primary bile acid biosynthesis Serum
23 349.2357 23.13 11b,21-Dihydroxy-5b-pregnane-3,20-dione C05475 2 Steroid hormone biosynthesis Serum
24 469.1846 23.44 Estrone glucuronide C11133 2 Steroid hormone biosynthesis Serum
25 335.2568 24.1 Tetrahydrodeoxycorticosterone C13713 3 Steroid hormone biosynthesis Serum
26 742.5645 26.69 PC (18:2(9Z,12Z)/P-16:0) C00157 13 Glycerophospholipid metabolism Serum
27 760.5777 27.04 PC (18:1(9Z)/16:0)/PE (22:1(13Z)/15:0) C00157/C00350 10 Glycerophospholipid metabolism BALF
28 788.6045 27.06 PC (14:0/22:1(13Z)) C00157 15 Linoleic acid metabolism Serum
29 798.585 27.1 PE (22:0/16:0) C00350 17 Glycerophospholipid metabolism Serum
30 703.5725 27.3 SM( d18:1/16:0) C00550 3 Sphingolipid metabolism Serum

31 782.5662 27.56 PC (18:4(6Z,9Z,12Z,15Z)/18:0)/PE
(22:1(13Z)/15:0) C00157/C00350 1 Glycerophospholipid metabolism BALF

32 732.5517 27.75 PE (15:0/20:1(11Z)) C00350 3 Glycerophospholipid metabolism BALF
33 349.2334 28.62 Dihydroxypregnanedione C05475/C05478/C05487 4 Steroid hormone biosynthesis BALF

34 425.341 28.7 Hydroxycholesterol C05500/C05502/C15519/C03594/
C13550/C05451 0 Steroid hormone & Primary bile acid

biosynthesis Serum

M, metabolite number; RT, retention time; ∆, relative deviation (ppm); Sample, sample type; Mass, m/z.
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2.9. Multiomics Joint Exploration and Pharmacological Network of RWC

The metabolic function of the microbiota in NEA groups were further predicted with PICRUSt
and produced a gene list (KEGG orthology format) of the potential distinct microbiota (Table S14
in part). Joint multiomics data were analyzed and reported a potential significance. The predicted
genes of the colonized microbiota might be directly related to the perturbation of inflammation-related
metabolic pathways, glucocorticoid resistance of the experimental asthma, and the susceptibility of
the murine asthma (Figure S55A–C). BALF-based multiomics analysis revealed that sphingolipid and
glycerophospholipid metabolic pathways might be directly influenced by the microbiota (Figure S55D).

Immunological and system biological research on the pharmacological mechanism of RWC has
been performed. The pharmacological network was also established as Figure S56. On the one hand,
RWC could generally regulate the balance of Th1/Th2 and Th17/Tregs, influencing the release of related
cytokines and mucus hypersecretion; on the other hand, RWC might have an effect on the pathogenesis
of the OVA-induced airway inflammation and systematic metabolism by intervening in the airway
microbiota, which might be conversely regulated by systematic immune status.

3. Discussion

In the present study, we confirmed the quality of RWC injection by first quantifying the level of
salidroside and establishing OVA-induced murine asthma models with different airway inflammation
phenotypes. Treatment with RWC and/or DEX could improve the spirometry results, and alleviate AHR
and pulmonary inflammatory status. Immunopharmacological studies revealed the regulatory effect
on the imbalance of Th1/Th2 and Th17/Tregs, and the release of related cytokines. High-throughput
sequencing of 16S rDNA of the microbiota reported an increased diversity, richness, and evenness in
the murine models. Several taxonomic units were identified between the inflammation phenotypes.
Treatment with RWC or DEX could significantly increase the diversity of the microbiota in EA and
change the taxonomic levels of 4 genera and 2 species in NEA. Systematic and pulmonary metabolic
profiles were changed in murine models after the treatment. A total of 34 differentiated metabolites
and 8 perturbed metabolic pathways were identified. The joint multiomics study revealed that the
microbiota colonized the lower airway might be related to the susceptibility of asthma and steroid
resistance in NEA, which involves several metabolic pathways. Knowledge-based integrated systematic
biological research revealed the pharmacological network and mechanism of RWC.

RWC could alleviate the AHR of NEA. Combined treatment with RWC and DEX could improve
the spirometry results and AHR status of the both OVA-induced airway inflammation models,
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the pulmonary dynamic compliance of EA, and the steroid resistance of NEA. The inflammatory status
of granulocyte infiltration of EA and NEA was also relieved. The improvement of the spirometry results
and severity of the inflammation displayed a well-correlated changing trend. Immunological analysis
showed that RWC could increase the level of Th1 in EA and reverse the imbalance of Th2/Th1. At the
same time, it participated in the regulation of Th17. Wang J et al. observed the level of inflammatory
mediators and reported that salidroside could balance Th2/Th1 [33], which is consistent with our
results. In the present study, combined treatment with RWC and DEX negatively regulated Th17,
whose therapeutic effect was even better than DEX. It is worth mentioning that DEX induced the
pulmonary increase of Th17 in EA, which might be associated with the accumulation or survival of
neutrophils in the airway [34]. However, from the increase of Th17 in this process, RWC seems to be
protective. Tregs, as previously described, might take part in the inhibitory regulation of inflammation
and the increase of Th17 [35,36]. Herein, we discovered that RWC might increase pulmonary levels of
Tregs in NEA, especially when the treatment is combined with DEX. However, whether this effect was
driven by salidroside needs further investigation regarding its molecular pharmacological mechanism.

The investigation of the cytokines related to OVA-induced inflammatory phenotypes revealed
that treatment with RWC alone cannot reduce the high level of the cytokines. However, this was
achieved using combined treatment, and the reduction included IL-5, a critical cytokine involved in
chemotactic recruitment of eosinophils into the lung [37]. Moreover, IL-13, a cytokine tightly associated
with the secretion of mucus, was observed to be increased in NEA but decreased after treatment,
which indicated a potential unknown mechanism [38]. As for IL-17, it has been considered to take
part in the AHR of NEA and play an antagonistic regulatory role to Tregs [39–41]. In our study, it was
found that RWC might, at least in part, improve the counts and function of Tregs by reducing IL-17.
Similarly, the high level of IL-17 in EA might also be associated with the accumulation of neutrophils
after treatment with steroids. As reported previously, salidroside could restrict the phosphorylation
and activation of p38 MAPK [18], though this point is controversial [42]. Activation of p38 MAPK
can reduce the biological activity of MAPK phosphorylase I and further induce steroid resistance [20].
In addition, the mucus of airways, which is regulated by IL-13, and the inflammatory status have both
been confirmed to be related with the colonization of microbiota in airways [43,44]. Given the complex
pathogenesis of the disease and its unclarified immune mechanism, systematic investigation on the
pharmacological mechanism of RWC, using omics techniques, is necessary.

The microbiome study was first performed in an environmental factors-restricted limited animal
barrier facility. Bioinformatic analysis of the ecological features of the microbiota in the EA and
NEA groups revealed a high diversity, richness, and evenness, which was different from our recent
clinical study [9] but was consistent with previous murine research [45]. Traditionally, studies of
the microbiome have mainly focused on differentiated genera but, in present study, we identified 20
differentiated species between the asthmatic phenotypes and 2 species among the NEA groups with
high confidence under the high OTU classification threshold. However, until now, the research to date
into the biological role of bacterial species has not been sufficient enough to illustrate the detailed
mechanism of the differentiated species discovered in the present microbiota study. Despite this,
some species have been investigated. For example, Haemophilus parainfluenzae has been discovered
to be tightly associated with the asthmatic resistance to steroids [19]. Propionibacterium granulosum
was also reported to regulate the immune function of airways [46]. Prevotella melaninogenica, as a
common bacterium, was found at high levels in EA [47,48], but the detailed pathogenic mechanism has
never been reported. Other species, including Streptococcus luteciae [49], Clostridium sordellii [50], and
Clostridium perfringens [51], as the members of gut microbiota, have been studied extensively, but their
role in the pathogenesis of asthmatic phenotypes needs further exploration.

Treatment with RWC and/or DEX within the murine inflammatory phenotypes showed a larger
influence on the structure of microbiota in NEA with 4 differentiated genera and 2 species found. In
details, the combined treatment with RWC and DEX increased the level of Candidatus Koribacter, DA101
and decreased the level of Citrobacter and Pseudomonas in airway. It was reported that Citrobacter are
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involved in the antagonized effect of IL-17 on IL-25-mediated airway inflammation [52], while the
reduction of Pseudomonas might be closely related to the alleviation of bronchiectasis. As for the
distinction at species level, it was reported that Proteus mirabilis, whose high levels might be related
to the infection of microbiota [53,54] was increased after treatment with DEX, but decreased when
treated with RWC. The other distinct species, Lactobacillus hamster, became more abundant after the
combination therapy. However, the potential mechanism is unknown. Metabolic prediction of the
distinct microbiota based on PICRUSt discovered a large quantity of enzymes, which indicated the
potential for in-depth understanding of the unknown mechanism.

Systematic metabolomics displayed a significant difference in metabolic profiles between the
experimental murine asthmatic phenotypes, which is consistent with our research on clinical
samples [28]. According to the fitting degree of OPLS-DA models, we discovered that compared
to HC, NEA seemed to be perturbed at a larger scale than EA. Combination treatment with
RWC and DEX could influence the metabolic profile of the both asthmatic phenotypes. A large
number of metabolites identified in present study revealed that the combined treatment could
significantly influence the linoleic acid, glycerophospholipid, and primary bile acid biosynthesis
metabolism. Moreover, the therapy has a potential effect on systematic steroid hormone biosynthesis,
and retinol and terpenoid backbone biosynthesis metabolism. In detail, in our studies, we observed
distinct level of hormones, including hydroxytestosterone and hydroxydehydroepiandrosterone.
Testosterone is an important hormone which may alleviate ILC2-mediated airway inflammation [55].
The presence of its metabolite, hydroxytestosterone, may indicate a perturbation in testosterone.
Despite hydroxydehydroepiandrosterone having been confirmed to have extensive biological activities,
including in immune regulation [56], its role in the pathogenesis of asthmatic phenotypes and
pharmacological mechanisms of the therapeutic strategies needs further investigation. Ursodeoxycholic
acid, a chemical component of primary bile acid metabolism, has been reported to suppress
the infiltration of eosinophils into the airway by inhibiting the activity of dendritic cells [57].
Chenodeoxycholic acid, discovered to be perturbed, has been revealed by a previous study to
have the potential to eliminate OVA-induced airway Th2 inflammation and lower the level of related
cytokines [58].

Similar to our previous report on the metabolic features of clinical asthmatic patients, roles in
linoleic acid, glycerophospholipid, and retinol metabolism were also discovered in murine models [28].
The intervention on primary bile acid metabolism may be related with the pharmacological effect of
RWC on other organs. The biologically active form of vitamin B6, pyridoxal 5’-phosphate, has been
observed at a lower level in asthmatics [59]. In present study, it increased in EA groups after treatment
with RWC. However, the pharmacological details need further investigation. The metabolic profile
of BALF was also analyzed in present studies with similar pathways observed, despite only two of
them being regarded as significant. However, the number of metabolites identified in BALF were
markedly lower than in serum because of the natural characteristics of the lung. Furthermore, given
that the pulmonary metabolites may be from the colonized microbiota, the distinct metabolic pathways
might result, in part, from the differentiated structure of the microbiota. Therefore, it is essential to
illustrate the relationship between the microbiota, metabolic profile, and pathophysiological features
of the experimental asthmatic phenotypes after treatment with RWC, especially in NEA.

Integrative analysis of microbiomes and untargeted metabolomes in disease contexts have also
allowed for the identification of microbially and systematically produced compounds found to
mediate biological effects [60], like pharmacological mechanisms. Herein, the joint multiomics studies
revealed that the colonization of microbiota might cause steroid resistance by intervening in metabolic
pathways, which is consistent with a previous report [61]. More in-depth analysis which combines the
potential diseases and constructs an exhaustive interactions net may show us how the susceptibility
of NEA is related to and regulated by the colonized microbiota via intervening metabolic pathways.
The relationship between the colonized microbiota in lower airway and its local perturbed metabolic
pathways were also combined, and two lipid metabolic pathways were reported as being involved.
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Targeted or lipid metabolomics studies are required to confirm and validate their differences and the
potential immune role of microbiota in airway.

In addition, knowledge-based analysis comprehensively revealed the pharmacological mechanism
of RWC, including in regulating the innate and adaptive immune system and improving the structure of
the microbiota which colonized airways and the metabolic profile of lower respiratory tracts. Multiple
pharmacological targets is a characteristic feature of traditional Chinese medicine [62]. The multiomics
and immune analyses here have revealed the pharmacological network and mechanism of RWC,
but obvious limitations still exist. One is the limited metabolomics data for metabolite identification
despite improvements being on the way. In addition, the granulocytes of infiltration need to be assessed
more quantitatively using flow cytometry. Gut microbiota, as an essential factor in influencing the
inflammatory status of asthmatics [63,64], should also be added into future joint in-depth multiomics
studies. Moreover, in the future, the details of the omics data, including differentiated species
markers, the predicted metabolic pathways, and the potential functional interactions need to be
validated in-depth.

4. Materials and Methods

4.1. Quantification on Salidroside in RWC Injection with HPLC

RWC injections were provided by Tonghua Yusheng Pharmaceutical Co., Ltd. (Approval Number
of Chinese Medicine: Z20060361, Production Batch NO. X1001170405). Chromatographic columns (C18,
4.6 mm× 150 mm, 5µm; Z2013112901, ACCHROM Technologies Co., Ltd.) were set at 30 °C. The volume
of each injection was 10 µL. Mobile phase A was a solution of acetonitrile–methanol (50:50 (v/v), Thermo
Fisher Scientific Inc., Fisher Chemical, Waltham, MA, USA, Cat. A452-1 and A998-4, respectively).
Mobile phase B was the solution of aqueous phosphoric acid (0.07%). The chromatographic conditions
were set as described in Table S1. The wavelength of the UV detector was 278 nm.

The chemical standard salidroside (YZ-110818, from National Institutes for Food and Drug
Control, Beijing, China) was weighed precisely and dissolved with methanol at 10.0 mg/mL as a
standard solution for quantification. All solution samples were filtered with microporous membrane
(0.22 µm) and injected into the system. Stability, repeatability, Intermediate precision, linear, and
accuracy were first evaluated. Twelve consecutive injections of an RWC sample were performed for
each quantification. Chromatographic data were collected and processed with Empower software
(Waters Corporation, Milford, MA, USA. v3.0).

4.2. Experimental Animal and Procedure of Model Establishment

Specific pathogen-free (SPF) BALB/c female mice, weighing 20 ± 1 g, were purchased from Yi-si
Corporation of Changchun City, China (Quality Certificate No. SCXK(JI)-2016-003). All mice were
fed in individually ventilated cages of the Observation Facility of Animal Experimental in Barrier
Environment (SPF level, College of Basic Medicine, Jilin University). The animal food was irradiated
with cobalt-60. The drinking water was reverse osmosis water. All animals had ad libitum access to
food and water. The animal experimenters were trained and qualified for the operations. All animal
experiments were performed on a sterile clean bench.

Murine asthmatic phenotypes were established and optimized as previously described [32,65,66]
and shown in Figure 1A. The mice were randomly grouped and sensitized with ovalbumin/aluminum
(OVA/Alum) for EA or ovalbumin/complete Freund’s adjuvant (OVA/CFA) for NEA at day 0, 7, and
14. The mice were challenged with 2% OVA via an ultrasonic atomized inhalation machine (OMRON
Corporation, Kyoto, Japan. NE-C900) at day 21 and 22. All mice were sacrificed at day 23. Treatment
began at day 17 with RWC (i.g, 550 µL/20 g) and/or DEX (i.p, 20 µg/20 g) until day 23, as shown in
Table 3.
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Table 3. Administration method of all mice.

Groups Treatments Routes of Administration Number (n)

Control N/A N/A 18

EA

NS i.g 18
RWC i.g 18
DEX i.p 18

RWC + DEX i.g + i.p 18

NEA

NS i.g 18
RWC i.g 18
DEX i.p 18

RWC + DEX i.g + i.p 18

NS: normal saline; i.g: intragastric administration; i.p: intraperitoneal administration.

All animal operational procedures were optimized according to the 3R principles and performed
based on the guidelines for the administration of laboratory animals (Directive 86/609/EEC, 1986) and
ARRIVE guidelines [67]. The checklist of the ARRIVE guidelines is shown in Table S15. This study was
approved by the Institutional Animal Care and Use Committee of Jilin University (No. SCXK-2013-0001,
20 July 2018).

4.3. Spirometry and AHR Examination

Spirometry and airway hyperresponsiveness (AHR) were performed as previously
described [68,69]. Briefly, all mice were anesthetized with pentobarbital (40 mg/kg) followed by
endotracheal intubation. Spirometry was monitored with DSI Buxco® FinePointe Pulmonary Function
Test system (DSI Buxco, St. Paul, MI, USA. v2.3), with FRC and FEV0.1 data being collected. Resistance
and compliance was examined with DSI Buxco® FinePointe Resistance and Compliance system (DSI
Buxco. v2.4) under the challenge of methacholine (Sigma, St. Louis, MO, USA. Cat. 62-51-1) with
different concentrations (0, 6.25, 12.5, 25, and 50mg/mL). Resistance of inhalation (RI) and dynamic
compliance (Cdyn) were recorded.

4.4. H&E Staining

After whole blood was collected and the mice anesthetized, the left lung lobes of 6 mice
were obtained for H&E staining. In brief, the formaldehyde-fixed and paraffin-embedded lung
tissues were sliced, dewaxed through xylene and a decreasing concentration of ethanol, stained with
eosin and hematoxylin, differentiated with acid alcohol solution, and dehydrated with increasing
concentrations of ethanol and xylene. The chemical reagents were of AR (analytical reagent) grade.
Histopathological assessment of inflammatory status was performed with the following criteria as
described previously [70]: 0, normal; 1, few cells; 2, a ring of inflammatory cells one-cell-layer deep; 3,
a ring of inflammatory cells 2–4 cells deep; 4, a ring of inflammatory cells >4 cells deep. The degree
of airway inflammation of all groups was determined by two independent analysts, who were blind
to the experimental groups. The sections were observed with microscope (Olympus Corporation,
2-3-1 Nishi-Shinjuku, Tokyo, Japan, CKX41).

4.5. Flow Cytometry of Th1/Th2/Th17 and Tregs

Right lung lobes and spleens were fully ground and dissolved in sterile PBS buffer with red cell
lysis buffer. Two-thirds of the cells collected were incubated with CD4 antibody conjugated with
PerCP-CY5.5 and incubated with PMA (phorbol-12-myristate-13-acetate, BD Biosciences, 2350 Qume
Drive San Jose, CA 95131, USA. Cat. 554656.) in RPMI-1640 medium (HYCLONE Corporation,
100 Results Way, Marlborough, MA 01752, USA. Cat. SH30023.01B) for 5 h. Then, the incubated cells
were labeled with a mix of IL-14 antibody conjugated with APC, IL-17 antibody conjugated with PE,
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and IFN-γ antibody conjugated with FITC (BD Biosciences, 2350 Qume Drive San Jose, CA 95131, USA.
Cat. 554436/550954/559502/554411, respectively).

The remaining third of lung and spleen cells were labeled with CD4 antibody conjugated with
FITC, Foxp3 antibody conjugated with PE, and CD25 antibody conjugated with APC (eBiosciences,
5823 Newton Drive, Carlsbad, 92008, USA. Cat. E0082-1634/E01764-1641/4276862, respectively).
All labeled cells were examined using flow cytometry (NovoCyte, ACEA Corporation, San Diego, CA,
USA. 3005). Data were collected and processed with NovoExpress (ACEA Corporation. v1.3.0).

4.6. ELISA Assay

The serum of mice were obtained by removing the eyeballs while the mice were in a deeply
anesthetized status. BALF was collected as previously described [71]. The BALF samples were
concentrated 10-fold after lyophilizing at −60 °C and 10.0 Pa air pressure for 24 h for the quantification
of IL-4, IL-5, IL-13, and IL-17 using ELISA kits (Thermo Fisher Scientific Inc., Invitrogen, Thermo
Scientific Pierce, Waltham, MA, USA. Cat: BMS613/BMS610/BMS6015/BMS6001, respectively) according
to the manufacturer’s instructions.

4.7. DNA Extraction and 16S rDNA Sequencing

BALF samples collected from the mice were centrifuged at 12,000× g for 30 min. The total DNA
of was extracted using the CTAB DNA extraction method. Briefly, proteins were denatured with
mercaptoethanol and removed with chloroform/isoamyl alcohol (24:1). CTAB/NaCl were mixed with
the supernatant followed by the collection of precipitate. The DNA precipitate was dissolved in TE
and extracted with phenol/chloroform/isoamyl alcohol (25:24:1), precipitated with ethanol, and then
dissolved in TE. The above chemical reagents were AR grade.

Total DNA was amplified in the 16S V3+V4 region using the primers
341F—CCTAYGGGRBGCASCAG and 806R—GGACTACNNGGGTATCTAAT and Phusion®

High-Fidelity PCR Master Mix with GC Buffer (New England Biolabs, 240 County Road, Ipswich,
MA 01938, USA. Cat. M0532S). A sequencing library was constructed using TruSeq® DNA PCR-Free
Sample Preparation Kit (Illumina Corporation, 5200 Illumina Way, San Diego, CA, USA. Cat. 20015963)
according to the manufacturer’s protocol. The quality of the library confirmed by agarose gel
electrophoresis and qPCR was used for sequencing with Illumina HiSeq 2500 platform (Illumina
Corporation. PE250). At least 100,000 tags were read for every sample.

4.8. Sample Preparation for Metabolomics and UPLC-Q/TOF-MS/MS Procedure

Serum and BALF samples were prepared as previously described [28,72]. Briefly, the protein was
precipitated and removed with acetonitrile. The protein-free samples were lyophilized as described
above. The dissolved residues were injected into the chromatographic system.

The Waters Xevo G2-S Quadrupole Time-of-Flight (QTOF) mass spectrometer coupled with a
UPLC system (Waters ACQUITY UPLC system and BEH C18 column, 2.1 mm × 100 mm, 1.7 mm,
Waters Corporation, Milford, MA, USA), as described in our previous study [28], was used here with the
parameters of the UPLC-Q/TOF-MS/MS system set as before [28]. Data of the samples were collected
in ESI+ mode. Quality control (QC) samples were prepared as described previously [28] and initially
injected for the first 6 injections to ensure the stability and suitability of the system. The QC samples
were also injected after every 4 samples throughout the whole procedure for real-time monitoring of
the system. The data was collected with MassLynx (v4.1) and exported for further processing.

4.9. Omics Data Processing

Raw sequencing data were processed with QIIME2 (v2018-11) [73] which was based on Python
(v2.7) and Miniconda 2.0 to merge the paired sequences, denoise the sequencing tags, remove the
chimeras, and allow comparison to the taxonomic database (Greengenes v13.8). Operational taxonomic
units (OTUs) were produced under the threshold of 99%.
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The raw data from the UPLC-Q/TOF-MS/MS system was pre-processed with MarkerLynx (v4.1)
software for alignment, deconvolution, and reduction as previously described by our group [28].
The metabolomics data were exported for further multivariate analysis.

4.10. Bioinformatic and Statistical Analysis

OTU table was imported into the MicrobiomeAnalyst (v4.0) for ecological analysis and the
identification of the taxonomic units [74]. The filtering parameters were set as default. The quality of
sequencing tags was displayed with QIIME2. α-Diversity indexes were also calculated with QIIME2
software. The cladogram relationships of the different taxonomic units were plotted using the LEfse
platform [75]. The metabolic function of the microbiota was predicted with Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States (PICRUSt) based on the filtered high-quality
reads of the microbiota [76] in level 3.

Multivariate analysis was performed with SIMCA-P software (v14.1, Umetric, Umeå, Sweden)
using the data exported above. Establishment of the PCA and OPLS-DA models was the same as in
our previous report [28]. Variable importance of project (VIP) values and the statistical significance of
the metabolites were used to identifiy the markedly perturbed metabolites (metabolites with VIP > 1.0
and p < 0.05 were considered as significant). All distinct metabolites were identified by matching the
accurate mass of the fragmentation with the Human Metabolome Database (HMDB Version 4.0) [77]
and METLIN database [78]. Metabolic pathways were analyzed with MetaboAnalyst platform (v4.0)
based on identified metabolites [79].

The gene data (KEGG orthology format) predicted by PICRUSt and the distinct metabolites
(HMDB format) were imported into the Network Explorer module of MetaboAnalyst platform
(v4.0) for joint multiomics analysis. The interactions between metabolites and diseases, between
metabolites and microbiota genes, and among the metabolites, genes, and diseases were each analyzed.
The comprehensive pharmacological network, which involved the immune and multiomics mechanism,
was constructed with Cytoscape (v3.6.5) [80].

The statistical method was as previously described [28,72]. Statistical significance was accepted
when p < 0.05. The statistical significance was evaluated with R (v3.3.3) basic statistical package,
and the bar charts were plotted with ggplot2 (v2.2.1) package which is based on R software [81].

5. Conclusions

In conclusion, we demonstrated that RWC could alleviate the AHR of NEA in a phenotype-specific
manner. Combined treatment with DEX improved the AHR of asthmatic phenotypes, the dynamic
compliance of EA, and the resistance to steroid. RWC combined with DEX plays a role in improving
spirometry results and inhibiting airway inflammation through phenotype-specific regulation of the
imbalance of Th2/Th1, decreasing Th17, enhancing Tregs, and suppressing the secretion of related
inflammatory mediators. The combined treatment changed not only the taxonomic composition of
the microbiota in NEA more significantly than EA, but also the systematic and pulmonary metabolic
profiles. The changed structure of the microbiota in NEA after the combined treatment may be related
to the steroid resistance and the susceptibility of the asthmatic phenotype, which might involve the
direct perturbation of systematic or pulmonary metabolism.
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Abbreviations

AHR airway hyperresponsiveness
AR analytical reagent
BALF bronchoalveolar lavage fluid
Cdyn dynamic compliance
CFA complete Freund’s adjuvant
DEX dexamethasone
EA eosinophilic asthma
ED eosinophilic asthma treated with dexamethasone
ER eosinophilic asthma treated with Rhodiola wallichiana var. cholaensis
ERD eosinophilic asthma treated with Rhodiola wallichiana var. cholaensis and dexamethasone
FDR false discovery rate
FEV0.1 forced expiratory volume in 0.1 s
FRC functional residual capacity
HC healthy control
HPLC high-performance liquid chromatography
H&E hematoxylin and eosin
KEGG Kyoto Encyclopedia of Genes and Genomes
KO KEGG orthology
LDA linear discriminant analysis
LEFse linear discriminant analysis effect size
NEA non-eosinophilic asthma
ND non-eosinophilic asthma treated with dexamethasone
NMDS non-metric multidimensional scaling
NR non-eosinophilic asthma treated with Rhodiola wallichiana var. cholaensis
NRD non-eosinophilic asthma treated with Rhodiola wallichiana var. cholaensis and dexamethasone
OBS observed species
OPLS-DA orthogonal projections to latent structures discriminant analysis
OTU operational taxonomic units
OVA ovalbumin
PCA principal component analysis
PCoA principal coordinates analysis
PD phylogenetic diversity
PICRUSt Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
PMA phorbol-12-myristate-13-acetate
QC quality control
Q/TOF-MS quadrupole time-of-flight mass spectrometry
RI resistance of inspiration
RSD relative standard deviation
RT retention time
RWC Rhodiola wallichiana var. cholaensis
SPF specific pathogen-free
Tregs regulatory T cells
UPLC ultra-performance liquid chromatography
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