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Abstract

Climate is a dominant factor affecting the potential geographical distribution of species.

Understanding the impact of climate change on the potential geographic distribution of spe-

cies, which is of great significance to the exploitation, utilization, and protection of resources,

as well as ecologically sustainable development. Betula platyphylla Suk. is one of the most

widely distributed temperate deciduous tree species in East Asia and has important eco-

nomic and ecological value. Based on 231 species distribution data points of Betula platy-

phylla Suk. in China and 37 bioclimatic, soil, and topography variables (with correlation

coefficients < 0.75), the potential geographical distribution pattern of Betula platyphylla Suk.

under Representative Concentration Pathway (RCP) climate change scenarios at present

and in the 2050s and 2070s was predicted using the MaxEnt model. We analyzed the main

environmental variables affecting the distribution and change of suitable areas and com-

pared the scope and change of suitable areas under different climate scenarios. This study

found: (1) At present, the main suitable area for Betula platyphylla Suk. extends from north-

eastern to southwestern China, with the periphery area showing fragmented distribution. (2)

Annual precipitation, precipitation of the warmest quarter, mean temperature of the warmest

quarter, annual mean temperature, and precipitation of the driest month are the dominant

environmental variables that affect the potential geographical distribution of Betula platy-

phylla Suk. (3) The suitable area for Betula platyphylla Suk. is expected to expand under

global warming scenarios. In recent years, due to the impact of diseases and insect infesta-

tion, and environmental damage, the natural Betula platyphylla Suk. forest in China has

gradually narrowed. This study accurately predicted the potential geographical distribution

of Betula platyphylla Suk. under current and future climate change scenarios, which can pro-

vide the scientific basis for the cultivation, management, and sustainable utilization of Betula

platyphylla Suk. resources.
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1. Introduction

Climate plays a major role in species distributions on regional and global scales, influencing the

biodiversity and the potential geographical distribution of species [1–3]. Global warming has

important impacts on community composition and structure, ecosystem function, biodiversity,

and species distribution change [4–7]. Since the industrial revolution, built-up land has

expanded [8], and land-use types have changed [9], and, under the joint action of human activi-

ties and natural factors, global warming has progressed [10]. According to the Fifth Assessment

Report of the United Nations Intergovernmental Panel on Climate Change (IPCC), the global

average temperature will increase by 0.3–4.8˚C by the end of the 21st century (2081–2100) com-

pared with that from 1986–2005 [11]. Under the background of global climate change, the geo-

graphical distribution range of species will also change. Thus, the prediction of the potential

geographical distribution patterns of species under climate change scenarios has become a

much-discussed issue in global change ecology and biogeography research [12, 13].

By studying the relationship between species distribution and environmental variables, we

can explore the dominant environmental variables that affect the geographical distribution of

species, determine the potential geographical distribution range of species, and analyze the

impact of climate change on species distribution [14, 15]. Based on niche theory, the species

distribution model is a powerful tool to evaluate the potential geographical distribution of spe-

cies according to species distribution data and related environmental variables [16, 17]. At

present, the commonly used models include the bioclimate analysis and prediction system

(BIOCLIM), the genetic algorithm for rule-set prediction (GARP), random forests (RFs), and

maximum entropy (MaxEnt) models [18–21]. Of these, the MaxEnt model is based on the the-

ory of maximum entropy. A stable relationship between species and environment is deter-

mined by calculating state parameters with maximum entropy in the interaction system

between species and environment to predict the potential geographical distribution of species

[22, 23]. Compared with other models, the MaxEnt model is relatively simple and quick to

run, with less sample requirement and stable operation. It can still perform well with either

incomplete data or presence-only data [24, 25]. It has been widely used to simulate forest geo-

graphical distribution [26], assess flower habitat protection [27], evaluate the habitat suitability

of wild protected animals [28], speculate species refuges [29], and simulate the distribution of

suitable areas of medicinal materials [30].

Betula platyphylla Suk. is one of the most important pioneers and associated tree species in

the Larix forest community in East Asia [31]. It is mainly distributed in Heilongjiang, Jilin,

Liaoning, Inner Mongolia, Hebei, Henan, Shaanxi, Ningxia, Gansu, Qinghai, Sichuan, Yun-

nan, and Tibet, of China. B. platyphylla is distributed widely from northern to southern China

and inhabits both pure and mixed forests. B. platyphylla has high medical value and commer-

cial value, its buds are widely used in medicine, mainly as diuretics, sweating agents, analgesics

[32, 33]. The latest research shows that the extraction of B. platyphylla buds may be a promis-

ing source of compounds with anti-cancer cytotoxic activity [34]. It has dense wood with a

good white texture, which is widely used in furniture, building materials, and paper-making

[35]. B. platyphylla is a kind of high-quality ecological forest. Scientific cultivation of B. platy-
phylla can not only increase vegetation coverage, reduce soil erosion, increase water storage,

but also maintain the ecological balance of the forest. However, since the 1980s, due to the

impact of pests and environmental damage, the natural birch forest in China has gradually

narrowed. Thus, identifying the potential geographical distribution of B. platyphylla and pre-

dicting how climate change will affect its geographic range is necessary and meaningful.

Research on B. platyphylla has mainly focused on the influence of bioclimatic variables on

the biomass of B. platyphylla forests [36], carbon storage of B. platyphylla forest ecosystems
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[37], and B. platyphylla multi-sanctuaries, multi-directional expansion, heterogeneous genetic

models, etc. [29]. However, few scholars have predicted the potential geographical distribution

pattern of B. platyphylla and its dominant environmental variables under future climate

change scenarios. In this study, we collected and screened the species distribution data of B.

platyphylla, based on soil, topography, and other related environmental data, using the Max-

Ent model and ArcGIS 10.3 software spatial analysis function to simulate the current potential

geographical distribution pattern of B. platyphylla according to the current climate data,

explore its main environmental variables, and predict climate data for the 2050s and the 2070s.

Then, we assessed the potential geographical distribution pattern of B. platyphylla in China in

the future and its response to different climate change scenarios. This study provides a scien-

tific basis for resource investigation and sustainable use of B. platyphylla and can serve as an

important reference for future management and cultivation of B. platyphylla forests.

2. Materials and methods

2.1 Species occurrence data

Through the Global Biodiversity Information Facility (https://www.gbif.org/), the National

Specimen Information Infrastructure (http://www.nsii.org.cn/), and the Herbarium of the

Institute of Botany, Chinese Academy of Sciences (http://pe.ibcas.ac.cn/), the species occur-

rence data of B. platyphylla from 1970 to 2020 were obtained (S1 Table). According to the fol-

lowing principles, reasonable species occurrence records were selected: Firstly, the occurrence

records of B. platyphylla collected in this study did not include Betula platyphylla var. man-

dshurica or Betula platyphylla var. szechuanica, only Betula platyphylla Suk. Secondly, the spe-

cies occurrence records must have complete longitude and latitude information to ensure

geographical accuracy. For some sample occurrence records without geographical coordinates

but have other detailed information, the Baidu coordinate picking system was used to obtain

the corresponding latitude and longitude coordinates. Thirdly, some species occurrence data

are sampled multiple times in different years, in which case only one record is kept. Fourthly,

to match the environmental variables with a spatial resolution of 1 km × 1 km, the study area

was divided into several 1km2 grids, and only one sample record was kept in each 1km2 grid

[38]. These operations can greatly reduce the spatial autocorrelation of species occurrence data

and effectively reduce the error. Finally, 231 occurrence records should be used for model

operations (Fig 1).

2.2 Environmental variables

The 19 bioclimatic variables for the current and future scenarios were downloaded from the

WorldClim dataset (http://www.worldclim.org/) [39]. The current climate dataset was gener-

ated by interpolation of observed weather data using a thin-plate smoothing spline during the

period of 1970–2000 [21]. The Global climate model (GCM) data we use is based on the Cou-

pled Model Intercomparison Project Phase 5 (CMIP5), compared with CMIP6 GCMs, CMIP5

GCMs still have a higher spatial resolution so far. The future climate scenarios were presented

by 2050s (the average data for 2040–2060) data and 2070s data (the average data for 2060–

2080) modeled by the Community Climate System Model version 4 (CCSM4) representing

four future greenhouse gases concentration trajectories (RCP2.6, RCP4.5, RCP6.0, and

RCP8.5). CCSM4 is one of the most effective GCMs for predicting the impact of future climate

change on the distribution of animal and plant species and has been widely used in previous

studies [40, 41]. RCP2.6, RCP4.5, RCP6.0, and RCP8.5 respectively represent low concentra-

tion, slightly lower concentration, slightly higher concentration, and high concentration

greenhouse gas emission scenarios. Under this climate model scenario, by the end of this
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century (2081–2100), the global average temperature will increase by 0.3–1.7˚C under RCP2.6

emission scenario, 1.1–2.6˚C under RCP4.5 emission scenario, 1.4–3.1˚C under RCP6.0 emis-

sion scenario, and 2.6–4.8˚C under RCP8.5 emission scenario [11]. To avoid ignoring the sub-

tle changes in species distribution caused by different climate change scenarios in the future,

we chose to include RCP2.6, RCP4.5, RCP6.0, and RCP8.5 into the future potential geographic

distribution of B. platyphylla. The data of the three topography variables are from National

Tibetan Plateau Data Center (http://data.tpdc.ac.cn) digital elevation model of China. The data

of 36 soil variables were obtained from the National Cryosphere Desert Data Center (http://

www.ncdc.ac.cn). We used data from the world soil database established by the Food and Agri-

culture Organization and the International Institute for Applied Systems Analysis. The data

source in China was 1:1,000,000 soil data from the Nanjing Soil Survey of the second national

land survey [42]. The spatial resolution of the above environmental variables was 1 km. The

vector boundary was obtained from Natural Earth (http://www.naturalearthdata.com/). Based

on the principle of national and territorial integrity, we have modified and adjusted the vector

boundary. Generally, most studies only select bioclimatic variables and topography variables

for modeling, but soil variables are also important factors affecting species distribution. Stan-

ton et al. (2012) have suggested better results could be achieved by combining important static

variables with dynamic bioclimatic variables; this will produce better results than excluding

static variables [43]. Therefore, in addition to bioclimatic variables and topography variables,

we also added soil variables, and in our study, we assumed that soil and topography variables

Fig 1. Distribution records of Betula Platyphylla Suk. in China. DEM was obtained from National Tibetan Plateau Data

Center (http://data.tpdc.ac.cn). Reprinted from http://data.tpdc.ac.cn under a CC BY license, with permission from

National Tibetan Plateau Data Center, original copyright [2019]. The boundary was obtained from Natural Earth (http://

www.naturalearthdata.com/). Based on the principle of national and territorial integrity, we have modified and adjusted the

vector boundary.

https://doi.org/10.1371/journal.pone.0262540.g001
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would not change during the simulation of potential geographic distribution in the context of

climate change. For complete environmental variables, please refer to (S2 Table).

The multicollinearity of environment variables will affect the prediction results of the

model, resulting in overfitting of model results [44]. Thus, correlation analysis and screening

of environmental variables can improve model prediction accuracy. To eliminate the influence

of multicollinearity on the model results, we take the following measures: Firstly, 58 environ-

mental variables are tested by the Jackknife test in the MaxEnt model to evaluate the contribu-

tion rate of each variable, and the environmental variables with 0 contribution rate are

eliminated. Secondly, the environmental variables with a contribution rate> 0 were selected,

and the Spearman rank correlation test was conducted on soil environmental variables and cli-

mate environmental variables using SPSS ver. 21.0 (IBM Corp., Armonk, NY, USA). Environ-

mental variables with a correlation coefficient < 0.75 were selected. For environmental

variables with a correlation coefficient� 0.75, only the environmental variables with the larger

contribution rate were retained [45, 46]; those with a smaller contribution rate were excluded.

Finally, 37 environmental variables were selected for the modeling analysis (Table 1).

2.3 MaxEnt modeling

In this study, the MaxEnt 3.4.1 (http://www.cs.princeton.edu/~schapire/maxent/) was selected

for the simulation. The processed sample data of B. platyphylla distribution and 37 environ-

mental variables after screening were imported into the MaxEnt model. Our modeling was

performed according to the standard protocol for reporting species distribution models by

Zurell et al (2020) [47].

The feature parameters were settled as Linear feature, Quadratic feature, Product feature,

and Hinge feature, and “Create response curves”, “Make pictures of predictions” and “Do jack-

knife to measure variable importance” were chosen to interpret how individual variables affect

the probability of the presence of B. platyphylla. In the basic part, the “Random test percent-

age” was set as 25, representing 75% of the sample data was randomly selected as the model

training set; the remaining 25% of sample data was used as the test set to verify the model. The

“Regularization multiplier” was set as 1 to prevent over-complexity and reduce overfitting by

controlling the intensity of the chosen feature classes. The “Max number of background

points” was set as 10000, the “Replicates” was set as 10. In the advanced part, the “Maximum

iterations” was set as 500, the “Convergence threshold” was set as 0.0001. The output format

was set as “Cloglog”, a previous study has shown that the “Cloglog” output was the optimal

output mode for predicting the suitable area [48].

After the model was established, the area under the curve (AUC) of the receiver operating

characteristic curve was used to evaluate the model accuracy [49–51]. AUC values ranged

from 0 to 1, where larger AUC values represent better prediction results. The evaluation crite-

ria were as follows: 0.50–0.60, prediction results fail, no credibility; 0.60–0.70, prediction

results are poor and credibility is low; 0.70–0.80, prediction results are general, credibility is

general; 0.80–0.90, prediction results are good and relatively reliable; 0.90–1.00, prediction

results are very accurate and reliable. According to a previous study, models with AUC> 0.85

are sufficiently accurate to predict the potential geographical distribution of species under cli-

mate change scenarios [52].

2.4 Importance assessment of environmental variables

Among the output results of the MaxEnt model, the Jackknife method, percentage contribu-

tion rate, and permutation importance value can be used to evaluate the importance of envi-

ronmental variables on the potential geographical distribution of B. platyphylla. The Jackknife
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method evaluates the importance of each environmental variable to the potential geographical

distribution of species by comparing the differences among the output regularized training

gain, regularized test gain, and AUC value [53]. According to the inherent algorithm, the coef-

ficient corresponding to the eigenvalue is adjusted to improve the gain value of the model. The

Table 1. Percentage contribution rate and permutation importance value of the environmental variables used to predict the potential geographical distribution of

Betula platyphylla Suk.

Data type Variable Percentage contribution rate (%) Permutation importance value (%)

Bioclimatic variables Bio1 7.00 4.47

Bio2 1.27 3.14

Bio3 1.54 1.41

Bio5 2.12 1.97

Bio10 7.85 3.77

Bio12 4.66 18.00

Bio13 0.14 10.32

Bio14 5.82 9.71

Bio15 1.07 1.10

Bio16 0.03 0.20

Bio18 33.71 8.26

Bio19 0.34 1.03

Subtotal — 65.54 63.39

Soil variables AWC_CLASS 0.31 0.86

DRAINAGE 0.50 0.05

REF_DEPTH 0.68 0.68

S_CASO4 0.02 0.00

S_CEC_CLAY 2.62 0.72

S_CEC_SOIL 0.41 0.20

S_CLAY 0.37 1.59

S_GRAVEL 1.46 1.79

S_OC 0.04 0.02

S_PH_H2O 1.08 3.16

S_REF_BULK_DENSITY 0.64 0.38

S_SAND 0.46 1.69

T_BS 8.40 2.18

T_CEC_CLAY 2.29 2.18

T_CLAY 0.08 0.53

T_ESP 0.12 0.76

T_GRAVEL 0.90 1.68

T_REF_BULK_DENSITY 0.02 0.00

T_SILT 0.38 0.21

T_TEB 0.59 1.17

T_TEXTURE 0.32 0.36

T_USDA_TEX_CLASS 0.32 0.62

Subtotal — 22.01 20.83

topography variables Elevation 4.50 12.05

Slope 7.44 3.06

Aspect 0.51 0.67

Subtotal — 12.45 15.78

Total — 100.00 100.00

https://doi.org/10.1371/journal.pone.0262540.t001
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gain value is assigned to the environment variable depending on the eigenvalue and is con-

verted into the contribution percentage, which is called the percentage contribution rate [54].

The permutation importance value is used to calculate the change range of the training AUC

value through random permutation of the training set and normalize the result; the obtained

percentage is the permutation importance value [55].

2.5 Division of suitable area and analysis of spatial pattern change

We used ArcGIS 10.3 software to divide and visualize the suitable area for B. platyphylla. Based

on the maximum training sensitivity and specificity threshold (0.2932) generated from the

MaxEnt model, the suitable area for B. platyphylla was classified [56, 57]: < 0.2932, unsuitable

area; 0.2932–0.40, less suitable area; 0.40–0.60, moderately suitable area; and> 0.60, highly

suitable area.

To more intuitively show the change in a suitable area for B. platyphylla combined with pre-

vious studies [58, 59], ArcGIS 10.3 software was used to convert the existing probability grid

map of B. platyphylla into a binary map according to the threshold value (1 = suitable area,

0 = unsuitable area), overlay the distribution maps of different periods, and obtain the spatial

change of B. platyphylla suitable area under the climate change scenarios using the grid calcu-

lator tool. In the output results, 0 represented a lack of present or future suitable area in a

region, 1 represented a shrinkage of future suitable area, 2 represented the expansion of the

future suitable area, and 3 represented stable present and future distribution of suitable area in

a region.

3. Results and analysis

3.1 Accuracy evaluation of model prediction

The average AUC of testing data was 0.88, which is more than 0.85. The results showed that

our model presented a high level of predictive performance and it can be used to predict the

potential geographical distribution of B. platyphylla under climate change scenarios [60].

3.2 Main environmental variables affecting the potential geographical

distribution of B. platyphylla
Fig 2 presents the Jackknife test results. When only a single variable is used, the larger the regu-

larization training gain, regularization test gain, AUC value, the more important the variable is

to predict the potential geographical distribution of B. platyphylla. On the contrary, the closer

the regularization training gain, regularization test gain, AUC value are to 0, the less important

the variable is to predict the potential geographical distribution of B. platyphylla. When only a

single environmental variable was applied, those with the largest regularized training gain

were annual precipitation (Bio12; 0.70), precipitation of the wettest month (Bio13; 0.59), pre-

cipitation of the wettest quarter (Bio16; 0.59), precipitation of the warmest quarter (Bio18;

0.55), maximum temperature of the warmest month (Bio5; 0.45), mean temperature of the

warmest quarter (Bio10; 0.43), precipitation of the coldest quarter (Bio19; 0.36), annual mean

temperature (Bio1; 0.31), precipitation of the driest month (Bio14; 0.29), and elevation (0.24).

When only single environmental variables were applied, those with the largest regularized test

gains were Bio12 (0.73), Bio16 (0.61), Bio13 (0.61), Bio18 (0.57), Bio5 (0.47), Bio10 (0.45),

Bio19 (0.37), Bio1 (0.32), Bio14 (0.30), and S_CEC_CLAY (0.25). When only single environ-

mental variables were applied, the highest AUC values were obtained for Bio12 (0.81), Bio13

(0.78), Bio16 (0.78), Bio18 (0.77), Bio5 (0.77), Bio10 (0.76), Bio19 (0.72), Bio1 (0.70), S_CEC_-

CLAY (0.70), and Bio14 (0.70).
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The percentage contribution rate and permutation importance value of environmental variables

to MaxEnt modeling were obtained from the model output (Table 1). The percentage contribution

rates of single environmental variables> 3% were Bio18 (33.71%), T_BS (8.40%), Bio10 (7.85%),

slope (7.44%), Bio1 (7.00%), Bio14 (5.82%), Bio12 (4.66%), and elevation (4.50%); the cumulative

contribution rate was 79.38%. The permutation importance values of single environmental

variable> 3% were Bio12 (18.00%), elevation (12.05%), Bio13 (10.32%), Bio14 (9.71%), Bio18

(8.26%), Bio1 (4.47%), Bio10 (3.37%), S_PH_H2O (3.16%), Bio2 (3.14%), and slope (3.06%).

According to the Jackknife method, percentage contribution rate, and permutation impor-

tance values of the model output, Bio12, Bio18, Bio10, Bio1, and Bio14 were the main environ-

mental variables affecting the potential geographical distribution of B. platyphylla. According

to the response curve of environmental variables to the presence probability in the MaxEnt

model (Fig 3), taking the presence probability greater than 0.2932 as the selection condition of

suitable area for B. platyphylla, the threshold values of the dominant environmental variables

affecting the distribution of suitable area for B. platyphylla were as follows: Bio12, 350–1075

mm; Bio18, 206.5–587 mm; Bio10, 8–24.3˚C; Bio1, −2–14.7˚C; and Bio14, 0–16 mm. Taking a

presence probability greater than 0.6 as the selection condition, the threshold values of the

dominant environmental variables affecting the distribution of highly suitable area for B. platy-
phylla were as follows: Bio12, 495–869 mm; Bio18, 239–369.6 mm; Bio10, 10–20.2˚C; Bio1, 2–-

12.5˚C; and Bio14, 1.4–8.2 mm.

Fig 2. Results of the Jackknife test of environmental variables’ contribution in Betula platyphylla Suk.’s potential geographical distribution. The figure shows the

result of the Jackknife test of variable importance using regularized training gain, regularized test gain, and AUC value on test data respectively. The blue bars indicate

the gain using the solo environmental variable, the green bars indicate the gain excluding the single variable from the full model, and the red bars indicate the gain

considering all variables.

https://doi.org/10.1371/journal.pone.0262540.g002
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3.3 Simulation of the potential geographic distribution of B. platyphylla
under climate change scenarios

3.3.1 Potential geographical distribution of B. platyphylla under current climatic condi-

tions. We use the MaxEnt model to obtain the distribution of suitable area for B. platyphylla,

and ArcGIS 10.3 software was used for classification to obtain suitable area for B. platyphylla
under the current climate scenario (Fig 4). Suitable area for B. platyphylla was mainly distrib-

uted in the Changbai Mountains and Xiaoxing’an Mountains (including Heilongjiang Prov-

ince, Jilin Province, and Liaoning Province) in Northeast China, the Greater Khingan

Mountains, Yanshan Mountains, Taihang Mountains, and Lvliang Mountains (including

Hebei Province, Shanxi Province, Beijing City, Tianjin city, and Inner Mongolia Autonomous

Region) in North China, and the Qinling Mountains and Qilian Mountains (including Qing-

hai Province and Ningxia Hui Autonomous Region) in Northwest China. In addition, a small

number of suitable area was found in Hubei, Guizhou, and Chongqing. The distribution of

mountains in China is shown in the (S1 Fig).

Fig 3. Response curve of the dominant environmental variables.

https://doi.org/10.1371/journal.pone.0262540.g003
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We use ArcGIS 10.3 software to extract the area of different suitable areas (Table 2). The

total suitable area for B. platyphylla was 168.75 × 104 km2; less suitable area (52.05 × 104 km2),

moderately suitable area (55.28 × 104 km2), and highly suitable area (61.42 × 104 km2)

accounted for 5.50%, 5.84%, and 6.49% of the total area, respectively. Among provinces, Sich-

uan Province had the largest total suitable area, accounting for 12.38% of the total suitable area

in China, as well as the largest highly suitable area, accounting for 18.63% of the highly suitable

area in China. Shaanxi Province had the largest moderately suitable area, accounting for

Fig 4. Distribution of suitable area for Betula platyphylla Suk. under current climate scenarios. (When presence

probability is< 0.2932, unsuitable area; When presence probability is 0.2932–0.40, less suitable area; When presence

probability is 0.40–0.60, moderately suitable area; And when presence probability is> 0.60, highly suitable area). The

boundary was obtained from Natural Earth (http://www.naturalearthdata.com/). Based on the principle of national and

territorial integrity, we have modified and adjusted the vector boundary.

https://doi.org/10.1371/journal.pone.0262540.g004

Table 2. The proportion of suitable areas for Betula Platyphylla Suk. under different climate scenarios (%).

Period RCPs Unsuitable area Less suitable area Moderate suitable area High suitable area

Current —— 82.18 5.50 5.84 6.49

2050s RCP2.6 81.65 5.50 5.90 6.95

RCP 4.5 81.26 5.68 6.09 6.97

RCP 6.0 81.38 5.59 6.05 6.99

RCP 8.5 81.25 5.77 6.05 6.93

2070s RCP 2.6 81.41 5.56 5.92 7.11

RCP 4.5 81.60 5.60 5.85 6.95

RCP 6.0 81.36 5.65 5.98 7.01

RCP 8.5 80.65 6.11 6.21 7.03

https://doi.org/10.1371/journal.pone.0262540.t002
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10.98% of the moderately suitable area. Heilongjiang Province had the largest less suitable

area, accounting for 17.22% of the less suitable area. The simulation results of the present

potential geographical distribution of B. platyphylla were generally consistent with the col-

lected distribution points of B. platyphylla, it shows that the MaxEnt model is suitable for pre-

dicting the potential geographical distribution of B. platyphylla.

3.3.2 Potential geographic distribution of B. platyphylla under future climate change

scenarios. The classification tool of ArcGIS 10.3 software was used to grade the prediction

results of the B. platyphylla suitability distribution model under future climate change scenar-

ios, and maps of distribution (Fig 5) and changes in distribution (Fig 6) of suitable area for B.

platyphylla under different climate scenarios in the 2050s and 2070s were obtained. Fig 5

shows the potential geographic distribution of B. platyphylla in the 2050s and 2070s under

RCP2.6, RCP4.5, RCP6.0, and RCP8.5. The simulation results suggested similar distributions

of suitable areas for B. platyphylla under the four RCP emission scenarios and for both the

2050s and 2070s, mainly in the Changbai Mountains, Greater Khingan Mountains, Yanshan

Mountains, Taihang Mountains, Lvliang Mountains, Qinling Mountains, Qilian Mountains,

Hengduan Mountains, hilly areas of central and southern Shandong Province, and Funiu

Mountains. Under all scenarios, the suitable areas in Sichuan, Shaanxi, and Inner Mongolia

accounted for more than 30% of the total suitable area. Table 2 also accurately shows the suit-

able area of B. platyphylla under future climate change scenarios, in the 2050s, under RCP6.0,

the highly suitable area for B. platyphylla was 66.14 × 104 km2; in the 2070s, RCP2.6 had the

greatest range of highly suitable area for B. platyphylla (67.35 × 104 km2) among the climate

change scenarios.

Under different climate change scenarios, the potential geographical distribution of B. pla-
typhylla in the future was predicted to be relatively stable compared with the present distribu-

tion. Fig 6 and Table 3 presents the changes in the potential geographical distribution of B.

platyphylla under different climate change scenarios between the present and the 2050s or

2070s. Under RCP2.6, RCP4.5, RCP6.0, and RCP8.5, from the present to the 2050s, the total

suitable area for B. platyphylla increased by 2.95%, 5.16%, 4.49%, and 5.18%, respectively; and

from the present to the 2070s, the total suitable area for B. platyphylla increased by 4.31%,

3.23%, 4.59%, and 8.56%, respectively. Under RCP2.6 and RCP8.5, the total suitable area in the

2070s was 2.27 × 104 km2 and 5.70 × 104 km2 higher than those in the 2050s, respectively.

Under RCP4.5, the total suitable area in the 2070s was 3.24 × 104 km2 lower than that in the

2050s. Under RCP6.0, the total suitable area in the 2070s changed little compared with that in

the 2050s. In the future scenarios, the total suitable area for B. platyphylla tended to expand

and was most evident in the southern section of the Greater Khingan Mountains, Yinshan

Mountains, Changbai Mountains, Daba Mountains, Hengduan Mountains, and the eastern

mountainous area of Qinghai Province. Shrinkage was most evident in the north of the Greater

Khingan Mountains, the southeast of the Xiaoxing’an Mountains, the north of the Changbai

Mountains, and the north of the Qinling Mountains. At present, there is no suitable area on

the west side of the Tianshan Mountains, but there is a certain range of suitable areas in the

2050s and 2070s. On the west side of the Tianshan Mountains in Xinjiang, the total suitable

area was largest under the 2070s RCP2.6 scenario and was 0.81 × 104 km2, the total suitable

area was the smallest area under the 2070s RCP4.5 scenario, and was 0.47 × 104 km2.

4. Discussion

The output results of the MaxEnt model provide good reference values for important ecologi-

cal issues, such as the prediction of species distribution and the impact of global warming on

the suitable areas for species [61, 62]. Exploring the present and future potential geographical

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0262540 March 31, 2022 11 / 21

https://doi.org/10.1371/journal.pone.0262540


Fig 5. Distribution of suitable area for Betula platyphylla Suk. by Maxent Under the Four RCPs (RCP2.6, RCP

4.5, RCP 6.0, and RCP 8.5) in the Two Periods (the 2050s and 2070s). (When presence probability is< 0.2932,

unsuitable area; When presence probability is 0.2932–0.40, less suitable area; When presence probability is 0.40–0.60,

moderately suitable area; And when presence probability is > 0.60, highly suitable area). The boundary was obtained
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distribution of species is of great significance for the protection, use, and sustainable manage-

ment of species in the context of global warming [63]. Based on the species distribution data of

B. platyphylla, using the MaxEnt model, combined with different present climate change sce-

narios at present and in the 2050s and 2070s, this study predicted the potential geographical

distribution of B. platyphylla under different climatic conditions and analyzed the dynamic

changes in the suitable area. This will provide a reference for the cultivation and management

of the B. platyphylla forest.

In any period of tree cultivation and growth, temperature and precipitation are always the

most important driving factors. Temperature and water availability will affect the physiological

activities and biochemical processes of trees. Combined with the prediction results of the

model, under both present and future climate scenarios, the cumulative percentage contribu-

tion rates and cumulative permutation importance values of bioclimatic variables always

exceeded 60%. Compared to soil and topographic variables, bioclimatic variables had the

greatest impact on the potential geographical distribution of species. The cumulative contribu-

tion rates and cumulative replacement importance values of environmental variables related to

precipitation were above 45%. The suitable area of B. platyphylla is mainly distributed in semi-

humid and semi-arid areas. The vegetation distribution in this area has higher requirements

for precipitation. However, due to the influence of latitude and altitude, the influence of tem-

perature on the distribution of suitable areas is weakened. From another point of view, in the

season of high temperature, precipitation can effectively alleviate the surface temperature.

Thus, among bioclimatic variables, precipitation showed a great impact on the potential geo-

graphical distribution pattern of B. platyphylla. Based on the comprehensive analysis of the

changes in the potentially suitable area and the most influential environmental variables of B.

platyphylla in the 2050s and 2070s under four emissions scenarios, annual precipitation, pre-

cipitation of the warmest quarter, annual mean temperature, and mean temperature of the

warmest quarter were positively correlated with a suitable area for B. platyphylla; increases in

these variables were associated with an increase in the suitable area for B. platyphylla. Mean-

while, precipitation of the driest month was negatively correlated with the suitable area for B.

platyphylla; a decrease in precipitation of the driest month was associated with an increase in

the suitable area for B. platyphylla. For soil variables, topsoil base saturation、subsoil CEC

(clay)、topsoil CEC (clay)、subsoil pH (H2O), and other variables have a certain impact on

the suitable area of B. platyphylla, mainly because B. platyphylla is more suitable to grow in

acidic soil, and soil moisture has different effects on B. platyphylla during different growth

stages. If the soil moisture is too high, it will be harmful to B. platyphylla at the seedling stage,

but it can effectively promote the growth of B. platyphylla at the growth stage. Different types

of soil reflect different degrees of solar radiation, which affects the rate of photosynthesis and

ultimately affects the growth of trees. According to the prediction results of the model, it can

be seen that the altitude of 400–4500 m and the slope of 35˚ are suitable for the growth of B.

platyphylla. Generally speaking, topography variable is an important driving factor of soil

nutrients and water, so topography variables should be fully considered for the cultivation and

planting of B. platyphylla forest.

Our research shows that the potential geographical distribution areas of B. platyphylla were

mainly concentrated in the Changbai Mountains, Xiaoxing’an Mountains, Greater Khingan

Mountains, Yanshan Mountains, Taihang Mountains, Lvliang Mountains, Qinling Mountains,

Qilian Mountains, Hengduan Mountains, central and southern Shandong Mountains, and

from Natural Earth (http://www.naturalearthdata.com/). Based on the principle of national and territorial integrity, we

have modified and adjusted the vector boundary.

https://doi.org/10.1371/journal.pone.0262540.g005
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Fig 6. Changes of the suitable area of Betula platyphylla Suk. under the four RCPs (RCP2.6, RCP4.5, RCP6.0, and

RCP8.5) in the Two Periods (the 2050s and 2070s), compared with the current potential geographic distribution.

The boundary was obtained from Natural Earth (http://www.naturalearthdata.com/). Based on the principle of

national and territorial integrity, we have modified and adjusted the vector boundary.

https://doi.org/10.1371/journal.pone.0262540.g006
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Funiu Mountains. This range is consistent with the results of Chen et al. [29]. The potential geo-

graphical distribution of B. platyphylla changed under different climate change scenarios. Rela-

tively stable regions were mainly distributed in the Hengduan Mountains of western Sichuan,

Shaanxi Province, Shanxi Province, southeastern Gansu Province, eastern Tibet, Jilin Province,

Heilongjiang Province, and northern Hebei Province. Greater changes in suitable areas, typi-

cally expansions, were mainly observed in Greater Khingan Mountains, Xiaoxing’an Moun-

tains, Changbai Mountains, Yinshan Mountains, Qinling Mountains, Daba Mountains, and

Hengduan Mountains. Under the four climate change scenarios, the temperature increased to

different degrees compared with the present, although the range of suitable areas for B. platy-
phylla remained similar. Under the current and future climate change scenarios, the prediction

results of the potential geographical distribution of B. platyphylla were greater than the actual

distribution. In the Changbai Mountains, Xiaoxing’an Mountains, and Greater Khingan Moun-

tains forest areas in Northeast China, highly suitable areas accounted for 7.65% of the total

highly suitable area in China. In this study, Betula platyphylla var. mandshurica was excluded

from the research. Previous studies have found B. platyphylla has high genetic diversity, reflect-

ing the genetic variation of B. platyphylla in Northeast China [64]. If the prediction is based on

species major category, the results may be more consistent with the current actual distribution.

However, this study does not intend to predict from the perspective of various species diversity,

so only the sample data of B. platyphylla is considered. It can also fully reflect the niche repre-

sented by species distribution data is only a part of the actual ecosystem [65].

Many studies have shown that global warming will lead to the reduction or even total loss

of suitable habitat for species [66–68]. In contrast, global climate change is predicted to

increase the suitable area for B. platyphylla, consistent with the prediction of the potential geo-

graphical distribution of Juglans regia L. in China [69] and endangered medicinal plants in

Yunnan [70]. This suggests that there will be more suitable areas for B. platyphylla cultivation

in the future. B. platyphylla has a very high utilization value for humans, resulting in high mar-

ket demand. Moreover, B. platyphylla forest is also of great significance to maintain the eco-

logical balance of the forest. In the semi-arid area of the Loess Plateau, it can effectively

improve the nutrient fixation capacity [71]. It is also very sensitive to salt stress, thus, breeding

new varieties of B. platyphylla with high salt tolerance will help to improve the ecological envi-

ronment in arid and saline-alkali areas [72]. B. platyphylla plays an important role in regional

carbon sequestration. The annual net productivity and annual net carbon sequestration of B.

platyphylla forest will increase with the increase of tree age [73]. Natural-based climate change

emission reduction strategies have the potential to significantly reduce greenhouse gas emis-

sions [74]. According to a report by the United Nations IPCC, development strategies such as

afforestation, reforestation, and improved forest management can have key roles in the global

emission reduction portfolio [75, 76]. Thus, the findings of this study could inform future

Table 3. Changes of the suitable area of Betula Platyphylla Suk. under different climate scenarios (%).

Period RCPs Expansion Contraction No change Total change

2050s RCP2.6 15.12 12.16 87.84 2.96

RCP 4.5 16.80 11.65 88.35 5.16

RCP 6.0 15.60 11.12 88.88 4.49

RCP 8.5 16.79 11.61 88.39 5.18

2070s RCP 2.6 15.94 11.64 88.36 4.31

RCP 4.5 15.13 11.90 88.10 3.23

RCP 6.0 16.09 11.51 88.49 4.59

RCP 8.5 18.72 10.16 89.84 8.56

https://doi.org/10.1371/journal.pone.0262540.t003
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governments and agencies about the most suitable area to cultivate birch forests to conserve

water sources, beautify the environment, help alleviate global warming, and also bring higher

economic benefits.

Compared with other studies, where analyses were limited to the effects of climate change

on the potential geographical distribution of species in terms of bioclimatic variables [77–79],

the novelty of this study lies in the comprehensive consideration of climate, soil, and topo-

graphic variables of the potential geographical distribution pattern of B. platyphylla. The soil

physicochemical properties did not only include a few commonly used soil variables but relied

on data from the world soil database. This study also has some limitations. The distribution of

a species is not only impacted by climate, soil, and topography. Considering human activities

related to land cover, hydrogeological conditions, road distribution, and residential distribu-

tion would also improve the accuracy of the simulation of the potential geographical distribu-

tion of B. platyphylla. The purpose of this study was to predict the potential geographical

distribution of B. platyphylla in China on a large scale. According to the results of this study,

small-scale field experiments were carried out in Northeast China, the Qinba Mountains, and

the Hengduan Mountains, which are host to a wide distribution of suitable areas for B. platy-
phylla, to provide more accurate guidance for afforestation projects in China.

5. Conclusions

B. platyphylla is an important broad-leaved timber species in China with economic and eco-

logical value. Based on species distribution data and environmental variables such as climate,

soil, and topography, the current potential geographical distributions of B. platyphylla under

different climate scenarios and that in the 2050s and 2070s were predicted. The main environ-

mental variables influencing the geographical distribution were analyzed, and the range and

change in suitable areas for B. platyphylla under different climate scenarios were compared.

The results show that the suitable area of B. platyphylla in China extends from Xiaoxing’an

Mountains in Northeast China to Hengduan Mountains in Southwest China. Under the cli-

mate warming scenario, the suitable area of B. platyphylla will further expand. Through artifi-

cial cultivation of B. platyphylla forest, we can optimize the structure of forestry development

more reasonably and enrich the supply of forest resources. The function of carbon fixation

and water conservation of B. platyphylla forest is of great significance for maintaining the eco-

logical balance of forests. At the same time, the forest by-products will also produce consider-

able economic benefits. Our research will provide more accurate guidance for China to carry

out afforestation projects, and also provide the scientific basis for investigation and sustainable

utilization of B. platyphylla resources, and provide important references for management and

cultivation of B. platyphylla forest.
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