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Introduction

Colorectal cancer (CRC) is the third most common cancer 
worldwide, and it etiologically arises from malignant 
transformation within the gastrointestinal tract (1).  

However, the pathogenesis of CRC is complex, it 

hypothesizes contributors include dietary exposures, genetic 

predispositions, concomitant gastrointestinal diseases, 

chemical carcinogens, lifestyle factors, and infections. 
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CRC. Furthermore, we identify APOE as a potential biomarker for CRC recurrence.
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Advances in cancer screening and treatments have reduced 
overall CRC mortality in recent years (2), and current data 
also indicate that the subtype associated with inflammatory 
bowel disease (IBD) confers worse prognosis (3).

IBD-associated CRC (IBD-CRC), often associated 
with chronic inflammation in the colon, displays a tumor 
microenvironment (TME) enriched with immune cells such 
as tumor-associated macrophages (TAMs), dendritic cells, 
and T cells (4). Furthermore, the presence of cytokine-
secreting immune cells and activated inflammatory pathways 
underscores the role of inflammation in driving tumor 
progression and therapy resistance in this subtype (5). In 
contrast, adenomatous polyposis coli (APC) mutant CRC, 
characterized by mutations in the APC gene, exhibits distinct 
features in its TME. One study has revealed alterations in 
key signaling pathways related to Wnt/β-catenin, leading 
to dysregulated cellular proliferation and differentiation 
within the tumor (6). Moreover, APC mutant CRC TMEs 
are characterized by an increased presence of cancer-
associated fibroblasts and alterations in extracellular matrix 

composition, contributing to tumor growth and invasion (7).  
In addition, the immune microenvironment of the two 
subtypes of CRC typically exhibits different immune cell 
infiltration, indicating differences in the immune evasion 
mechanisms employed by these subtypes (8).

Single-cell RNA sequencing (scRNA-seq) has revealed 
the complex cellular composition of the TME at high 
resolution (9), and it enables unbiased, high-throughput, 
and high-resolution transcriptomic analysis of individual 
cells (10). To date, a consensus has coming into being that 
scRNA-seq is a powerful tool for elucidating biological 
mechanisms at the cellular level (11). The development of 
scRNA-seq technology provides some new perspectives 
for research on health and diseases. The differences in the 
TME caused by IBD-CRC and APC mutant CRC have 
not been described at the single-cell level, while scRNA-
seq allows us to observe unique alterations in IBD-CRC at 
the cell population level and gain deeper insights into IBD-
CRC pathogenesis. Thus, studying azoxymethane/dextran 
sodium sulfate (AOM/DSS) and APC-mutant CRC TME 
differences at a single-cell resolution may aid development 
of more effective therapeutic strategies.

In this study, we initiated our research with the Gene 
Expression Omnibus (GEO) database and selected the 
GSE5956400 (AOM/DSS) and GSE5956401 (ApcMin/+) 
datasets from the GSE198758 collection for analysis. 
The AOM/DSS dataset represents an inflammation-
induced mouse model of CRC, while the ApcMin/+ dataset 
corresponds to a mouse model of CRC resulting from 
APC gene mutations. We analyzed the heterogeneity 
of the TME in these two types of tumors and further 
examined the differences in macrophages, T cells, and 
their subsets. Moreover, we validated normal and tumor 
tissues in human intestines using immunohistochemistry 
and immunofluorescence staining. Collectively, our data 
reveal heterogeneity between the two types of CRC, and we 
anticipate that these findings will inform future treatment 
strategies for CRC. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-689/rc).

Methods

Patient information and data acquisition

This study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The single-cell 3'mRNA 
sequencing data for this study was obtained from GEO 
(available at https://www.ncbi.nlm.nih.gov/geo/) under 
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accession number GSE198758, in which GSE5956400 
(AOM/DSS) and GSE5956401 (ApcMin/+) datasets were 
included in this study for further comparison and analysis. 
The AOM/DSS group of mice in this dataset were treated 
with AOM (10 mg/kg) for 1 week and then treated with 2.5% 
DSS for 5 days. After that, they were treated with H2O for 
2 weeks. This cycle was repeated for three times. Animals 
in the ApcMin/+ group were C57BL/6 mice with APC 
mutation (12). For validation of the screening results of this 
study, we collected tumor and adjacent normal tissues from 
5 patients with CRC, the details of the participants are listed 
in Table S1. The subject population was all CRC patients 
seeking medical treatment at Tangshan Gongren Hospital 
Affiliated to Hebei Medical University and all the included 
patients have signed informed consent forms. This study was 
approved by the Institutional Review Board of the Tangshan 
Gongren Hospital Affiliated to Hebei Medical University 
(IRB-2023145).

scRNA sequencing data processing

The scRNA sequencing data was processed and analyzed 
using the R package Seurat (13). High quality cells were 
selected based on the following criteria: (I) number 
of genes detected per cell between 200 and 3,000; (II) 
percentage of mitochondrial gene expression <5% per cell, 
an indicator of cell apoptosis status. As a result, 5,714 cells  
in AOM and 2,780 cells in APC were included in the 
downstream analyses. Gene expression data was then 
normalized using the Seurat package and normalization 
method “LogNormalize” to reduce the magnitude of 
discrete gene expression counts. Highly variable genes (hvg) 
then generated using the Seurat “FindVariableFeatures” 
function, and the top 2,000 hvg were selected for principal 
component analysis. Batch effects between samples 
were removed using Harmony, and the first 8 significant 
principal components were used for t-distributed stochastic 
neighbor embedding (t-SNE) analysis. Clustering of cells 
was performed using the “FindClusters” function (resolution 
=0.2) and visualized by t-SNE. Subclustering analysis was 
performed using the “FindClusters” function (resolution 
=0.3) and visualized by t-SNE.

Identification of marker genes and differentially expressed 
genes (DEGs)

We used Seurat’s “FindAllMarkers” function to identify 
marker genes for each cluster. Marker genes identified 

by “FindAllMarkers” were required to have an average 
expression [average log2(fold change)] higher than other 
clusters by >0.25-fold and detectable expression in >25% of 
cells within that cluster. We used Seurat’s “FindMarkers” 
function and Wilcoxon rank sum test based on default 
parameters to compute DEGs between cell subgroups. 
Cutoff values were set as absolute average log2(fold change) 
value ≥0.25 and P value <0.05. 

Cell annotation

A total of 7 cell types were annotated based on known 
markers (14,15). Two unknown cell types named UN1 
and UN2, UN1 cells were annotated by Csf3r, UN2 cells 
by Retnlg, macrophages (M) by Ctss, T cells by Cd3g, 
enterocyte (En) by Epcam, B cells by Ccr7, and fibroblasts 
(Fb) by Col4a1.

Enrichment analysis and survival analysis

The R package ClusterProfiler was used to perform Gene 
Ontology (GO) analysis (16), with gene sets with P value 
<0.05 considered significantly enriched. Online Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis was performed using R software, with pathways 
of adjusted P value <0.05 considered significantly altered. 
Online survival analysis was performed using GEPIA2 
database, with P value <0.05 considered statistically 
significant.

Hematoxylin-eosin staining 

According to the manufacturer’s instructions, the entire 
colon was washed with phosphate-buffered saline (PBS) and 
fixed in 4% paraformaldehyde, and paraffin sections were 
made, followed by hematoxylin and eosin (HE) staining.

Immunohistochemistry and immunofluorescence staining

The general processing method for colorectal tissue slices 
is to dewaxing and antigen recovery the colorectal tissue 
in citrate buffer, and to block endogenous peroxidase by 
incubating it in 3% (v/v) H2O2 for 25 minutes. Subsequently, 
the colorectal tissue was incubated with 5% bovine serum 
albumin (BSA) for 30 minutes. Immunohistochemistry: after 
slice processing, the specific primary antibodies (APOE, 
1:200, ZEN BIO, Chengdu, China, Cat No. R381129; 
BNIP3, 1:200, ZEN BIO, Cat No. R381756) were incubated 

https://cdn.amegroups.cn/static/public/TCR-24-689-Supplementary.pdf
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overnight again. After rinsing with PBS three times, goat 
anti rabbit immunoglobulin G (IgG) antibodies conjugated 
with biotin were reacted at a dilution of 1:200 for 1 hour. An 
appropriate volume of diaminobenzidine (DAB) was applied 
to tissues for signal development, where the nucleus was 
stained blue with hematoxylin and representative images 
are collected using a LeiCa SP8 laser confocal microscope 
(Leica Microscope GmbH, Germany). Immunofluorescence 
staining: after slice processing, the specific primary 
antibodies (APOE, 1:200; BNIP3, 1:200; CD68, 1:200, ZEN 
BIO, Cat No.250019) were incubated overnight again. After 
rinsing with PBS three times, goat anti rabbit and mouse 
IgG fluorescent antibodies conjugated with biotin were 
reacted at a dilution of 1:200 for 1 hour. Then, the nucleus 
was stained with 4',6-diamidino-2-phenylindole (DAPI) and 
representative images were collected using the ImageXpress® 
Micro Confocal system (Molecular Devices, USA). Values 
were analyzed by Image J software (NIH, USA).

Statistical analysis

Unpaired two-tailed Wilcoxon rank sum test was used to 
compare cell distributions between two groups. Unpaired 
two-tailed Student’s t-test was employed to compare gene 
expression or features between groups. Pathway activity 
correlation was determined by Spearman correlation test.  
P value <0.05 was considered statistically significant.

Results

Single-cell landscape of AOM/DSS (AOM) and APC-
mutant (APC) CRC tumors

To characterize the TME of CRC in different etiology, we 
collected 8,544 high-quality single cells from AOM/DSS 
(AOM) and APC-mutant (APC) CRC types for scRNA-seq 
(Figure 1A). Quality control metrics confirmed the reliability 
of these cells (Figure 1B). Through unsupervised clustering 
and t-SNE analysis, 8,544 cells from the AOM and APC 
groups were clustered into 7 clusters. We then named the 
7 cell clusters (macrophages, T cells, B cells, fibroblasts, 
enterocyte, and 2 unknown cell types named UN1 and 
UN2) according to the specific markers (Figure 1C).  
We displayed the cell fraction of the 7 cell types in the 
AOM and APC groups (Figure 1D), with T cells accounting 
for 69%. The composition of each cell type in the AOM 
and APC groups is shown (Figure 1E,1F). Violin plots 
showing marker genes for each cell cluster are presented 

(Figure 1G). Our data indicate macrophages and T cells 
differ greatly between the AOM and APC groups. Marker 
genes for each cell population demonstrate the reliability 
of our cell clustering (Figure 1G). Next, we show the 
DEGs for the 7 cell types (Figure 1H). Our data uncovered 
the heterogeneity between AOM and APC TMEs and 
highlighted significant differences in tumor-infiltrating 
immune cells between AOM and APC groups.

Macrophages exhibit enhanced pro-tumoral effects in IBD-
CRC

Macrophages are highly plastic and multifunctional 
immune cells that mediate developmental, homeostatic, 
debris scavenging, pathogen clearance, and inflammatory-
regulating effects (17). Both resident and recruited 
macrophages are present during acute inflammation and 
oncogenesis in almost all tissues (17-19). We therefore 
investigated differences between macrophages in the AOM 
and APC groups (Figure 2A). We observed a higher fraction 
of macrophages in the APC group (Figure 2B). We display 
volcano plots of macrophage DEGs between the AOM 
and APC groups (Figure 2C). We validate the reliability 
of our cell clustering by showing specific marker genes 
for macrophage subgroups (Figure 2D). To understand 
the biological functions of macrophage in more depth, we 
performed GO and KEGG pathway enrichment analysis 
on the DEGs (Figure 2E). GO enrichment analysis revealed 
DEGs were significantly enriched in cell-cell adhesion and 
cytokine activity. KEGG pathway analysis showed DEGs 
were enriched in pathways in various diseases, including 
rheumatoid arthritis, tuberculosis, and leishmaniasis. 
Aberrant cytokine regulation is an important mechanism in 
tumorigenesis and progression (20,21). Cell-cell adhesion 
is a key factor promoting cancer progression, facilitating 
cancer development including immune evasion and 
metastatic dissemination (22,23). In summary, macrophages 
in the AOM/DSS group likely exhibit enhanced pro-
tumoral effects.

Worse prognosis of IBD-CRC is associated with APOE and 
BNIP3 expression

To elucidate macrophage differences, we performed 
subclustering analysis, identifying 3 subgroups named Mα, 
Mβ, and Mγ (Figure 3A). We show the cell fractions of 
the 3 cell types in the AOM and APC groups CRC types  
(Figure 3B) and their proportions in the AOM and APC 



Translational Cancer Research, Vol 13, No 9 September 2024 4817

© AME Publishing Company.   Transl Cancer Res 2024;13(9):4813-4826 | https://dx.doi.org/10.21037/tcr-24-689

20

0

−20

−40

tS
N

E
_2

30

20

10

0

−10

−20

−30

tS
N

E
_2

7.5

5.0

2.5

0.0

−2.5

−5.0

Lo
g 2

-f
ol

d 
ch

an
ge

1.00

0.75

0.50

0.25

0.00

Fr
eq

ue
nc

y

4

3

2

1

0

E
xp

re
ss

io
n 

le
ve

l

4

3

2

1

0

E
xp

re
ss

io
n 

le
ve

l

6

4

2

0

E
xp

re
ss

io
n 

le
ve

l 4

3

2

1

0

E
xp

re
ss

io
n 

le
ve

l

4

3

2

1

0

E
xp

re
ss

io
n 

le
ve

l

5

4

3

2

1

0

E
xp

re
ss

io
n 

le
ve

l4

3

2

1

0

E
xp

re
ss

io
n 

le
ve

l

tSNE_1

Data analysisSingle-cell cDNA library
building and RNA-seq

Dissected tissue

AOM

UN1

T

Csf3r Retnlg Ctss

Ccr7EpcamCd3g

Col4a1

M Fb B En UN2 UN1

UN2

∆Percentage difference

M T En B Fb

BFb

UN2

UN2

UN1

UN1

M

T

En B FbEnT
M

APC

−50 −25

−0.5 0.0 1.00.5 −0.5 0.0 1.00.5 −0.5 0.0 1.00.5 −0.5 0.0 1.00.5 −0.5 0.0 1.00.5 −0.5 0.0 1.00.5 −0.5 0.0 1.00.5

0 25

3000

2000

1000

10000

7500

5000

2500

5

4

3

2

1

0

AOM
APC

Group

nFeature RNA nCount RNA Percent.mt

−30  −20  −10    0     10    20    30
tSNE_1

Label
Label
Label
Label
Label
Label
Label
Label

Sample

Estimated number of cells

Filtered number of cells

APC

3,780

2,830

AOM

7,335

5,714

UN1
UN2 M T En B Fb UN1

UN2 M T En B Fb UN1
UN2 M T En B Fb

UN1
UN2 M T En B FbUN1

UN2 M T En B FbUN1
UN2 M T En B Fb

UN1
UN2 M T En B Fb

A

B C

D E F

G H

Figure 1 Single-cell landscape of AOM/DSS and APC-mutant colorectal cancer in mice. (A) Schematic of experimental design. (B) Violin 
plot for quality control. (C) t-SNE plot of 8,544 high quality cells, and visualization of cell populations based on known marker genes. (D) 
Proportions of different cell types in AOM and APC groups. (E) Composition of each cell type in AOM group. (F) Composition of each 
cell type in APC group. (G) Marker genes for each cell population. (H) Differentially expressed genes in each cell population. AOM group: 
IBD-associated CRC models in mice by AOM/DSS; APC group: APC-mutant CRC models in mice. cDNA, complementary DNA; RNA-
seq, RNA sequencing; t-SNE, t-distributed stochastic neighbor embedding; APC, adenomatous polyposis coli; AOM, azoxymethane; M, 
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Figure 2 Marker gene analysis of macrophages between the AOM and APC groups. (A) t-SNE plot showing distribution of macrophage 
population (red) within the landscape. (B) Proportion of macrophages in AOM and APC models. (C) Volcano plot showing differentially 
expressed genes in macrophages between AOM and APC models. (D) Marker genes for macrophage subgroups. (E) GO and KEGG 
analysis of DEGs in macrophage population. AOM group: IBD-associated CRC models in mice by AOM/DSS; APC group: APC-mutant 
CRC models in mice. M, macrophage; B, B cells; T, T cells; Fb, fibroblasts; En, enterocyte; UN, unknown cell type; t-SNE, t-distributed 
stochastic neighbor embedding; APC, adenomatous polyposis coli; AOM, azoxymethane; DEGs, differentially expressed genes; MHC, 
major histocompatibility complex; TNF, tumor necrosis factor; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
IBD, inflammatory bowel disease; CRC, colorectal cancer.

groups (Figure 3C,3D). We found cluster Mγ differed 
specially between the AOM and APC groups. Specific 
marker genes for cluster Mγ are shown (Figure S1). GO 
and KEGG pathway enrichment analysis was performed 
on DEGs in cluster Mγ (Figure 3E). GO analysis revealed 
cluster Mγ is associated with leukocyte migration, chemokine 
activity, and cytokine activity. KEGG analysis showed cluster 
Mγ is not only related to pathways in various diseases, 
but also interleukin (IL)-17 signaling, cytokine-cytokine 

receptor interaction, and chemokine signaling. Upregulation 
of leukocyte migration and chemokines are important 
factors promoting tumor progression and metastasis (24). 
Cluster Mγ is enriched in expression of multiple genes 
including APOE and BNIP3. Moreover, APOE is a specific 
marker gene for Mγ. Overall survival analysis in the GEPIA2 
database indicates these genes predict worse prognosis 
(Figure 3F). In summary, IBD-CRC worse prognosis may be 
related to APOE and BNOP3 gene.

https://cdn.amegroups.cn/static/public/TCR-24-689-Supplementary.pdf
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Higher proportion of T cells in APC dataset 

T cells are major immune cell types that regulate anti-
tumor responses, so we compared differences between 
T cells in the AOM and APC groups (Figure 4A). We 
observed T cells were more prevalent in the APC group 
compared to the AOM group (Figure 4B). Volcano plots 
of T cell DEGs between the AOM and APC groups are 
shown, indicating differences exist (Figure 4C). We validated 
the reliability of our cell clustering and T cell subclustering 
by showing specific T cell marker genes (Figure 4D). Next, 

we performed GO and KEGG pathway enrichment analysis 
on the T cell DEGs (Figure 4E). GO analysis revealed 
the DEGs were significantly enriched in lymphocyte and 
leukocyte proliferation and differentiation. KEGG pathway 
analysis showed the DEGs were enriched in Th17 cell 
differentiation and nuclear factor kappaB (NF-κB) signaling 
pathways. The NF-κB pathway is associated with tumor 
cytotoxicity, inhibiting cancer progression (25-27). In 
summary, APC T cells exhibit stronger tumor suppressive 
effects and further exploration of precise T cell subset 
functional alterations in IBD-CRC is warranted.
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Tβ subgroup exhibits greater tumor suppressive effects

To illustrate T cell differences between the AOM and APC 
groups in more depth, we performed subclustering analysis 
on the T cells. The 3 T cell subgroups were named Tα, Tβ, 
and Tγ (Figure 5A). We show the cell fractions of the 3 cell 
types in the AOM and APC CRC types (Figure 5B) and their 
proportions in the AOM and APC groups (Figure 5C,5D). 
We found each T cell subgroup was less prevalent in AOM, 
with cluster Tβ differing most between the AOM and APC 
groups. Specific marker genes for cluster Tβ are shown 
(Figure S2). GO and KEGG pathway enrichment analysis 
was performed on DEGs in cluster Tβ (Figure 5E). GO 
analysis revealed cluster Tβ is associated with transcription 
repressors and myeloid cell differentiation. KEGG pathway 
analysis showed cluster Tβ is related to multiple pathways 
including IL-17 signaling, tumor necrosis factor (TNF) 
signaling, and Th17 cell differentiation. Upregulation of 
TNF signaling indicates good prognosis (28), and the IL-
17 pathway is involved in promoting inflammation and 
protection against extracellular pathogens (29). PPP1CC 
and IFNGR1 in Tβ predict good prognosis (Figure 5F). 
These pieces of evidence indicate Tβ is associated with 
tumor suppression, further illustrating CRC driven by 
APC-mutation confers better prognosis compared to IBD-
CRC. 

APOE and BNIP3 expression is associated with 
macrophage

Tumor associated macrophages have anti-inflammatory and 
pro tumor progression functions, and we found that the 
M1 subgroup expresses a higher inflammatory signaling 
pathway. Since APOE and BNIP3 were associated with 
CRC recurrence, and worse prognosis, we examined 
whether these genes are co-expressed in macrophages by 
immunofluorescence and immunohistochemical (Figure 6).  
We  d i f f e r e n t i a t e  t u m o r  t i s s u e  a n d  a d j a c e n t 
normal  t i s sue  through HE sta ining (Figure  6A ) . 
We  f o u n d  t h a t  A P O E  a n d  B N I P 3  i n  5  t u m o r /
ad j acen t  norma l  t i s sue  pa i r s  were  co- loca l i zed 
with macrophage markers  CD68 (Figure  6C,6D ) .  
Moreover, the expression of APOE, BNIP3 and CD68 
were elevated in adjacent normal tissue compared with 
tumor tissue (Figure 6G-6I). However, we performed 
complementary  va l idat ion  of  APOE and BNIP3 
through immunohistochemical staining, consistent with 
immunofluorescence results (Figure 6B,6E,6F).

Discussion

The incidence rate and mortality of IBD-CRC gradually 
increase, and the worse prognosis of IBD-CRC remains 
unresolved. Recent research has increased understanding 
of IBD-CRC through various methods, including mouse 
models demonstrating IBD-CRC development (30-32).  
However, mechanisms underlying worse IBD-CRC 
prognosis compared to other subtybes CRC have not 
been elucidated at the single-cell level. Our scRNA-seq 
analysis of AOM/DSS disease and APCMin+ datasets 
provide insights into IBD-CRC heterogeneity to improve 
prognosis.

In this study, we analyzed the related scRNA data from 
GSE198758. Initial analysis uncovered fewer immune 
cells overall in AOM, while AOM displayed increased pro-
tumoral properties, suggesting IBD-CRC prognosis may 
relate to diminished immunity. Comparing major immune 
subsets, macrophages exhibited enhanced pro-tumoral 
functions in AOM. APOE and BNIP3 expression in a Mγ 
subset associated with worse prognosis. Furthermore, a T 
cell subgroup with tumor suppressive properties was less 
prevalent in AOM. Our scRNA-seq characterization of 
CRC types elucidate unique immune landscapes underlying 
differential IBD-CRC and APC-CRC outcomes. 

Macrophages exhibited marked heterogeneity between 
AOM and APC datasets. AOM had lower macrophage 
numbers and proportions, consistent with depletion 
worsening prognosis (33), and enrichment analysis 
implicated stronger pro-tumoral AOM macrophage effects. 
Subclustering revealed increased Mγ in AOM, so we 
analyzed this subset. Mγ displayed enriched expression of 
worse prognostic genes including APOE, a potential IBD-
CRC recurrence biomarker. One study showed TREM2/
APOE/C1q macrophage infiltration may be a potential 
prognostic biomarker for renal clear cell carcinoma 
recurrence, this is consistent with our results (28), and 
another study have shown that reducing APOE expression 
decreases thyroid cancer growth (34). TAMs promote gastric 
cancer migration by promoting APOE metastasis (35).  
Multiple studies have confirmed correlations between 
tumor metastasis and APOE expression (28,34-36).  
The Mγ subgroup displays another gene with poor prognosis, 
BNIP3, which plays an important role in cancer progression. 
Prior studies found BNIP3 promotes CRC under hypoxia, 
and drug resistance to cisplatin in CRC patients may be 
associated with abnormal Bnip3 expression (29,37). Mγ’s 
inflammatory profile suggests possible TAM identity, and 

https://cdn.amegroups.cn/static/public/TCR-24-689-Supplementary.pdf
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Figure 5 Single-cell atlas of T cells from AOM and APC groups. (A) t-SNE plot showing T cell subgroups and visualization of T cell 
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TAMs facilitate cancer progression through instigating 
immunosuppression, invasion, and metastasis (17).  
Our scRNA-seq links APOE/BNIP3 macrophage expression 
to IBD-CRC prognosis. Immunofluorescence validated 
increased APOE/BNIP3 expression in patient adjacent 
normal versus tumor tissue, confirming the relationship with 
progression. Moreover, our mouse and patient data indicate 
AOM/IBD-CRC microenvironments harbor enhanced 
pro-tumoral properties, partly attributable to specific TAM 
activation, providing mechanistic insights into worse IBD-
CRC differentiation and prognosis. Targeting the Mγ subset 
represents a potential therapeutic approach for improving 
outcomes.

T cells were more abundant in APC versus AOM 
datasets. Some studies have shown that the low response 
to immune checkpoint therapy in patients with metastatic 
castration-resistant prostate cancer is due to the paucity 
of T cells in the TME (38). Enrichment in proliferation/
differentiation and NF-κB signaling implies stronger tumor 
inhibitory effect of APC T cells, consistent with IBD-
CRC worser prognosis and higher recurrence (39-41).  
Subclustering revealed a tumor-suppressive Tβ subset 
concentrated in APC datasets. Tβ pathway analysis 
suggested inflammatory effects aiding tumor suppression 
(42,43). Our scRNA-seq thus provides insights into APC-
mutant CRC versus IBD-CRC prognostic differences to 
guide proactive treatment approaches. These findings may 
guide development of prognosis-improving, subtype-tailored 
immunotherapies for CRC patients. Future patient sample 
validation and mechanistic investigations are warranted.

There are still some limitations of this study, including 
verifying relevant cell subpopulations in a large patient 
cohort and conducting in vivo and in vitro experiments 
to confirm the role of relevant cell subpopulations. In 
conclusion, our scRNA-seq analysis of mouse CRC 
datasets provide a high-resolution immune landscape 
characterization illuminating unique IBD-CRC properties 
underlying inferior outcomes. These findings lay the 
foundation for future patient sample validation studies and 
mechanistic investigations to tailor immunotherapeutic 
strategies for improving IBD-CRC prognosis.

Conclusions

In summary, our study revealed single-cell heterogeneity 
distinguishing inflammatory and APC-mutant CRC dataset 
microenvironments. IBD-CRC contained fewer enriched 
immune cells, including increased APOE+ pro-tumoral 

macrophages versus APC-mutant CRC. The IBD-CRC 
TME exhibited enhanced tumor-promoting properties. 
Our scRNA-seq analysis enriches theoretical knowledge of 
IBD-CRC pathogenesis at a high resolution, these results 
provide valuable insights into mechanisms underlying 
inferior IBD-CRC prognosis to guide development of 
tailored therapeutic strategies for improving outcomes. 
Overall, characterization of the intricate immune landscape 
differences between CRC subtypes lays the foundation for 
future translational research efforts to stratify and optimize 
immunotherapeutic approaches for CRC patients.
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