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18F-FDG = [18F]fluorodeoxyglucose; 18F-FLT = 3′-deoxy-3′-[18F]fluorothymidine; 18F-FES = 16α-[18F]fluoro-17β-estradiol; 99mTc-MIBI = 99mTc-
methoxyisobutylisonitrile (99mTc-sestamibi); 99mTc = technetium-99m; σ1, σ2 = sigma receptors; CT = computed tomography; ER = estrogen recep-
tor; FWHM = full width at half maximum; MIVE = 17α-[123I]iodovinyl-11β-methoxyestradiol; MRI = magnetic resonance imaging; PEM =
positron-emission mammography; PET = positron-emission tomography; PPV = positive predictive value; SMM = scintimammography; SPECT =
single-photon-emission computed tomography.
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Abstract
Although mammography remains a key imaging method for the
early detection and screening of breast cancer, the overall
accuracy of this test remains low. Several radiopharmaceuticals
have been proposed as adjunct imaging methods to characterize
breast masses by single-photon-emission computed tomography
(SPECT) and positron-emission tomography (PET). Useful in
characterizing indeterminate palpable masses and in the detection
of axillary metastases, these techniques are insufficiently sensitive
to detect subcentimetric tumor deposits. Their role in staging nodal
involvement of the axillary areas therefore currently remains limited.
Several enzymes and receptors have been targeted for imaging
breast cancers with PET. [18F]Fluorodeoxyglucose is particularly
useful in the detection and staging of recurrent breast cancer and
in assessing the response to chemotherapy. Several other ligands
targeting proliferative activity, protein synthesis, and hormone and
cell-membrane receptors may complement this approach by
providing unique information about biological characteristics of
breast cancer across primary and metastatic tumor sites.

Introduction
Early diagnosis remains the best method of improving the
odds of curing breast cancer. Among the tools currently
widely available, screening mammography has been credited
with an earlier diagnosis and a decreased risk of death from
breast cancer. However, false negatives occur frequently,
particularly when imaging post-surgical recurrence, fibro-
cystic breast disease and dense breast tissue in younger
women [1]. Mammography also has a low positive predictive
value, and accurate second-line imaging methods are useful
in some instances to reduce the number of unnecessary
excisional biopsies.

The presence of lymph node spread is determined by axillary
dissection, a diagnostic surgical procedure that can
significantly impair the quality of life of many women. The less

invasive sentinel node biopsy may not always detect axillary
involvement because the sentinel nodes can be bypassed in
3 to 7% of cases [2-5]. Nodal metastases can also occur in
internal mammary or mediastinal nodal groups, which are
usually not sampled in conventional surgical staging. Multiple
imaging studies are often prescribed to exclude the presence
of bone, liver and lung metastases.

Despite some progress arising from increased public
awareness and screening programs that have tended to
improve the stage at which breast cancers are detected, the
rate of recurrence remains significant. In 2005, the death : case
ratio for breast cancer in Canada has been estimated to be 0.24
[6]. Efficient imaging techniques are warranted for the accurate
assessment of recurrent and metastatic disease. The preferred
treatment will often be proposed by oncologists on the basis of
the integration of several factors, such as the tumor pathologic
grade, the age of the patients, the presence or absence of
estrogen receptors (ERs) and the site of recurrence [7-9]. To
validate whether the treatments are appropriate, the disease
burden often needs to be assessed before and after treatment.

Among the various imaging techniques used to assess
primary or recurrent breast cancer, radionuclide imaging
techniques such as planar scintigraphy, single-photon-
emission computed tomography (SPECT) and positron-
emission tomography (PET) can provide an accurate
assessment of the presence and extent of disease as well as
unique information about tumor biological characteristics
such as the rate of proliferation and metabolic activity.

Planar scintigraphy, SPECT and PET
Planar scintigraphy has been used in nuclear medicine for
over 40 years and is widely available across hospitals
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worldwide. This technique consists of injecting a radio-
pharmaceutical, typically labeled with technetium-99m
(99mTc), into a patient, followed by planar imaging with a
conventional gamma camera. SPECT images are three-
dimensional reconstructions of rotating planar images
acquired over a 180° or 360° arc around the patient. Typical
radiopharmaceuticals used in planar imaging and SPECT for
breast cancer imaging include 99mTc-diphosphonates (for
bone scans), [201Tl]thallium chloride, 99mTc-tetrofosmin and
99mTc-methoxyisobutylisonitrile (99mTc-MIBI; 99mTc-sestamibi).
PET is an imaging technique that permits the detection of
annihilation photons produced by the disintegration of
positron-emitting radioisotopes. Typical radioisotopes used in
PET imaging are oxygen-15, nitrogen-13, carbon-11 and
fluorine-18. In the past few years, the use of PET imaging in
oncology has grown rapidly, with the development of several
ligands for cancer detection such as [18F]fluorodeoxyglucose
(18F-FDG) [10], 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT)
[11] and 16α-[18F]fluoro-17β-estradiol (18F-FES) [12]. PET
imaging requires expensive equipment and a supply of short-
lived isotopes. 18F-FDG, the most commonly used radio-
pharmaceutical, is now widely available in most urban
centers. There has been considerable progress in PET equip-
ment technology over the past few years. New systems now
commercialized offer an integrated computed tomography
(CT) scanner for simultaneous PET and CT (PET/CT) imaging
to combine the sensitivity of PET imaging with the anatomical
localization capabilities of CT. Positron-emission mammo-
graphy (PEM) devices are dedicated high-resolution instru-
ments that may have value in detecting primary breast cancer.

Scintimammography
Primary breast cancer
Over the last several years, many clinical studies in the
medical literature have shown that 99mTc-MIBI, normally used
for myocardial perfusion imaging, concentrates in breast
cancers (Fig. 1) [13]. This uptake is due to an increase in
blood flow, number of mitochondria and cancer cell
membrane hyperpolarization in the tumor and as a function of
the expression of the multidrug resistance gene [14-17].
Since FDA approval, 99mTc-MIBI scintimammography (SMM)
has been used clinically to evaluate patients with a palpable
breast abnormality when mammography is negative or
indeterminate. For optimal imaging, patients are placed in
prone position over a special table with a lateral cut-off or a
foam cushion with the breast hanging freely. The breast is not
compressed as part of the procedure. In a recent meta-
analysis summarizing studies from 5,340 patients, the overall
aggregated sensitivity and specificity of SMM in detecting a
palpable primary breast cancer were, respectively, 85.2% and
86.6% [13]. For non-palpable breast lesions, the sensitivity
and specificity of SMM were 66.8% and 86.9%, respectively.

SMM and 18F-FDG-PET have similar sensitivities and
specificities in detecting primary breast cancers [18]. In
benign disease, 18F-FDG and 99mTc-MIBI did not localize

fibrocystic lesions, but could falsely identify fibroadenomas as
cancer. Globally, the diagnostic accuracies of planar SMM
and SPECT SMM [19] were equivalent to that of 18F-FDG-
PET for the detection of primary breast cancer. For the
detection of lymph node metastases of the axilla, 18F-FDG
was more sensitive than planar SMM (sensitivity 36 to 84%,
specificity 86 to 100% [19-21]) and SPECT SMM, in which
sensitivity in some studies seemed to be superior to that of
planar imaging (sensitivity 37.5 to 84.2%, specificity 91%
[19,22]). Statistically, SPECT-SMM did not significantly
improve the diagnostic accuracy over planar SMM. Neither
18F-FDG-PET, SPECT SMM nor planar SMM are sufficiently
sensitive to rule out axillary lymph node metastases. For that
purpose, axillary dissection or sentinel lymph node biopsy
remain the best available techniques.

In a more recent study, Cwikla and colleagues cautioned that
SMM should be interpreted in combination with mammo-
graphy to produce more accurate results than either modality
alone (combined results: sensitivity 92%, specificity 80%,
positive predictive value 89% and negative predictive value
86%; SMM: 87%, 65%, 81% and 75%; mammography:
69%, 72%, 81% and 57%, respectively) [23]. 99mTc-MIBI
SMM could not be used for the routine evaluation of all micro-
calcifications detected by mammography (sensitivity 58%,
specificity 81%); SMM was more often positive in high-grade
than in low-grade or intermediate-grade ductal carcinoma in
situ [24]. SMM was also proposed as a complementary study

Figure 1

99mTc-methoxyisobutylisonitrile mammoscintigraphy showing a typical
case of breast cancer in the external upper quadrant of the left breast.
Panel (a) shows the anterior planar images. Lateral images obtained in
the prone position (b) are obtained to improve the detection of smaller
breast lesions
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for evaluating younger patients (less than 50 years old) with
dense breasts, even when mammography was negative,
because 60% of those cases could be genuinely positive
under SMM [25]. SMM should not be used to exclude
malignancy whenever histopathological clarification of a
suspicious lesion is necessary [26]. When SMM is positive, a
biopsy is necessary because a high proportion of these
lesions will prove to be cancerous. Although fewer biopsies
may be required, the percentage of positive biopsies should
increase, leading to a more cost-effective approach to core
needle biopsy.

SMM has also been used to assess tumor response to
treatment. Mankoff and colleagues reported that 99mTc-MIBI
imaging could accurately assess the response to neoadjuvant
chemotherapy in patients with locally advanced breast
carcinoma [27]. The assessment of response to treatment (5-
fluorouracil, epirubicin and cyclophosphamide) was accurate
only after completion of neoadjuvant chemotherapy. SMM
was unable to predict the response after one cycle [28]. A
positive 99mTc-MIBI scan was highly predictive of the
presence of significant residual disease on completion of
chemotherapy [29]. However, a negative 99mTc-MIBI scan
could not rule out the presence of considerable residual
tumor. Whereas ultrasound and clinical assessment
underestimated the response to chemotherapy, 99mTc-MIBI
imaging tended to overestimate the response [29]. High
primary breast tumor 99mTc-MIBI uptake after neoadjuvant
chemotherapy predicted poor survival, suggesting that serial
99mTc-MIBI imaging could provide a useful quantitative
surrogate endpoint for neoadjuvant chemotherapy [30].
Finally, 99mTc-MIBI SMM was useful to determine P-glyco-
protein and multidrug resistance-related protein expression in
patients with breast cancers, and therefore could predict
resistance to further chemotherapy [31].

Locally recurrent breast cancer
The detection of recurrent breast cancer by mammography is
a challenging task because architectural changes, mainly
fibrosis and scarring secondary to surgery and radiotherapy,
cause difficulties in the interpretation of mammograms. In a
prospective trial [32] performed in the year 2000 to assess
the accuracy of 99mTc-MIBI SMM in women with suspected
recurrent breast cancer in the breast and/or locoregional
tissues, the sensitivity of SMM was 78% in detecting
recurrent disease, compared with 42% for mammography. In
addition, SMM identified 63% of axillary lymph nodes with
recurrent tumor. SMM is believed to be more accurate than
mammography in identifying recurrent disease in the breast
and can identify locoregional recurrence outside the breast.

PET imaging with 18F-FDG
PET imaging can capitalize on the excessive utilization of
glucose by malignant cells by measuring the uptake of 18F-
FDG [33], a derivative of glucose. 18F-FDG is transported
across the cell membrane of malignant cells by the glucose

transporters Glut-1 and Glut-3 and then phosphorylated by
hexokinase [34]. 18F-FDG-6-phosphate is trapped in tumor
cells in proportion to the utilization of glucose [35]. Hypoxia
and inflammation contribute in part to the increased retention
of 18F-FDG in tumor tissues [36-38]. Avril and colleagues
found weak but significant correlations between 18F-FDG
uptake and the histological subtype of breast cancers, tumor
cell density, microscopic vascular invasion, the expression of
Glut-1, the proliferation rate and the number of lymphocytes
[39]. Crippa and colleagues noted that lobular carcinomas
had a low avidity for 18F-FDG, and that 18F-FDG uptake had
no correlation with the thymidine labeling index or the
presence of hormone receptors [40].

Primary breast cancer
Many groups have studied the role of 18F-FDG-PET in the
evaluation of suspicious breast lesions, with sensitivity values
ranging between 80 and 90%, and specificity values
between 71 and 95% [41-47]. In a series of 117 patients
with primary breast cancer, Schirrmeister and colleagues
showed that PET was twice as sensitive as the combination
of mammography and ultrasound in detecting multifocal
tumor involvement of the breasts and could upstage the
disease in some cases [48]. However, like SMM, 18F-FDG is
limited by a lower sensitivity in detecting some breast tumors
because of their small size, metabolic activity, histological
subtype, microscopic tumor growth pattern and proliferation
[39]. No correlation was demonstrated between primary
tumor size, lymph node status, percentage of tumor cells,
presence of inflammatory cells, histopathologic grade, steroid
receptor status, expression of glucose receptors Glut-1 and
the uptake of FDG by the primary tumor [39]. The value of
18F-FDG-PET was compared with dynamic contrast-
enhanced magnetic resonance imaging (MRI) in a small study
with a limited number of subjects [49]. No significant
differences could be demonstrated between PET and MRI.
Although 18F-FDG-PET can be a useful adjunct to mammo-
graphy in characterizing primary breast tumors, this technique
is limited by a low sensitivity to detect small tumors and
lobular carcinomas [39]. The lack of evidence to demonstrate
clear advantages over other complementary techniques and
the high cost of PET imaging has limited the use of this tool in
the routine diagnosis of primary breast cancer.

PEM has been introduced as a lower-cost, dedicated
alternative to PET with a higher spatial resolution designed to
detect small primary breast cancers. PEM typically uses two
opposite coincident detector heads placed on each side of
the breast. These positron detectors can be mounted on a
mammographic gantry with or without a stereotactic biopsy
unit to permit simultaneous or sequential analysis of the
breast. The first clinical PEM case study was published in
1996 and demonstrated visualization of primary breast
cancer in vivo within an imaging time of 4 min [50]. The
original system had a spatial resolution of 2.8 mm full width at
half maximum (FWHM), required a tumor : background ratio
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uptake of 6:1 to obtain an image of contrast 1.86:1, and was
incapable of imaging lesions within 2 cm of the chest wall
because of limitations in the field of view [50]. In a study of
14 patients [51] (10 malignant and 6 benign lesions) using a
10% asymmetry of breast uptake or intense focal uptake as
criteria of malignancy, PEM had a sensitivity of 80% and
specificity of 100%. In a recent series [52] among 18 breast
lesions (7 malignant and 11 benign), using a threshold of
greater than 2.5:1 lesion : background ratio, PEM showed a
sensitivity of 86%, a specificity of 91%, and an accuracy of
89%. The only false negative originated from an invasive
lobular carcinoma. Since 2000 PEM scanner technology has
evolved rapidly, with larger fields of view (15 cm × 20 cm)
[53] as well as improved spatial resolution and count
sensitivity. In a study conducted with a new-generation PEM
scanner and in which a majority of lesions measured 2.5 cm
and less, Rosen and colleagues reported a sensitivity of 86%
[53]. Two false positives were identified in this study as fat
necrosis. Two ductal adenocarcinomas and one ductal
carcinoma in situ between 0.8 and 2.8 cm were not
visualized. PEM scanners recently reached a spatial
resolution of 1.5 mm FWHM [54]. This might improve the
sensitivity of 18F-FDG in detecting very small breast cancers.
However, low uptake of 18F-FDG by some breast cancers
and abnormal uptake by some inflammatory lesions are
unlikely to be resolved with this method.

Axillary metastases
Many articles published between 1996 and 1997 suggested
that 18F-FDG-PET could be accurate in detecting axillary nodal
metastases, reaching sensitivity values in the range 79 to
100% and specificity values ranging from 66 to 100% [44,55-
57]. A large single-center study by Greco and colleagues,
published in 2001, also suggested that PET was highly
accurate in staging the axilla, with an overall accuracy of 90%
[58]. Several recent studies have somewhat dampened the
initial enthusiasm for using PET for this purpose: for example,
studies by Fehr and colleagues [59] and Barranger and
colleagues [60] conducted in clinically node-negative patients
both found a sensitivity of only 20% for 18F-FDG-PET
compared with sentinel-node biopsy. A recent prospective
multicenter study conducted on 360 women with newly
diagnosed invasive breast cancer reported values of 61%,
80%, 62% and 79% for sensitivity, specificity and positive and
negative predictive values, respectively [61]. 18F-FDG-PET
was less sensitive in detecting axillary metastases from lobular
carcinoma (sensitivity 25%) than ductal carcinoma (sensitivity
66%). PET was unable to detect axillary metastases in several
cases with a limited number of small involved nodes. Lovrics
and colleagues published a prospective study in 98 patients
with clinical stage I or II breast cancer, and found a sensitivity
of 40% with a specificity of 97% [62]. Given the impact of the
axillary status on the decision to administer adjuvant
chemotherapy, the current data suggest that the predictive
accuracy of 18F-FDG-PET is insufficient to recommend this
modality for routine use.

Recurrent and metastatic breast cancer
With clinically suspected recurrences, in addition to a
complete history and physical examination, the commonly
used restaging tools are radionuclide bone scintigraphy and
CT of the chest and abdomen, with MRI being used in
selected cases for suspected neurological or bone
involvement. The role of imaging studies in this setting is to
confirm the recurrence and to assess whether the disease is
localized or systemic (Fig. 2a). The presence of visceral
metastases is also associated with a poor prognosis, and this
may influence the choice of therapy. Several retrospective
studies published in recent years suggest that 18F-FDG-PET
is an accurate imaging modality for detecting recurrent breast
cancer [63-67]. Kamel and colleagues studied 60
consecutive patients with suspected recurrent breast cancer.
They found accuracies of 89% and 98% for the detection of
local and metastatic recurrences, respectively [68]. In 57
patients, Siggelkow found a sensitivity of 81% and a
specificity of 98% for PET imaging [66]. Eubank and
colleagues showed that PET was more accurate than CT in
detecting involvement in mediastinal and internal mammary
nodes [69]. 18FDG-PET may also be useful in distinguishing
between radiation-induced and metastatic brachial
plexopathy [70].

Cook and colleagues compared 18F-FDG-PET imaging with
bone scintigraphy to detect bone metastases in 23 patients
[71]. They found on average nearly twice as many lesions
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Figure 2

[18F]Fluorodeoxyglucose (18F-FDG) (a) and 16α-[18F]fluoro-17β-
estradiol (18F-FES) (b) positron-emission tomography (PET) studies
obtained in a patient with newly diagnosed metastatic recurrent breast
cancer in the bones. The bone metastases are readily seen in both
studies. Whereas 18F-FDG-PET images provide information about the
metabolic activity of the metastases, 18F-FES images can demonstrate
that the recurrent lesions still express high levels of estrogen
receptors.
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with PET than with bone scintigraphy, and PET was more
sensitive in detecting osteolytic lesions. However, several
osteoblastic bone metastases depicted by bone scintigraphy
were missed by PET imaging. In 48 patients with suspected
bone metastases, Yang and colleagues concluded that 18F-
FDG-PET was as sensitive as the bone scan but more
specific for the detection of bone metastases [72].

Assessment of response to therapy
PET imaging has also been proposed as an alternative for the
rapid assessment of tumor response to chemotherapy: a
reduction in 18F-FDG uptake has been postulated to predict
the eventual clinical or pathological response [73,74]. Wahl
and colleagues studied 11 patients with locally advanced
breast cancer, treated with hormone chemotherapy [73].
They observed a significant decrease in 18F-FDG uptake in
responders after one cycle of chemotherapy and no
significant decrease in non-responders. Smith and colleagues
studied 30 patients with large primary tumors or locally
advanced disease treated with neoadjuvant chemotherapy.
After one cycle of chemotherapy, a reduction of 18F-FDG had
a high sensitivity for the prediction of a complete pathologic
response [75]. Similar results were reported by Schelling and
colleagues after the first and second courses of
chemotherapy in 22 patients [76]. Mankoff studied tumor
blood flow and glucose metabolism by PET to assess
whether these parameters are predictive of the response to
chemotherapy in locally advanced breast cancer [77]. They
found that tumors with high 18F-FDG uptake had a poorer
response to chemotherapy. Patients with a low uptake rate of
FDG associated with increased blood flow in their tumors
were more likely to experience a complete response.

18F-FDG-PET has also been evaluated as a tool with which to
monitor the response of breast cancer bone metastases to
therapy. Preliminary results by Stafford and colleagues
showed a correlation of changes in FDG uptake after therapy
with the overall clinical assessment [78]. Results also
showed a strong correlation between the change in FDG
uptake by bone metastases and the percentage of change in
tumor marker CA 27.29.

Imaging estrogen receptor expression
A few groups have developed radiopharmaceuticals for the
assessment of ERs, including radio-iodinated ligands for
scintigraphy, and fluorinated ligands for PET imaging [79].
Ribeiro-Barras and colleagues demonstrated that 17α-
[123I]iodovinyl-11β-methoxyestradiol (MIVE) scintigraphy
could be used in patients to assess the presence of the
estrogen receptor (ER) in primary and metastatic breast
cancers [80]. Using a more selective stereoisomer, Nachar
and colleagues showed that the uptake of MIVE on
scintigraphy correlated well with in vitro results of ER
concentration [81]. Bennink and colleagues, in a study with
23 subjects, showed that patients with high initial uptake of
MIVE and complete blockage of MIVE incorporation after

initiation of treatment with tamoxifen had a significantly longer
progression-free interval than those with low uptake of the
tracer and partial or incomplete blockage under therapy [82].

A series of several radiofluorinated estrogen ligands were
developed by Katzenellenbogen and Welch in St Louis; their
most promising compound was 18F-FES (see Fig. 2b). 18F-
FES had a high affinity for the ER and a good chemical
stability in vivo [83,84]. Mintun and colleagues showed that
18F-FES uptake could detect ER-positive breast tumors [85],
and could assess ER expression in nodal and distant
metastases [86]. Dehdashti and colleagues confirmed the
excellent correspondence (88%) between ER status
determined by 18F-FES-PET imaging and in vitro results from
biopsy samples [87]. Because 18F-FES is rapidly metabolized
in the blood, other analogs have been synthesized with
fluorine substituents at the 2 and 4 ring positions to resist
metabolic inactivation, and with a methoxy group at position
11 to reduce non-specific binding [88,89]. Derivatives of
fulvestrant (Faslodex®; AstraZeneca) have also been labeled
to assess the potential response of breast cancers to this
pure anti-estrogen [90], but in vivo results were disappointing
[91].

Because the ER status of primary breast tumors is almost
always known from a histopathology specimen, 18F-FES and
other ER-binding analogs add little to the initial diagnosis of
breast cancer. The key potential role of these ligands is to
assess recurrent breast cancer in women with a history of an
ER-positive primary tumor. ER imaging with PET can confirm
the ER positivity of sites that are inaccessible to biopsy and
can demonstrate in vivo the heterogeneity of ER expression.
Clinical trials are under way to assess whether ER imaging
with PET can predict the outcome of first-line or second -line
hormone therapy in women with recurrent breast cancer.
Mortimer and colleagues reported a study with combined 18F-
FDG and 18F-FES imaging for the evaluation of therapy
response to tamoxifen in 40 women with breast cancer [92].
A successful response to tamoxifen was associated with ER
blockage and a metabolic ‘flare’ response (increased 18F-
FDG uptake) 7 to 10 days after the initiation of tamoxifen.

Radiolabeled nucleosides and amino acids
[18F]Fluorothymidine
18F-FLT has been proposed by Shields and colleagues to
image tumor proliferation in vivo by PET [11]. Although 18F-
FLT is not directly incorporated into DNA and rather reflects
thymidine kinase-1 activity, the uptake of this radiotracer has
been shown to correlate well with the percentage of cells in S
phase [93]. Vesselle and colleagues recently reported that, in
10 patients with non small cell lung cancer, 18F-FLT activity
correlated well with Ki-67 staining by immunohistochemistry,
which reflects proliferative activity [94]. Thus, 18F-FLT seems
to be a promising agent for measuring cellular proliferation
and for the early assessment of therapy effectiveness. In a
clinical study [95] evaluating the use of 18F-FLT as a PET
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tracer for the diagnosis of breast cancer (12 patients: T2 to
T4) in comparison with 18F-FDG, 93% of primary tumors
demonstrated focally increased 18F-FLT uptake and 88% with
histologically proven axillary lymph node metastases showed
focally increased uptake of 18F-FLT. In direct comparison with
18F-FDG, the 18F-FLT activity was lower than that of 18F-FDG
in most primary tumor sites and axillary lymph node
metastases, but tumor contrast was comparable to that of
18F-FDG. This first available study using 18F-FLT as a PET
tracer in breast cancer concluded that 18F-FLT-PET seems to
be suitable for the diagnosis of primary breast cancer and
locoregional metastases, but further studies are required to
validate this hypothesis.

Radiolabeled amino acids
Various radiolabeled amino acids were developed for breast
cancer detection with PET. However, few studies compared
these radiopharmaceuticals with other diagnostic methods.
Those radiolabeled amino acids studied in breast cancer
include L-[18F]α-methyltyrosine [96], [11C]methionine [96,97],
[18F]fluoroalanine [98] and [11C]tyrosine [99]. During chemo-
therapy courses, the uptake of [11C]methionine from meta-
stases decreased in cases of stable or responsive disease
and increased in cases of progressive disease [97]. This led
the authors to conclude that metabolic changes in radio-
labeled amino acid incorporation measured by PET preceded
the clinical response. Studies of the distribution of
[18F]fluoroalanine in tissue showed that the tumor : tissue ratio
increased as a function of time, suggesting that this tracer
could be of interest in detecting breast cancer [98].
[11C]Tyrosine seemed to visualize malignant breast tumors as
effectively as 18F-FDG, but the visual contrast was better with
18F-FDG. [11C]Tyrosine had a lower uptake in fibrocystic
disease than 18F-FDG, which could reduce false-positive
studies. No difference in the tumor : non-tumor ratio was
found between the two tracers [99].

Other receptors as targets for diagnostic
imaging
Sigma receptors
Sigma receptors (σ) constitute a family of binding sites
initially considered as a subtype of opiate receptors, and both
subtypes (σ1 and σ2) are expressed in very high concen-
trations on human breast cancer cell lines [100]. John and
colleagues observed high levels of σ1 and σ2 receptors on
primary breast tumors from four patients [101]. Healthy
breast tissues did not express specific binding for σ receptor
ligands. With a monoclonal antibody directed to the σ1
receptor, Simony-Lafontaine and colleagues showed, on
tumor specimens from 95 breast cancer patients, a positive
correlation between progesterone receptor positivity and the
presence of σ1 receptors [102].

John and colleagues initiated the first studies to assess σ
ligands for the diagnostic imaging of cancer. They developed
several ligands labeled with radioactive iodine for the

detection of breast cancer [103-105]. Caveliers and
colleagues recently published the first clinical imaging study
evaluating a non-selective σ ligand labeled with iodine-123 in
patients with breast cancer [106]. Their preliminary results,
obtained in 10 patients in planar mode, showed the detection
of 8 of 10 breast cancers, despite the limited spatial
resolution of planar imaging. No radiotracer uptake was noted
in fibrocystic disease or inflammatory adenitis, which can
cause false positive results on 18F-FDG-PET studies. Collier
and colleagues synthesized a highly selective σ1 ligand
labeled with fluorine-18 for PET imaging of σ receptors [107].
Preliminary results for the detection of spontaneous breast
tumors occurring in transgenic MMTV mice were promising
with 1-(3-[18F]fluoropropyl)-4-(4-cyanophenoxymethyl)-piperidine
[108]. Shiue and colleagues reported promising results for
imaging human breast tumors implanted in SCID mice with
N(N-benzylpiperidine-4-yl)2-[18F]fluorobenzamide [109,110].

Other molecular targets
Several other ligands are being evaluated for the molecular
characterization of breast cancer: among many others, these
include ligands for assessing the HER2/neu status of breast
cancers [111], radiolabeled metalloproteinase inhibitors to
measure invasion capacity [112] and labeled peptides to
detect cell surface receptors that are overexpressed in breast
cancer cells [113]. The key advantage of PET and SPECT
over other imaging methods lies in their ability to measure
nanomolar concentrations of cellular receptors or enzymes
without saturating the system under study. This allows
radiochemists to follow new developments in molecular
therapeutics with radiolabeled analogs of potentially
therapeutic compounds to provide non-invasive in vivo
characterization of breast cancers. Given the highly variable
clinical evolution of this disease, such information may
eventually serve to individualize the therapeutic approach by
providing functional information about the status of a specific
receptor or enzyme across tumor sites.

Conclusion
Planar scintigraphy, SPECT and PET can each be useful as
adjunct imaging methods for detecting and staging primary
breast cancer, but they cannot currently replace invasive
procedures because of an insufficient sensitivity to detect
small (less than 1 cm) tumor deposits. SMM is a useful tool
for assessing palpable breast masses in women with dense
breasts and for evaluating a suspected recurrence in a
treated breast when mammography is equivocal or negative.
18F-FDG-PET imaging can confirm and restage suspected
recurrences, and can provide an early assessment of the
effectiveness of a new treatment regimen. Other tracers, such
as radiolabeled estrogens, amino acids and nucleosides, may
be more specific than 18F-FDG; further clinical studies will be
of interest for the assessment of their potential roles in the
detection of primary breast cancer and the prediction or
evaluation of response to therapy. As new molecular targets
are identified and new radioligands synthesized for SPECT
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and PET imaging, this field is likely to expand with selective
ligands targeting proteins that are overexpressed in breast
cancer cells. The challenge will be to follow these
developments with well-designed clinical studies to evaluate
their relative usefulness with respect to other invasive
procedures and non-invasive imaging modalities.
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