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In this work, the network complexity should be reduced with a concomitant reduction in the number of necessary
training examples. The focus thus was on the dependence of proper evaluation metrics on the number of adjustable
parameters of the considered deep neural network. The used data set encompassed Hematoxylin and Eosin (H&E) col-
ored cell images provided by various clinics. We used a deep convolutional neural network to get the relation between
a model’s complexity, its concomitant set of parameters, and the size of the training sample necessary to achieve a cer-
tain classification accuracy. The complexity of the deep neural networks was reduced by pruning a certain amount of
filters in the network. As expected, the unpruned neural network showed best performance. The network with the
highest number of trainable parameter achieved, within the estimated standard error of the optimized cross-entropy
loss, best results up to 30% pruning. Strongly pruned networks are highly viable and the classification accuracy de-
clines quickly with decreasing number of training patterns. However, up to a pruning ratio of 40%, we found a com-
parable performance of pruned and unpruned deep convolutional neural networks (DCNN) and densely connected
convolutional networks (DCCN).
Introduction

Modern deep convolutional neural networks (DCNN) can easily encom-
pass millions of parameters, quite a number of them being redundant or
close to zero in magnitude. As such, highly complex network architectures
put a heavy load to the necessary hardware as well as to computation time
and require a large training sample. Especially in the medical area, data
samples are often small lacking sufficient data to train complex networks,
thus incurring the risk of overfitting. Moreover, it is difficult to know how
many training examples are necessary for a neural network with a given
number of parameters. Hence, efforts have increased recently to reduce net-
work complexity. One way to do so is network pruning, whereby one tries
to simplify the network architecture without impairing network perfor-
mance. Removing weak or redundant weights speeds up learning and occa-
sionally also improves prediction accuracy. Anyway, pruning first tries to
identify the most promising network units (neurons, channels, filters) to
be removed. Afterwards, the pruned network model needs further training
and fine-tuning to recover the base model’s prediction performance.13
e (T.I. Götz).
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In practice, analytical proxies like the number of adjustable parameters or
floating point operations (FLOPs) are commonly used to quantify pruning
efficacy. Such DCNNs with reduced network complexity have several
advantages to offer: Concerning server computations, less complex models
reduce bandwidth usage, power consumption, and operational costs, while
computations on embedded systems or edge devices guaranty privacy, low
latency, and better customization.37

Work related to pruning

When considering network pruning, often heuristics are employed to
identify candidate units to be removed. Generally, either data-agnostic sa-
liency criteria are computed or data-aware techniques are considered.
The former group is, for example, represented by methods considering
the Hessian matrix to identify weights to be removed without harming
the prediction accuracy.15 As such techniques encompass heavy computa-
tions, alternatively weights may be grouped according to some similarity
measures and each group is then replaced by its prototype weight.50
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If weight values, i.e. their L2-norms, represent a saliency criterion, pruning
them iteratively provides another simple alternative.13 The grain of salt
with such techniques is the sparse matrices they create, which don’t help
speeding up inference. These drawbacks can be leveraged by applying
structural pruning methods.30 The latter commonly deploy L1-norm Lasso
constraints and consider channel- or filter-based pruning approaches.31,33

More generally, a Group Lasso approach58 to pruning dealt with variable se-
lection problems at the group level. Smoothing functions were introduced
to alleviate problems arising with gradient computations at the origin.
Enforcing sparsity even further, the L1-norm constraint has been replaced
in some studies by a L1/2-norm regularization. The latter penalty yielded
better sparsity than the L1-norm regularization at similar computational
costs. Chang et al.4 proposed a network pruning method based on the
L1/2 penalty, which reduced incorrect pruning by increasing the sparsity
of the pre-trained models. Also in Wang et al,60 the L1/2-norm constraints
have been considered at the channel level, while channel importance has
been evaluated by a genetic algorithm. Structured sparsity also often
needs some control based on attention mechanisms as pointed out in
Torfi et al,54 whose work is an extension of the work of Wen et al.61 Simi-
larly, thework of Lin et al35 considered regularized structuredfilter pruning
by incorporating 2 different regularizers into the objective function to fully
coordinate global outputs and local filter pruning operations. Also a novel
regularization-based pruning method, named IncReg, was proposed by
Wang et al,57 which incrementally assigns different regularization factors
to different weights based on their relative importance. Further pruning
methods on the filter pruning level considered the scaling factor of batch
normalization layers as salient feature65 or removed filters close to their
geometric median.16 Recently structured Dirichlet filter pruning has been
proposed by Adamczewski and Park.1 The authors assigned Dirichlet distri-
butions over every channel’s convolutional layers and estimated by varia-
tional inference the parameters of the distribution. The latter allowed
them to identify irrelevant filters of the architecture. As a by-product,
the method provided interpretable features. Filter pruning methods
also have close connections to low rank network matrix decomposition
techniques.345 Swaminathan et al52 proposed a sparse low rank weight ma-
trix decomposition, while considering the significance of both input and
output nodes of a layer. Recent work by Yeom et al63 also explored connec-
tions between pruning andmatrix decomposition methods by developing a
new energy-aware pruning technique. The preserved energy corresponded
to the summed singular values of the filter decomposition and filters were
pruned on the basis of their energy content. Concerning data-driven prun-
ing methods on the weight level, the average percentage of zeros of
nodes19 served as saliency criterion for weight importance and network
trimming. Structured pruning at the channel level was considered by He
et al17 by minimizing the reconstruction error for input data. Also the en-
tropy of channel activation was considered a suitable saliency measure
for channel removal38 as well as cross entropy.3 Concerning loss functions,
their derivatives can serve as cost measures for feature dropping and were
deployed by Molchanov et al41 to prune network structures based on
grouped feature map activation. Similarly, the magnitude of gradients has
also been considered a proper saliency measure for network pruning.11

Work related to cell segmentation

A seminal recent review of deep learning methods for cellular image
analysis is provided by Moen et al40 highlighting to biologists the use of
deep learning techniques for biological image understanding. If image clas-
sification is intended, biological images often lack appropriate annotation
with class labels, hence transfer learning deems most suitable here.44,64

Transfer learning resorts to an image classifier that has been trained on
a generally huge image data set, such as ImageNet, and only re-trains
the final fully connected layer with an often small image data set of
interest.10,64

Changes in cell morphology may not always be captured by a labeled
training data set. Here, deep learning can be used to extract feature
vectors rather than labels. These features can then be clustered according
2

to some similarity measure and appropriately classified.24,44,49 Image clas-
sification can also be employed to identify cell states. A recent study trained
a classifierwith images labeledwith a fluorescencemarker for cell differen-
tiation. The trained classifier was then employed to identify differentiated
cells directly from corresponding bright field images.48,49 Yet another
study applied a deep learning classifier tofluorescence images to determine
characteristic spatial patterns in the images which indicated protein local-
ization in large data sets from yeast27,28,43 and humans.51

Another large field of image analysis, where deep learning techniques
can be employed favorably, is image segmentation. Classical segmentation
methods often rely on simple thresholding,23 but with moderate success
only.Modern segmentation techniques come in 2 flavors: semantic segmen-
tation and instance-based segmentation. The former partitions a cell image
into semantically meaningful parts, like cytoplasm, nucleus, cytoskeleton
etc. and labels all pixels belonging to the latter appropriately. Instance-
based segmentation, instead, focuses on every instance of a class in any
given cell image. Early examples of the latter approaches are given by the
software packages U-Net9,47 and DeepCell.56 They consider instance-
based segmentation as a pixel-level classification task. The trained image
classifier then generates predictions about class membership pixel-wise
thereby grouping pixels into categories like cell interior, cell edges, and
background, for instance. A rather more classical segmentation technique
is watershedding, whereby deep learning has recently been employed to
learn a distance measure. This allows to build a mask encompassing those
pixels which have at least a minimal distance from the background of the
image.2,7 A recent application to segment single cells in images performed
surprisingly well.59 Other approaches to image segmentation are based on
object detection techniques, whereby the bounding box of every object is
identified. Deep learning algorithms like Faster R-CNN46 and Retinanet36

combine bounding box detection with a suppression of non-maximal pixels
to avoid redundant bounding box predictions.18,21,22,55 A rather different
approach to image segmentation considers the segmentation problem as a
vector embedding problem.6,45 Thereby, all pixels belonging to an object
are assigned by a discriminative loss function to the same vector, while
pixels of different objects belong to different vectors. All objects are finally
identified through clustering techniques applied on the embedding
space.14,39,66 Recently, most of these techniques have been generalized to
be applicable to 3D data sets.12,64,53 These deep learning-based image seg-
mentation techniques are applicable in many fields of science. They help to
automatize common computer vision workflows and render possible seg-
mentation tasks that previously deemed impossible. For example, a precise
quantification of localization-based live-cell reporters became possible by
way of an accurate identification of the cytoplasm in mammalian
cells.42,56 A recent study explored this image segmentation method to in-
vestigate the mechanisms of cell size control during the fission of yeast
cells.8 Another exciting application concerns the use of instance-based seg-
mentation in pathology images.25,26,29,39 There interactions between tumor
cells and immune cells were investigated employing spatial proteomics
methods in a formalin-fixed and paraffin-embedded substrate.26

In this work, filter pruning methods are deployed to reduce network
complexity and the question of the number of necessary training examples
for various numbers of trainable parameters is investigated, using the exam-
ple of a cell segmentation network.

Method

In this section, the used data set is described and its preprocessing is ex-
plained. Moreover, we sketch the state-of-the-art neural network applied,
and provide an overview of the number of trainable parameters.

Data set

In this work, part of the data set provided by Kumar et al29 - henceforth
called the Kumar data set for simplicity - was used. It encompassed Hema-
toxylin and Eosin stain (H & E) cell images provided by various clinics (for



Fig. 1. Cell image of size 250� 250 pixels with corresponding segmentation.62
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an example see Fig. 1). Table 1 collects all information about the various
images employed in this study.

TheKumar data set consisted of an equal number of images for every tis-
sue class. Only part of the data was used in this study, thereby assuring a
balanced data set such that each tissue class was represented by one
image for training and another image for testing. While selecting them,
care was taken that the images came from different clinics and, if possible,
represented different tumor types. This selection should render the classifi-
cation task as hard as possible. Furthermore, the trained networks should
be suitable for transfer learning on cell images of other clinics. All images
were subdivided into overlapping image patches of size ( 51� 51 ¼ 2601
pixels). In total, the data set encompassed 14 654 944 such image patches.
However, only Ntr = 915 934 overlapping image patches were taken of
every input image and constituted the size of the training sample for an un-
prunedDCNN. Furthermore, the numberNtr of training sampleswas chosen
to match the number Np ¼ 915 934 of adjustable parameters of our deep
convolutional neural network (DCNN). The pixels of every imagewere clas-
sified as belonging either to class cell or class background, whereby the goal
of the classification effort was to properly classify the center pixel of every
Table 1
A list of images used for pre-training, training, and testing.

Patient ID TCGA- Organ

A7 − A13E − 01Z − 00 � DX1 Breast
A7 − A13F − 01Z − 00 � DX1 Breast
AR − A1AK − 01Z − 00 � DX1 Breast
E2 − A1B5 − 01Z − 00 � DX1 Breast
HE − 7128 � 01Z − 00 � DX1 Kidney
B0 − 5711 � 01Z − 00 � DX1 Kidney
38 − 6178 � 01Z − 00 � DX1 Liver
21 − 5784 � 01Z − 00 � DX1 Liver
G9 − 6336 � 01Z − 00 � DX1 Prostate
CH − 5767 � 01Z − 00 � DX1 Prostate
DK − A2I6 − 01A − 01 � TS1 Bladder
G2 − A2EK − 01A − 02 � TSB Bladder
AY − A8Y K − 01A − 01 � TS1 Colon
NH − A8F7 − 01A − 01 � TS1 Colon
KB − A93J − 01A − 01 � TS1 Stomach
RD − A8N9 − 01A − 01 � TS1 Stomach

Fig. 2. Architecture of the DCNN for cell
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image patch. During the training process, the total number Ntr of image
patches were separated into 70% training examples and 30% validation ex-
amples using a cross-validation method. Also from every tissue, class 1
image was kept out of bag for testing and estimating standard errors.
Thus, the out of bag test set consisted of 7 images, each for every tissue
class, from which a corresponding number of patches was drawn for
testing.

Neural network architecture

To optimize the number of training examples needed by the given neu-
ral network architecture, a deep convolutional neural network (DCNN) in
analogy with Xing et al62 and a densely connected convolutional network
(DCCN)20 were employed. The architecture of the networks is illustrated
in Fig. 2 and Fig. 3 and the trainable parameters are given in Table 2. The
DCNN network consisted of 3 convolutional layers, 3 max-pooling layers,
2 fully connected layers, and 1 softmax output layer. The input array en-
compassed 51� 51 × 3 pixels, which corresponded to a 3-channel RGB
image patch of the cell images. The output layer implemented a softmax ac-
tivation function. The DCCN network consisted of 4 convolutional layers, 1
max-pooling, and 3 average-pooling layers, 3 dense blocks, 1 fully con-
nected layer, and 1 sigmoid output layer. The input array size was the
same as for the DCNN. Because of the binary classification at the output,
a cross-entropy loss function Lce was implemented to guide the training of
both the DCNN and the DCCN.

Experiments

The central question we were focusing on, was about the relation be-
tween a model’s complexity, its concomitant set of parameters, and the
size of the training sample necessary to achieve a satisfactory classification
Disease type Usage

Breast invasive carcinoma Pre-training
Breast invasive carcinoma Pre-training
Breast invasive carcinoma Training
Breast invasive carcinoma Testing
Kidney renal papillary cell carcinoma Training
Kidney renal clear cell carcinoma Testing
Lung adenocarcinoma Training
Lung squamous cell carcinoma Testing
Prostate adenocarcinoma Training
Prostate adenocarcinoma Testing
Bladder urothelial carcinoma Training
Bladder urothelial carcinoma Testing
Colon adenocarcinoma Training
Colon adenocarcinoma Testing
Stomach adenocarcinoma Training
Stomach adenocarcinoma Testing

segmentation similar to Xing et al.62



Fig. 3. Architecture of the DCCN for cell segmentation similar to Huang et al.20

Table 2
Number of trainable parameters in each layer of the 2 neural network architectures.

DCNN DCCN

Layer Parameters Layer Parameters

conv 1 1225 conv 1 9536
conv 2 31 300 DenseBlock 335 040
conv 3 144 080 conv 2 33 280
FC 1 738 104 DenseBlock 1 047 552
FC 2 2050 conv 3 132 096

DenseBlock 2 709 888
conv 4 526 336
FC 1026

Total number 916 759 Total number 4 794 754
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accuracy. Thus, the study explored possibilities to reduce network complex-
ity resulting in a reduced number of needed training examples. For this
task, we chose a neural network with several million parameters and an-
other with less than 1 million parameters. The selected network architec-
tures perfectly suited this purpose, as we only wanted to achieve a
classification of the central pixel of every image patch.

In Fig. 4, the training and evaluation process is illustrated. First, the
DCNN and DCCN were implemented and randomly initialized. The net-
workswere then pre-trained for 10 epochs employing the breast data set in-
dicated in Table 1 of the previous section. The data set, used for pre-
training, consisted of only 2 breast carcinoma cell images recorded in a
clinic. These images were partitioned into 1 831 868 image patches. This
set of image patches was used to train the set of Np ¼ 915 934 adjustable
parameters of our network models and provided us with a pre-trained neu-
ral network that served as the basis for all further experiments. To reduce
network complexity, the pre-trained neural networks were pruned by ap-
plying different pruning ratios, starting with 0% pruning and increasing
to 90% pruning in steps of 10%. Thereby, pruning was done by adopting
the structured L1 pruning method implemented by PyTorch.
Fig. 4. Principal training a
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This method is based on Li et al32 and uses the L1 norm of filters as an in-
dicator of the importance of the filter. It is assumed that if the L1 norm of a fil-
ter is small, the importance of the filter is also low. This norm is calculated for
all filters of a conv layer and then 30% of the least important filters are elim-
inated. This procedure is carried out one after the other for each conv layer.

All layers of the pruned networks were then further trained for 30
epochs employing various numbers of training examples Ntr(r). The latter
have been computed by taking the following multiples r of the number Np

of trainable parameters of the pruned DCNN architecture:

Ntr rð Þ ¼ r � Np,
where r ¼ 2, 1, 0:5, 0:1, 0:05, 0:01, 0:005, 0:001

(1)

For the DCCN computations were performed using only r values between
0.5 and 0.001, because of the demanding compute time and themissing num-
ber of training samples. Note that this resulted in different numbers of train-
ing examples depending on the chosen pruning ratios. Additionally, all
pruned neural networks were trained for further comparability with identical
training sample sizes as given in Table 3. The latter have been deduced from
the number Np of parameters of the unpruned DCNN or DCCN, respectively.

After the training process, every trained network was applied to seg-
ment the test data sample. When increasing Ntr, every larger training data
set contained the smaller training data set used before. Also care was
taken to ensure balanced training data sets with a roughly equal number
of pixels per class (cell, non-cell) in each set X . To ensure that the data
sets X are representative, the distributions of the mutual information be-
tween all images of a data set were chosen to be similar.

Despite facing a 2-class classification problem here, we formulate the
optimization problem for K classes. Hence, training was guided by a
softmax cross-entropy loss function

L yi; ŷið Þ ¼ −
1
N

X
k

X
n

y kð Þ
in ŷ kð Þ

in þ y kð Þ
in ln

X
k0

exp ŷ k0ð Þ
in

� � !" #
ð2Þ
nd evaluation process.



Table 3
Reduction factor r and corresponding number of training patternsNtr(r). The number of training sampleswith the label cell Ncell and the onewith the label no cell Nnocell are also
given. Remember that the number of adjustable parameters of the unpruned DCNN amounted to Np ¼ 915 934 and for the DCCN amounted to Np ¼ 4 794 754.

DCNN

r 0.001 0.005 0.01 0.05 0.1 0.5 1 2

Ntr(r) 916 4580 9159 45 797 91 593 457 967 915 934 1 831 868
Ncell 675 3404 6816 34 404 68 827 344 373 688 780 1 376 401
Nnocell 241 1176 2343 11 393 22 766 113 594 227 154 455 467

DCCN

r 0.001 0.005 0.01 0.05 0.1 0.5

Ntr(r) 4795 23 974 47 948 239 738 479 475 2 397 377
Ncell 3622 18 045 36 047 180 505 360 383 1 800 694
Nnocell 1173 5929 11 901 59 233 119 092 596 683
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where N denotes the number of pixels in input patch xi. Furthermore, yin ∈
{0.1}K denotes a 1-hot encoded ground-truth vector and byin ∈ RK repre-
sents a vector of class membership probabilities.

Evaluation metrics play an important role in assessing the outcomes of
segmentation models. Hence, prediction quality was assessed deploying
Table 4
Cross-entropy loss Lce ≡ H(p,q), Segmentation accuracy acc, Sensitivity, Specificity, an
examples: Ntr, related cross-entropy loss: Lce, test accuracy: acc. The best result per row,
3 ⋅ 10−3 are considered to hold for all DCNN network configurations.

r Ntr Sensitivity Specificity DiceCo acc Lce

0% pruning
2 1 831 868 0.835 0.952 0.802 0.933 0.176
1 915 934 0.828 0.953 0.801 0.932 0.180
0.5 457 967 0.828 0.952 0.799 0.931 0.180
0.1 91 593 0.828 0.946 0.788 0.927 0.197
0.05 45 797 0.827 0.945 0.785 0.924 0.204
0.01 9159 0.789 0.946 0.768 0.921 0.220
0.005 4580 0.744 0.949 0.743 0.915 0.241
0.001 916 0.684 0.936 0.674 0.899 0.306

20% pruning
2 1 465 494 0.815 0.956 0.798 0.933 0.177
1 732 747 0.834 0.950 0.797 0.930 0.182
0.5 366 374 0.817 0.951 0.792 0.929 0.183
0.1 73 275 0.809 0.947 0.776 0.924 0.201
0.05 36 637 0.827 0.941 0.777 0.921 0.204
0.01 7327 0.825 0.930 0.765 0.915 0.231
0.005 3664 0.715 0.951 0.730 0.913 0.238
0.001 733 0.596 0.946 0.613 0.898 0.327

40% pruning
2 1 099 121 0.742 0.933 0.709 0.932 0.181
1 549 560 0.723 0.936 0.702 0.931 0.181
0.5 274 780 0.719 0.934 0.697 0.927 0.185
0.1 54 956 0.712 0.931 0.687 0.924 0.206
0.05 27 478 0.727 0.922 0.684 0.920 0.212
0.01 5496 0.661 0.929 0.653 0.914 0.237
0.005 2748 0.674 0.930 0.663 0.915 0.237
0.001 550 0.540 0.938 0.559 0.901 0.323

60% pruning
2 732 747 0.826 0.946 0.783 0.927 0.186
1 366 374 0.797 0.954 0.783 0.928 0.187
0.5 183 187 0.800 0.952 0.783 0.927 0.195
0.1 36 637 0.805 0.944 0.770 0.920 0.218
0.05 18 319 0.783 0.948 0.764 0.919 0.224
0.01 3664 0.676 0.950 0.700 0.907 0.274
0.005 1832 0.476 0.968 0.539 0.892 0.359
0.001 366 0.443 0.923 0.441 0.863 0.390

80% pruning
2 366 374 0.791 0.956 0.783 0.929 0.193
1 183 187 0.812 0.947 0.782 0.926 0.202
0.5 91 593 0.792 0.948 0.771 0.923 0.217
0.1 18 319 0.618 0.958 0.654 0.908 0.242
0.05 9159 0.523 0.970 0.585 0.901 0.296
0.01 1832 0.428 0.974 0.498 0.887 0.336
0.005 916 0.000 1.000 0.000 0.818 0.497
0.001 183 0.097 0.968 0.129 0.809 0.521

5

the following performance metrics: Dice Sørensen coefficient DSC, accu-
racy acc, sensitivity Se, and recall Rec, specificity Sp, and precision Pre.

In order to analyze the robustness of the training process, the unpruned
DCNN was trained 7-fold with different random seed numbers and Np ¼
91539 training examples, corresponding to a reduction factor r = 0.1.
d Dice coefficient for different trained network configurations. Number of training
i.e. per reduction factor r, is highlighted as bold. Note that sce = 1 · 10−3 and sacc =

Ntr Sensitivity Specificity DiceCo acc Lce

10% pruning
1 648 681 0.834 0.953 0.803 0.934 0.178
824 341 0.810 0.953 0.790 0.930 0.181
412 170 0.820 0.950 0.790 0.929 0.184
82 434 0.829 0.944 0.783 0.926 0.190
41 217 0.811 0.946 0.776 0.923 0.210
8243 0.802 0.930 0.747 0.910 0.237
4122 0.779 0.945 0.758 0.917 0.239
824 0.619 0.944 0.630 0.898 0.343

30% pruning
1 282 308 0.789 0.960 0.791 0.933 0.181
641 154 0.859 0.942 0.798 0.929 0.177
320 577 0.819 0.950 0.789 0.928 0.189
64 115 0.809 0.945 0.775 0.923 0.207
32 058 0.800 0.944 0.767 0.921 0.205
6411 0.798 0.931 0.750 0.912 0.231
3206 0.769 0.937 0.746 0.912 0.242
641 0.606 0.941 0.606 0.896 0.373

50% pruning
915 934 0.718 0.935 0.695 0.930 0.181
457 967 0.727 0.933 0.699 0.930 0.184
228 984 0.709 0.936 0.692 0.928 0.191
45 797 0.698 0.930 0.676 0.921 0.213
22 899 0.716 0.927 0.681 0.920 0.228
4580 0.702 0.930 0.679 0.919 0.232
2290 0.671 0.931 0.664 0.916 0.246
458 0.534 0.909 0.501 0.880 0.344

70% pruning
549 560 0.816 0.953 0.791 0.930 0.181
274 780 0.813 0.951 0.787 0.929 0.191
137 390 0.808 0.950 0.784 0.928 0.199
27 478 0.771 0.951 0.764 0.921 0.227
13 739 0.765 0.948 0.755 0.919 0.236
2748 0.441 0.975 0.525 0.887 0.301
1374 0.486 0.972 0.576 0.889 0.339
275 0.146 0.973 0.201 0.836 0.481

90% pruning
183 187 0.816 0.941 0.774 0.921 0.232
91 593 0.801 0.945 0.771 0.922 0.226
45 797 0.678 0.951 0.704 0.911 0.243
9159 0.653 0.950 0.685 0.905 0.266
4580 0.513 0.962 0.576 0.893 0.308
916 0.000 1.000 0.000 0.818 0.476
458 0.000 1.000 0.000 0.818 0.471
92 0.000 1.000 0.000 0.818 0.465
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Finally, all test images were segmented with the trained networks. The
standard deviation over these predictions was taken as a measure of the in-
accuracy of the predictions for all investigated network configurations,
which could not be fully exploited due to an insufficient computing capacity.

Results

Test of reproducibility

As mentioned in the last section, in order to be able to distinguish net-
works with different pruning configurations, hence different numbers of
trainable parameters, the reproducibility of the network architecture was
examined first. In 7 different training runs of an unpruned network with
Ntr(r=1.0) = 915 934 training examples, each initialized with a different
random seed, the predictions of the pixel class memberships achieved with
a DCNNmodel a standard error for the accuracy of sacc=1.7 · 10−3 and for
the cross entropy of sce = 4.3 · 10−3, respectively. These numbers were
rounded to sacc = 2 · 10−3 and sce = 4 · 10−3 for convenience. For the
DCCN model corresponding standard errors read sacc = 2.8 · 10 − 3 and
sce = 1.3 · 10−3, respectively, which were rounded to sacc = 3 · 10−3 and
sce = 1 · 10−3 for the sake of an easy comparison. These figures of merit
were considered valid for all network configurations investigated in this
study, as already explained above.

Varying the number of training examples

Next the unpruned DCNNwas trained with various numbers of training
examples. The latter were determined, given the pruning ratio δ, as
Ntr(r,δ) = Ntr(r)(1 - δ). Up to a pruning ratio δ of 50% ≡ δ = 0.5 and
Ntr ≥ Np, the accuracy remained practically constant with a maximal test
accuracy of acc = 0:932� 0:002, and a minimal cross-entropy loss of
Fig. 5.Dice coefficient and test accuracy for the DCNNwith different pruning ratios. The
factor r.
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Lce≡H(p,q)=0:181� 0:003was achieved. Note that 99% of themaximal
test accuracy could already be obtained with only 9159 training patterns,
corresponding to r = 0.01 (see Table 4).

First, Fig. 5 illustrates the dependence of the test accuracies, achieved
with the various DCNN pruning configurations, on the number of training
examples. Corresponding result in case of the more complex DCCN are
shown in Fig. 6. All networks were trained for best image segmentation
byminimizing the cross-entropy loss. During training, the number of neces-
sary training examples was varied for a given set of adjustable parameters
as determined by the pruning ratio. The former was determined by the cho-
sen network architecture via r · Np, with r denoting a factor multiplying the
number Np of trainable parameters. The most complex unpruned network,
either DCNN or DCCN, yielded best results among all training runs. It is re-
markable to see that even a reduction of the number of training samples by
a factor r = 0.001 leads to a rather modest decrease of the accuracy by
roughly 5% only for both network architectures. A similar observation
holds for the Dice coefficient, which decreased by 6% and 1%, respectively.
With increased network pruning, however, both accuracy and Dice coeffi-
cient degrade substantially for strongly reduced training sample sizes r <
0.1. With δ = 0.9, for example, we observed a decrease of the accuracy
by 11% and 9%, respectively while Dice coefficients decreased to zero for
both networks. This is amazing as a reduced network complexity results
in a smaller number of adjustable model parameters. Obviously, a too
strong reduction of the training sample size results in a worsening of the
learning ability of the resulting network. Considering the cross-entropy
loss, i.e. the objective that was optimized during training, it steadily in-
creases with decreasing reduction factor r. For the unpruned networks,
cross entropy increased by 70% in case of a DCNN but only by 4% in case
of a DCCN. However, the increase is especially strong for less complex net-
works at pruning ratios larger than 50%, where Lce more than doubles in
case of the DCNN, while the increase is only 22% in case of the DCCN.
network configurations were trained with different data sample sizes, scaled by the



Fig. 6. Dice coefficient and test accuracy for the DCCNwith different pruning ratios. The network configurations were trained with different data sample sizes, scaled by the
factor r.
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Reducing network complexity by pruning

Next, the dependence of the performance metrics on network complex-
ity was studied. With large training sample sizes, i.e. r = 1 and r = 2, re-
spectively, in case of the DCNN network and r = 0.5 in case of the DCCN
Table 5
Cross-entropy loss Lce ≡ H(p,q), Segmentation accuracy acc, Sensitivity, Specificity
training examples: Ntr, related cross-entropy loss: Lce, test accuracy: acc. The best result
and sacc = 3 · 10−3 are considered to hold for all DCCN network configurations.

r Ntr Sensitivity Specificity DiceCo acc Lce

0% pruning
0.5 2 397 377 0.846 0.940 0.792 0.923 0.384
0.1 479 475 0.823 0.952 0.796 0.928 0.382
0.05 239 738 0.838 0.944 0.795 0.926 0.384
0.01 47 948 0.818 0.949 0.795 0.927 0.386
0.005 23 974 0.803 0.947 0.783 0.923 0.387
0.001 4795 0.771 0.951 0.770 0.920 0.396

60% pruning
0.5 958 951 0.835 0.944 0.789 0.923 0.386
0.1 191 790 0.816 0.944 0.779 0.920 0.390
0.05 95 895 0.807 0.940 0.767 0.916 0.392
0.01 19 179 0.733 0.941 0.724 0.904 0.408
0.005 9590 0.715 0.940 0.710 0.900 0.415
0.001 1918 0.595 0.939 0.613 0.882 0.435

80% pruning
0.5 479 475 0.834 0.932 0.765 0.914 0.392
0.1 95 895 0.770 0.936 0.739 0.908 0.401
0.05 47 948 0.749 0.931 0.719 0.902 0.409
0.01 9590 0.686 0.927 0.670 0.889 0.424
0.005 4795 0.651 0.928 0.647 0.886 0.428
0.001 959 0.000 1.000 0.000 0.818 0.500
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network, classification accuracy remained practically unaffected. This was
expected as there the largest numbers of training examples were used.
The same held true for the Dice coefficient, with the exception of 40%
and 50% pruning ratios in case of the DCNN network, which unexpectedly
showed a sudden drop for all numbers of training examples. Lacking any
, and Dice coefficient for different trained network configurations. Number of
per row, i.e. per reduction factor r, is highlighted as bold. Note that sce = 1 · 10−3

Ntr Sensitivity Specificity DiceCo acc Lce

50% pruning
1 198 689 0.838 0.941 0.787 0.922 0.385
239 738 0.829 0.943 0.786 0.922 0.386
119 869 0.823 0.935 0.768 0.894 0.419
23 974 0.754 0.942 0.740 0.911 0.399
11 987 0.746 0.935 0.723 0.903 0.408
2397 0.670 0.935 0.669 0.886 0.428

70% pruning
719 213 0.817 0.940 0.768 0.917 0.391
143 843 0.799 0.936 0.750 0.911 0.395
71 921 0.773 0.932 0.729 0.903 0.402
14 384 0.728 0.926 0.700 0.895 0.413
7192 0.647 0.942 0.672 0.854 0.421
1438 0.000 1.000 0.000 0.818 0.500

90% pruning
239 738 0.772 0.937 0.739 0.910 0.396
47 948 0.745 0.924 0.706 0.898 0.411
23 974 0.737 0.922 0.698 0.894 0.419
4795 0.625 0.932 0.637 0.884 0.434
2397 0.098 0.991 0.154 0.829 0.470
479 0.000 1.000 0.000 0.818 0.500
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reasonable explanation, we consider the results for these 2 pruning ratios as
outliers. Remarkably, up to a pruning ratio of 50% prediction accuracy re-
mained rather high, amounting to a drop of a mere 0.2%. This is not the
case for the corresponding Dice coefficient, which for the DCNN network
decreased by almost 13% over the same range of network pruning (com-
pare Table 4 but remember that the 50% values were considered outlier).
More realistic might be the drop seen over the entire pruning range δ =
0 → 0.9, where the corresponding figures read 1% for the accuracy and
4% for the Dice coefficient. Remarkably, for the more complex DCCN net-
work the corresponding decrease at r = 0.5 amounted to 1%, roughly for
δ = 0 → 0.5 while it was seen to be 7% for δ = 0 → 0.9 (compare
Table 5). The corresponding figures for the accuracy read 0.6% and 3%, re-
spectively. For even larger pruning ratios, i.e. r = 0.001, both metrics de-
graded rapidly with decreasing training sample size and decreasing
network complexity for both network architectures. Thus, the accuracy
dropped by 9% for δ = 0 → 0.9 and 2% for δ = 0 → 0.5 in case of the
DCNN network. For the DCCN architecture, the corresponding accuracies
dropped by 11% for δ=0→ 0.9 and 4% for δ=0→ 0.5. This degradation
was, however, especially visible for the Dice coefficient, which reduced to
Table 6
Cross-entropy loss Lce ±10−3 and statistical metrics (Sensitivity, Specificity, acc±10-3

Note that here the number of training examples is the same for all tested pruning ratios.
amounted to Np ¼ 916 959. The rows marked yellow present results obtained with net

Ntr Sensitivity Specificity DiceCo acc Lce

0% Pruning, Np ¼ 915 934
1 831 868 0.835 0.952 0.802 0.933 0.1
915 934 0.828 0.953 0.801 0.932 0.1
457 967 0.828 0.952 0.799 0.931 0.1
91 593 0.828 0.946 0.788 0.927 0.1
45 797 0.827 0.945 0.785 0.924 0.2
9159 0.789 0.946 0.768 0.921 0.2
4580 0.744 0.949 0.743 0.915 0.2
916 0.684 0.936 0.674 0.899 0.3

20% Pruning, Np ¼ 732 747
1 831 868 0.811 0.954 0.790 0.931 0.1
915 934 0.827 0.950 0.792 0.930 0.1
457 967 0.813 0.952 0.789 0.930 0.1
91 593 0.822 0.949 0.789 0.926 0.1
45 797 0.801 0.947 0.772 0.922 0.2
9159 0.795 0.938 0.756 0.916 0.2
4580 0.741 0.950 0.745 0.917 0.2
916 0.634 0.958 0.676 0.908 0.2

40% Pruning, Np ¼ 549 560
1 831 868 0.825 0.949 0.789 0.929 0.1
915 934 0.838 0.947 0.793 0.929 0.1
457 967 0.817 0.952 0.791 0.931 0.1
91 593 0.819 0.947 0.783 0.925 0.2
45 797 0.834 0.940 0.778 0.923 0.2
9159 0.774 0.949 0.761 0.921 0.2
4580 0.791 0.930 0.742 0.909 0.2
916 0.660 0.940 0.667 0.899 0.3

60% Pruning, Np ¼ 366 374
1 831 868 0.853 0.946 0.800 0.930 0.1
915 934 0.826 0.948 0.790 0.929 0.1
457 967 0.825 0.950 0.791 0.929 0.1
91 593 0.822 0.944 0.778 0.923 0.2
45 797 0.783 0.949 0.766 0.922 0.2
9159 0.771 0.942 0.750 0.915 0.2
4580 0.750 0.945 0.746 0.915 0.2
916 0.401 0.968 0.461 0.881 0.3

80% Pruning, Np ¼ 183 187
1 831 868 0.838 0.949 0.799 0.930 0.1
915 934 0.833 0.950 0.796 0.930 0.1
457 967 0.827 0.947 0.789 0.928 0.1
91 593 0.784 0.951 0.770 0.925 0.2
45 797 0.727 0.955 0.741 0.920 0.2
9159 0.557 0.961 0.601 0.901 0.2
4580 0.563 0.955 0.602 0.899 0.2
916 0.000 1.000 0.000 0.818 0.4
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zero for δ = 0 → 0.9 for both architectures and yielded 25% for δ = 0 →
0.5 in case of DCNN and 13% under the same conditions in case of
DCCN. Considering the cross-entropy loss, it again stood almost constant
up to a pruning ratio of 50% before starting to increase with further de-
creasing network complexity. For instance, at r=1 cross entropy increased
in case of a DCNN by a mere 2% for δ= 0→ 0.5 but by 26% for δ= 0→
0.9. At high reduction factors r = 0.001, the corresponding values were
12% and 52%, respectively. In case of more complex DCCN networks, we
observed an increase by 3% for δ = 0 → 0.9 and by 0.3% for δ = 0 →
0.5 and r = 0.5. Again, for very parsimonious networks (r = 0.001) we,
instead, observed an increase in LCE by 39% for δ = 0 → 0.9 and by 8%
for δ = 0 → 0.5. The results for the cross-entropy loss Lce and the test
accuracy acc for different network configurations are summarized in
Table 4 and Table 5.

Network training with fixed training set size

In order to be able to directly compare the performance of pruned neu-
ral networks, the different network configurations were trained once again
) for the segmentation prediction of different network configurations are presented.
Again remember that the number of adjustable parameters of the unpruned DCNN
works where the condition Ntr ≥ Np held.

Sensitivity Specificity DiceCo acc Lce

10% Pruning, Np ¼ 824 341
76 0.828 0.955 0.804 0.934 0.178
80 0.821 0.951 0.792 0.930 0.180
80 0.824 0.950 0.792 0.930 0.180
97 0.803 0.951 0.780 0.926 0.193
04 0.800 0.947 0.773 0.923 0.211
20 0.791 0.933 0.739 0.909 0.252
41 0.752 0.950 0.753 0.918 0.234
06 0.743 0.927 0.704 0.898 0.305

30% Pruning, Np ¼ 641 154
78 0.829 0.951 0.796 0.931 0.179
79 0.822 0.952 0.797 0.932 0.178
82 0.822 0.952 0.792 0.931 0.182
99 0.818 0.947 0.782 0.925 0.198
06 0.821 0.944 0.777 0.923 0.208
24 0.774 0.946 0.757 0.918 0.226
34 0.758 0.940 0.739 0.912 0.252
80 0.731 0.924 0.699 0.896 0.303

50% Pruning, Np ¼ 457 967
79 0.807 0.954 0.790 0.931 0.180
76 0.817 0.951 0.789 0.929 0.177
85 0.816 0.952 0.790 0.930 0.185
03 0.790 0.953 0.776 0.926 0.205
09 0.784 0.949 0.765 0.922 0.210
22 0.789 0.939 0.755 0.915 0.237
49 0.748 0.954 0.757 0.921 0.228
21 0.611 0.944 0.634 0.896 0.309

70% Pruning, Np ¼ 274 780
84 0.816 0.950 0.787 0.928 0.187
79 0.835 0.934 0.772 0.920 0.204
90 0.838 0.947 0.795 0.930 0.193
14 0.827 0.946 0.788 0.927 0.215
15 0.801 0.947 0.773 0.923 0.224
37 0.654 0.957 0.687 0.910 0.258
42 0.682 0.951 0.704 0.907 0.269
77 0.008 1.000 0.015 0.820 0.455

90% Pruning, Np ¼ 91 593
81 0.839 0.939 0.780 0.923 0.207
91 0.831 0.942 0.780 0.923 0.218
99 0.831 0.942 0.780 0.923 0.224
10 0.831 0.937 0.775 0.920 0.231
27 0.795 0.941 0.761 0.918 0.239
93 0.620 0.933 0.639 0.888 0.325
70 0.573 0.952 0.627 0.894 0.305
92 0.000 1.000 0.000 0.818 0.482



Table 7
Cross-entropy loss Lce ±10−3 and statistical metrics (Sensitivity, Specificity, acc±10-3) for the segmentation prediction of different network configurations are presented.
Note that here the number of training examples is the same for all tested pruning ratios. Again remember that the number of adjustable parameters of the unpruned DCCN
amounted to Np ¼ 4 794 754. The rows marked yellow present results obtained with networks where the condition Ntr ≥ Np held.

Ntr Sensitivity Specificity DiceCo acc Lce Sensitivity Specificity DiceCo acc Lce

0% Pruning, Np ¼ 915 934 50% Pruning, Np ¼ 824 341
2 397 377 0.846 0.940 0.792 0.923 0.384 0.838 0.941 0.787 0.922 0.385
479 475 0.823 0.951 0.796 0.928 0.382 0.848 0.939 0.791 0.922 0.386
239 738 0.838 0.944 0.795 0.926 0.384 0.827 0.946 0.791 0.924 0.385
47 948 0.818 0.949 0.795 0.927 0.386 0.772 0.941 0.750 0.912 0.394
23 974 0.803 0.947 0.783 0.923 0.387 0.756 0.940 0.737 0.909 0.400
4795 0.771 0.951 0.770 0.920 0.396 0.712 0.935 0.695 0.896 0.417

60% Pruning, Np ¼ 366 374 70% Pruning, Np ¼ 274 780
2 397 377 0.859 0.934 0.787 0.920 0.389 0.836 0.935 0.771 0.916 0.389
479 475 0.814 0.946 0.783 0.923 0.387 0.833 0.938 0.779 0.920 0.390
239 738 0.824 0.941 0.780 0.919 0.389 0.838 0.838 0.756 0.909 0.394
47 948 0.785 0.937 0.747 0.910 0.401 0.774 0.774 0.729 0.902 0.405
23 974 0.775 0.930 0.729 0.902 0.408 0.757 0.757 0.721 0.901 0.409
4795 0.638 0.948 0.665 0.896 0.421 0.625 0.625 0.649 0.888 0.426

80% Pruning, Np ¼ 183 187 90% Pruning, Np ¼ 91 593
2 397 377 0.843 0.935 0.775 0.918 0.387 0.805 0.948 0.777 0.924 0.386
479 475 0.828 0.933 0.764 0.914 0.392 0.801 0.937 0.755 0.913 0.391
239 738 0.824 0.927 0.754 0.910 0.397 0.774 0.936 0.737 0.908 0.396
47 948 0.762 0.925 0.718 0.900 0.411 0.758 0.923 0.711 0.898 0.410
23 974 0.738 0.925 0.705 0.897 0.416 0.723 0.920 0.686 0.890 0.421
4795 0.622 0.938 0.639 0.889 0.426 0.675 0.921 0.654 0.882 0.432
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for both network architectures with identical numbers of training exam-
ples. All results are collected in Table 6 and Table 7, respectively. Note
that here the numberNtr of training examples corresponds to a fraction r de-
duced from the number of adjustable parameters Np of the original, un-
pruned network. The number of predicted cells for different pruning
Fig. 7. Test accuracy and Dice coefficient for neural network configurations resulting f
variable number of training examples.
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ratios δ and number of training examples Ntr is illustrated in case of the
DCNN architecture in Fig. 7 (See Fig. 8).

Let us first consider the simpler DCNN architecture. The results showed
that up to a pruning ratio of 50%, both accuracy and Dice coefficient re-
mained rather insensitive to the actual network complexity at the maximal
rom different pruning ratios. Each configuration was trained with an identical but



Fig. 8. Test accuracy and Dice coefficient for neural network DCCN configurations resulting from different pruning ratios. Each configuration was trained with an identical
but variable number of training examples.

Fig. 9.Qualitative illustration of the predictions of different network configurations
in dependence on the number of training examples and pruning ratios.
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number of training samples Ntr = max. While the accuracy remained
constant in this range, the observed reduction of the Dice coefficient
amounted to 1.5%. Only for pruning ratios above 50%, both metrics de-
clinedmore strongly, with the Dice coefficient responding earlier and stron-
ger. Thus, we observed a decrease of the Dice coefficient by 3%, while the
accuracy dropped by only 1% for δ= 0→ 0.9 at Ntr = max. In case of the
minimal number of training samples Ntr = min, the Dice coefficient
dropped to zero at δ = 0.9, however, while the accuracy was reduced by
9%. For less strongly pruned networks, i.e. δ=0→ 0.5, the Dice coefficient
dropped by 6% while the accuracy remained constant. In general, the
higher the number of training examples, the higher the prediction accuracy.
However, the higher the pruning rate, the lower the accuracy.

For the more complex DCCN architecture, the following observations
could be made: Considering first the situation, where the number of train-
ing samples was maximal (Ntr = max) and the network pruning also
reached its larges value (δ = 0.9), the Dice coefficient dropped by 5%
while the accuracy only decreased by 2% and the cross-entropy objective
raised by 2% as well. If, instead, the number of training samples was mini-
mal (Ntr=min), the corresponding changeswereΔDC(Ntr

min,δ=0.9)=15% ,
Δacc(Ntr

min,δ = 0.9) = 4 % , ΔLCE(Ntr
min,δ = 0.9) = 9%. In case of less

strongly prunedDCCNnetworks and amaximal number of training samples
we gotΔDC(Ntr

max,δ=0.5)=0.6% ,Δacc(Ntr
max,δ=0.5)=1% ,ΔLCE(Ntr

max,
δ = 0.5) = 1%. If, however, the number of training patterns was min-
imal, the corresponding numbers read ΔDC(Ntr

min,δ = 0.5) = 10 % , Δacc
(Ntr

min,δ=0.5)= 3% , ΔLCE(Ntr
min,δ=0.5)= 5%. Hence, given a maximal

number of training samples, strong network pruning had only a minor ef-
fect on the performance metrics, which was even less pronounced in case
of less strongly pruned networks. There all changes did not exceed 1%.
But the effects were much stronger, if the number of training patterns was
minimal. In Fig. 9, the predictions of different networks are illustrated.
The x-axis corresponds to the number of training samples and the y-axis
10
to the pruning ratio. The test accuracy for all neural network configurations
are summarized in Fig. 10.

Analysis of computational parameters

The pruning of networks lead to a decrease in average inference time
〈tinf(δ)〉 and to a decrease in disk space V DS(see Table 8). This was verified



Fig. 10. Color-coded test accuracy acc for neural network configurations resulting
from different pruning rates and concomitant number of training data sample
points. The accuracy is color coded according to the color bar on the right.
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by predicting 100 samples and taking the average of the single inference
time values. For pruning ratios δ = 0.5,0.9, inference times were reduced
to tinf(δ = 0.5) ≈ 0.5tinf(delta = 0) and tinf(0.9) ≈ 0.24tinf(0), respectively
for both network architectures. Similarly disk space could be reduced in
case of a DCNN architecture to 46% and 9% and for a DCCN architecture
to 24% and 2%, for pruning ratios of δ=0.5 and δ=0.9. The experiments
were performed on a GPU (GeForce GTX 1070 with total memory of 31.25
GB and 8GB RAM).

Discussion

The main goal of this work was to reduce network complexity with a
concomitant reduction in the number of necessary training examples. Net-
work optimization was driven by cross-entropy minimization, yielding a
standard error as small as sce = 3 ⋅ 10−3 in case of a DCNN architecture
and sce=1 ⋅ 10−3 in case of themore complexDCCNarchitecture. Network
predictions were evaluated employing standard statistical metrics like pre-
diction accuracy on a test set, true-positive rate and true-negative rate. The
focus thus was on the dependence of proper evaluationmetrics on the num-
ber of adjustable parameters of the considered deep neural network. First,
given a DCNN architecture with its concomitant number of adjustable pa-
rameters, the variance of the prediction accuracy was analyzed. With a
standard error for the accuracy of sacc=9 ⋅ 10−4, the uncertainty of the re-
sults is comparatively low. Next, the number of trainable parameters of the
DCNN architecture was reduced by pruning a certain amount of weights in
the network. For these parsimonious networks with reduced complexity of
the weight connectivity, the training sample size was reduced by scaling
down the number of training examples by a factor r, which multiplies the
number of adjustable parameters of the considered DCNN. Again perfor-
mance was evaluated by estimating both the standard error of the accuracy
sacc and of the cross entropy sce.

The predictions of different DCNN network configurations are illus-
trated in Fig. 9. As expected, the unpruned DCNN neural network showed
best performance. This network with the highest complexity, hence the
Table 8
Compute time and disk space for different pruning ratios δ.
δ 0 0.10 0.20 0.30

VDS in KB (DCNN) 3586 3172 2822 2376
VDS in KB (DCCN) 19 147 15 766 12 602 9805
〈tinf〉 in ms (DCNN) 7.6 6.1 5.4 5.9
〈tinf〉 in ms (DCCN) 47.6 43.1 40.6 35.2
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largest number of training examples Ntr, corresponding to r= 1, achieved,
within the estimated standard error of the optimized cross-entropy loss,
best results, which roughly persisted up to 40% pruning. Despite the rather
small standard error sacc, it appears that this observation holds across all
reduction factors r, i.e. across a rather large range of training sample sizes
Ntr. Remarkably, even with a pruning rate of 90%, δ = 0.9, the achieved
test accuracy amounted to 98% of the accuracy of the unpruned network.
Evenmore astonishing, if for this network the number of training examples
is reduced by a factor of r=0.01 toNtr=9159, the trained network (acc=
0.905) still reached 98% of the maximum achievable accuracy (acc =
0.922). Again, this accuracy was achieved on the independent test set,
hence overfitting was not an issue here despite the fact that this network
had 10 times more adjustable parameters than training examples.

But with further decreasing numbers of training examples, correspond-
ing to reduction factors lower than r < 0.01, no good results could be
achieved for any network configuration and number of training examples.
Taken the other way round, a remarkably high accuracy remained even
when the training sample size was reduced by a factor of 100, correspond-
ing to r=0.01 for networks with pruning ratios δ≤ 0.5. Only then predic-
tion accuracy degraded rapidly, especially for pruning ratios δ ≥ 0.5. The
same was true for the other metric, the Dice coefficient (DC) and was also
reflected in an increasing minimal cross-entropy (ce) loss. The additional
metrics sensitivity (se) and specificity (sp) provided an even more detailed
picture. Sensitivity measured howmany of the pixels belonging to class cell
were correctly predicted, while specificity measured the percentage of cor-
rectly assigned background pixels. Remarkably, the specificity or true-
negative rate (TNR) was rather high and remained so across all pruning
rates. On the contrary, the sensitivity or true-positive rate (TPR) was
smaller and decreased further with increasing pruning rate. Furthermore,
sensitivity showed a much stronger dependence on the number of training
examples and decreased considerably with decreasing Ntr. Note that a high
sensitivity indicates that a large number of all pixels belonging to a specific
class was classified correctly. Also a high specificity indicates that a large
number of pixels not belonging to a specific class were correctly classified
accordingly. Fig. 10 provides a qualitative illustration of the accuracy
when the number of adjustable parameters and/or the number of training
examples changed. As long as the number of model parameters matched
the number of training examples, accuracy was generally very high (acc >
90%). But even in case of an insufficient number of training examples,
the test accuracy remained amazingly high. As this concerns the previously
unseen test data set, overfitting can be safely excluded.

Considering networks of various complexities, i.e. different pruning
ratios δ, the latter were also trained by a fixed but variable number of
training examples. The latter was deduced from the number of adjust-
able parameters of the unpruned network by applying the reduction fac-
tor r. If considered as a function of the number of training examples, a
common observation is that as along as Np ≤ Ntr holds, all metrics eval-
uated remained largely insensitive toNtr (These values aremarked with a
yellow background in Table 6). But if Ntr < Np is met, then some metrics
like the sensitivity or the cross-entropy quickly degraded strongly with
decreasing Ntr for all network configurations considered, while others
like the specificity, Dice coefficient or the accuracy remained still pretty
insensitive to the number of stimuli. Remember that the specificity rep-
resented the proportion of the non-cell pixels, and the sensitivity the pro-
portion of cell pixels, that were correctly classified. The following
Table 9 provides a comprehensive summary to the detailed results pre-
sented in Table 6.
0.40 0.50 0.60 0.70 0.80 0.90

1996 1634 1282 947 623 315
7356 5058 3423 2079 1096 467
5.2 3.9 3.3 2.8 2.2 1.8
31.9 22.3 18.5 16.3 11.1 9.8



Table 9
Comprehensive summary of the results obtained with fixed numbers of training
examples and a DCNN architecture.

δ 0 0.5 0.9

r 0.001 0.01 0.01 0.01
SE 82% 95% 93% 0%
SP 98% 99% 100% 100%
ACC 96% 99% 99% 89%
DSC 84% 96% 96% 0%
CE 174% 125% 127% 233%

Table 10
Comprehensive summary of the percentage changes of the performance metrics
obtained with fixed numbers of training examples and a DCCN architecture.

δ 0 0.5 0.9

SE 6% 16% 16%
SP 0% 0.4% 2%
ACC 1% 3% 3.4%
DSC 3% 12% 13%
CE 3.6% 8% 10%
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For example, given a pruning ratio δ = 0.9, corresponding to the least
complex network architecture, and a number Ntr = 0.5Np of stimuli, the
specificity (SP) was unchanged, the Dice coefficient (DSC) still achieved
97.6% and the accuracy (ACC) amounted to 99.5% of the values prevailing
at Ntr > Np. At the same time, the sensitivity (SE) declined to 95% and the
cross entropy (CE) increased to 115.5%. Evenworse, atNtr=0.01Npweob-
served an unchanged specificity, an accuracy that still reached 88.6% of its
original value, while sensitivity and Dice coefficient vanished and the cross
entropy raised to 233% of its starting value. To the contrary, in case of the
most complex, unpruned DCNN network, when reducing the number of
stimuli by a factor of 103, we rather observed a sensitivity that reached
only 82% of its starting value, a specificity of still 98% of its value, when
Ntr was abundant, an accuracy of 96% of its best value, a Dice coefficient
of only 84% of its starting value and a cross-entropy objective, which raised
to 174% of its value with an abundant number of training examples. For an
intermediate complexity with a pruning ratio of 50%, we observed an un-
changed specificity, a slightly reduced sensitivity (Se ¼ 92:7%), a hardly
reduced accuracy acc = 99%, a still respectable Dice coefficient of
DSC ¼ 95:8% but an already considerably increased cross entropy
CE ¼ 126:7%. Still these metrics indicate that even with a considerably re-
duced network complexity and a rather small number of stimuli a good clas-
sification performance can be achieved.

A similar picture results in case of the more complex DCCN architecture
as can be seen from Table 10, where percentage changes of all metrics are
presented. The changes relate to a decrease of the number of training sam-
ples fromNtr

max toNtr
minwith all other variables kept constant.While themet-

rics accuracy ACC and specificity SP remain largely unchanged by a
variation of the number of training samples, irrespective of the state of net-
work pruning, sensitivity SE, Dice - Sørensen coeficient DSC and cross-
entropy loss CE respond much more strongly. The changes even increase
in case of parsimonious networks with a maximal pruning applied to the
network weights.

In Table 8, the inference time for the DCNN and DCCN for different
pruning rates are summarized. Increasing pruning rates could decrease
the inference time and the disk space. For the DCNN the inference time
was reduced by 77% between no and 90% pruning, for the DCCN the reduc-
tion was 79%. Also the disc space could be reduced by 92% for the DCNN
and by 98% for the DCCN.

Conclusion

This study focused on the question, how the number of training exam-
ples controlled the performance of a DCNNof given complexity, i.e. number
12
of adjustable parameters. This is especially relevant in many biomedical
problem settings, where the number of training stimuli is limited compared
with the number of degrees of freedom of the deep neural network used to
analyze the data. Network complexity was reduced by weight pruning, and
the number of training examples Ntr was deduced from the number of de-
grees of freedom Np of these pruned networks. Two different scenarios
where explored: First Ntr(δ) was deduced from Np(δ) of the pruned DCNN
by a reduction factor 0:001 ≤ r ≤ 1. Here, δ denoted the pruning ratio.
Second Ntr was estimated from Np of the unpruned DCNN by the same re-
duction factors. While in the first scenario Np ≥ Ntr, we always considered
an oversized network configuration, in the second scenario for a certain
range of pruning ratios δ the condition Np(δ) ≤ Ntr held, while for larger
δ the condition changed to Np(δ) ≥ Ntr. Network performance was evalu-
ated with a set of statistical metrics which showed that up to δ≤ 0.5, clas-
sification performance was hardly hampered, while for larger pruning
ratios some statistical metrics degraded noticeably. The conclusion is that
Ntr ≥ Np is not a necessary condition and that oversized networks often
achieve an equally good classification performance. Finally, remember
that at a pruning ratio δ = 0.5, where all evaluation metrics still achieved
respectable values, average inference time was halved and the used disk
space shrank to half of its size needed for the unpruned network. This
may be of concern, if such evaluations have to be performed on edge de-
vices.
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