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In recent years, nano-impact electrochemistry (NIE) has attracted widespread attention as
a new electroanalytical approach for the analysis and characterization of single
nanoparticles in solution. The accurate analysis of the large volume of the experimental
data is of great significance in improving the reliability of this method. Unfortunately, the
commonly used data analysis approaches, mainly based on manual processing, are often
time-consuming and subjective. Herein, we propose a spike detection algorithm for
automatically processing the data from the direct oxidation of sliver nanoparticles
(AgNPs) in NIE experiments, including baseline extraction, spike identification and
spike area integration. The resulting size distribution of AgNPs is found to agree very
well with that from transmission electron microscopy (TEM), showing that the current
algorithm is promising for automated analysis of NIE data with high efficiency and
accuracy.
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INTRODUCTION

Nano-impact electrochemistry (NIE) is a recently developed electroanalytical tool of significant
importance that enables the analysis and characterization of single nanoparticles in aqueous solution
(Sokolov et al., 2017). In this method, single nanoparticles including but not limited to inorganic
nanoparticles (Dasari et al., 2013; Tschulik et al., 2013; Ngamchuea et al., 2017; Zampardi et al., 2017;
Li et al., 2018; Peng et al., 2018; Xu et al., 2018), organic nanoparticles (Cheng et al., 2014; Kim et al.,
2015; Feng et al., 2016), functional materials (Patrice et al., 2018; Pendergast et al., 2021), and
liposomes (Dunevall et al., 2015; Cheng and Compton, 2016; Liu et al., 2018; Lebègue et al., 2020),
can stochastically impact on the surface of a microelectrode from Brownian motion. The collision
entities are further extended to biospecies, such as enzymes (Lin et al., 2017; Wang et al., 2021), cells
(Dick, 2016; Gooding, 2016; Lee et al., 2020), bacterium (Lee et al., 2016; Gao et al., 2018; Chen et al.,
2021), and viruses (Sepunaru et al., 2016). During the impact of the single entities to the electrode,
electrochemical reactions will take place, including the direct electrolysis of the entities themselves
(Zhou et al., 2012a; Zhou et al., 2012b), the electrocatalytic reactions occurring on the surfaces of the
entities (Patrice et al., 2018; Xiang et al., 2018; Du et al., 2020),and diffusion blocking of the
electroactive species by electrochemically inert entities (Dick et al., 2015; Lee et al., 2019).

The direct electrolysis of nanoparticles was first proposed by the Compton Group in 2011, where
single silver nanoparticles (AgNPs) were directly oxidized when colliding to the surface of a carbon
fiber microelectrode potentiostatted at an oxidative potential sufficient to oxidize silver (Zhou et al.,
2011). In the current-time trace, a spike was referred to a single oxidation event corresponding to
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AgNPs impact. Assuming that the AgNPs are completely
oxidized, the size of single nanoparticles can be obtained by
integrating the charge passed per spike based on the Faraday’s
Law. Such analytical method was named as anodic particle
coulometry (APC), and was extended to the detection and
characterization of Au (Zhou et al., 2012b), Ni (Zhou et al.,
2013), and Cu (Haddou et al., 2012) nanoparticles. APC was also
used to study the aggregation of metal nanoparticles in aqueous
solution (Rees et al., 2011; Sokolov et al., 2015) and determine the
concentration of nanoparticles (Stuart et al., 2012). Compared to
the conventional characterization techniques, such as electron
microscopy and dynamic light scattering (DLS), APC allows in-
situ detection with simplicity, fast response and high throughput.
Due to easy engineering and functionalization of the metal
nanoparticles, they can be used as electroactive probes for the
detection of a variety of biomolecules and bioentities, including
proteins (Kirk et al., 2021; Zhang et al., 2021), bacterium
(Sepunaru et al., 2015) and viruses (Sepunaru et al., 2016).
Since APC based sensors can analyze individual entities, they
allow sensitive analysis of the targets, precise counting of
bioentities, and better understanding of biological heterogeneity.

APC based single entity analysis, whether it is a
nanoparticle, a bacterial or a cell, all relies on the
quantification of the spikes on the current-time traces.
Therefore, the accurate recognition and analysis of these
spikes play a vital role in improving the reliability of this
method. Due to the large data volume and the relatively high
background noise compared to the signals (Ma et al., 2017), the
commonly used data analysis software products (such as
Origin) which require manual processing on the data, are
not only time-consuming, but also introduce operator bias
to the analysis. Therefore, it is highly desirable to develop
automated method for rapid and accurate data processing of
APC based analysis. Herein, we demonstrate a spike detection
algorithm based on moving average filter and threshold
method for automated analysis of APC (Figure 1), enabling

fast and accurate processing of a large quantity of data. The
current algorithm may provide opportunities for applying NIE
into high-throughput sensing applications.

MATERIALS AND METHODS

Chemicals
Silver nitrate, trisodium citrate dehydrate and sodium
borohydride were purchased from Sigma Aldrich. Potassium
chloride was obtained from Tianjin Guangfu Fine Chemical
Research Institute. All solutions were made by using ultrapure
water of resistivity ≥18.2 MΩ (Millipore).

AgNPs Synthesis and Characterization
Citrate-capped AgNPs were synthesized by seed-mediate growth
method according to the previous literature (Wan et al., 2013).
Briefly, 20 ml of 1% (w/v) citrate solution and 75 ml of water were
mixed in a flask and then heated to 70°C for 15 min. Next, 1.7 ml
of 1% (w/v) AgNO3 solution was introduced to the flask,
following the addition of 2 ml of 0.1% (w/v) newly prepared
NaBH4 solution. The mixture was continuously heated at 70°C
with vigorous stirring for 1 h and cooled to room temperature,
which was then diluted with water to 100 ml and used as starter
seeds. Afterward, 2 ml of 1% citrate solution was added to 80 ml
of water in another clean flask and was heated until it was kept
boiling for 15 min. Subsequently, 10 ml of the starter seeds
solution was introduced in the flask while vigorous stirring,
followed by the addition of 1.7 ml of 1% AgNO3 solution. The
mixture in the flask was kept boiling under stirring before reflux
condensation was performed for 1 h. Finally, it was allowed to
cool to the room temperature and ready for use.

Instrumentation
The morphology of AgNPs was characterized by transmission
electron microscopy (TEM, JEOL-2010, Japan) supported on a
copper film.

Nano-Impact Electrochemistry
The electrochemical experiments were carried out at room
temperature in a three-electrode cell within a double Faraday
cage. A carbon fiber microelectrode of 7 μm diameter (ALS Co.
Ltd, Japan) was used as a working electrode. Aplatinum wire
(XianRen Co. Ltd, Shanghai, China) and a saturated calomel
electrode (SCE) (XianRen Co. Ltd, Shanghai, China) were used as
a counter electrode and a reference electrode, respectively. The
electrochemical measurements were performed on an Autolab
PGSTAT 302N from Metrohm-Autolab (BV, Utrecht,
Netherlands), fitted with an extremely low-noise (ECD)
module to reduce background noise. The sampling rate was
435 Hz (2.3 ms), the current range was set as 0–100 pA, and
the default bandwidth (below 100 Hz) was used under such
selected current range.

Data Analysis
The data was processed using a script written by MATLAB
R2020a software under Windows 10 with 2.4 GHz Intel Core

FIGURE 1 | Scheme of the spike detection algorithm for automated data
processing of AgNP oxidation in nano-impact electrochemistry. The diagram
illustrates the direct oxidation of a AgNP during the impact to the surface of a
carbon microelectrode (CME) and the corresponding oxidative spike.
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i5 processors. The amount of data points and spikes being
processed were 130,435 and 1,574, respectively, under the
selected threshold. By using the function of tic and toc in
MATLAB, the time cost for data processing is 15 ± 2 s.

RESULTS AND DISCUSSION

We propose a new simple but effective computational method to
detect the current spikes from noisy experimental data. We can
then compute numerically the corresponding charge level,
allowing the quantification of the size of the nanoparticles.
The resulting size distribution from our computation can be
matched with that from TEM. The algorithm mainly consists of
three computational steps, i.e., baseline extraction, spike
identification and spike area integration. The details are
discussed below.

Baseline Extraction
Single AgNPs impact signals were recorded in chronoamperometric
profiles where numerous current transients were indicative of single
AgNPs oxidation events. Due to the relatively low current intensity
produced by single AgNPs, the background noise should be lowered
as much as possible in order to better identify and find the valid
signals. There already exist many attempts that have been dedicated
to improve the signal-to-noise ratio (SNR) of nano-impact
measurements, e.g., using a specialized Faraday cage to shield
outside disturbance (Bunga and Kataky, 2019), fitting an
extremely low-noise module (ECD) into the potentiostat (Bartlett
et al., 2015), or implementing a low-pass filtering system (Batchelor-
McAuley et al., 2015) to reduce the background noise. However, these
methods are not able to fully avoid the interference of the noise,
especially in the measurements where small sizes of nanoparticles are
analyzed. In addition, the use of low-pass filtering system would very
probably cause a distortion to the original signals (Kätelhön et al.,
2016; Kanokkanchana et al., 2018).

In order to obtain the electrochemical information of interest
from a large number of impact signals, it is necessary to identify
these spikes from a noisy background. In the first step, the
baseline was extracted by a moving average filter (Gu et al.,
2015; Xu et al., 2021), which can minimize the interference of
high-frequency noises. As shown in Eq. 1, a moving average of
order m can be written as:

S1(t) � 1
m

∑
j�k

j�−k
S0(t + j) (1)

where m � 2k+1, is also known as the length of the averaging
window. S0(t) is the measured current value at time t, whereas
S1(t) denotes the baseline signal. For those values at the beginning
and at the end, k is usually set as the number of available points,
i.e., k � 0 for t � 0, k � 1 for t � 1, etc.

Spike Identification
Generally, each spike is composed of a cluster of data points above
the baseline. Therefore, to find out all the data points that make
up a spike is crucial to statistically analyze the area of spikes. In

order to better identify current spikes and fit their shapes, our
algorithm scans throughout all the data points in the whole
current-time trace. As Eq. 2 puts, the top part of spike is
determined from the first data point where the corresponding
current value is greater than a threshold, to the point when the
next point value is below the threshold. Since there have been no
criteria to clearly define valid signals from background for NIE,
we exploit the dispersion property of the data, and assume a large
deviation from the mean, or in this case our baseline, would infer
that a spike is likely in place. In practice, we use several standard
deviations to quantify the dispersion (Pedone et al., 2009;
Forstater et al., 2016). A detailed discussion of the procedure
is shown in Supplementary Material,

S2(t) � S0(t), S0(t) − S1(t)≥ v (2)

where S2(t) is the top part of spike value, and v is the threshold.
As the defined threshold is commonly large enough to avoid the

influence of the noise fluctuations, those data points belonging to the
real spikes between the threshold and the baseline are very likely to
be missed. The missing data points at the two edges of the spike will
lead to a deviation from the original spike shape due to the incorrect
recognition of the starting and the stopping point of the spike. As a
consequence, a negative error would be induced in the spike
integration, resulting in unreliable calculation of the charge
transferred in single impact events. To restore the shape of the
spike as much as possible, the data points near the threshold should
be reevaluated. According to Figure 2A, any data points below the
top part of the spike but above the baseline are treated as data points
of the spike. Regardless the threshold, a reliable baseline can serve as
an ultimate criterion to restore the spike shape. This process is
implemented by MATLAB software as shown in Figure 2B.

It was reported that single AgNPs might undergo a dynamic
multiple impact events on a microelectrode surface, resulting in
irregular spike clusters (Oja et al., 2017; Ustarroz et al., 2017; Ma
et al., 2020). With regard to this, our method sets up a rule to deal
with these spike clusters. As shown in Figure 3, if the troughs of a
cluster of spikes are above the baseline, the spike clusters are
considered to be resulted from multiple impact events of a single
AgNP. If not, we treat them as individual spikes resulting from
multiple single AgNPs.

Spike Area Integration
Accurate recognition of all the spike points to preserve the original
features of the spike shape is the key to calculate spike area accurately.
To perform definite integration of the known data points that lacks a
functional expression, trapezoidal numerical integration can be
adopted (Eq. 3), where the spike points are integrated within the
duration from the starting point to the stopping point,

∫tb

ta
S2(t)dt � tb − ta

2N
∑

t�tb−ΔT

t�ta
(S2(t) + S2(t + ΔT)) (3)

where ta and tb are time coordinates of the starting point and the
stopping point of a spike,N is the number of the spike points, and
ΔT is the sampling interval. In this way, the individual spike area
can be obtained, which is corresponding to the charge passed per
oxidative spike.
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Automated Data Processing for AgNPs
Oxidation in Impact Studies
To validate the aforementioned algorithm, it was applied to the
automated data processing of the oxidation of AgNPs in nano-impact
studies. The nano-impact experiments were carried out in a solution
of 10mM KCl containing 600 pM dispersed AgNPs, with a carbon
fiber microelectrode potentiostatted under 0.6 V (SCE). In such
experimental conditions, AgNPs were considered to be completely
oxidized according to previous reports (Zhou et al., 2011; Ustarroz
et al., 2017). The obtained chronoamperometric profile was shown in
Figure 4A, where a large number of oxidative current spikes were
recorded (red line), while no spikes were observed when AgNPs were
absent in the electrolyte (black line), indicating that AgNPs impacts
are the source of the oxidative spikes. Using Eq. 3, the charge passed
per individual spike was obtained, which can then be correlated with
the radius of the AgNPs assuming that the nanoparticles are spherical
according to Eq. 4 (Zhou et al., 2011),

Q � 4πnρFr3

3Ar
(4)

where r is the radius of the nanoparticle, Ar is the molar mass, F is
the Faraday constant, n is the number of electrons transferred per
atom in the nanoparticle, and ρ is the density of the nanoparticle.

The corresponding size distribution ofAgNPs was shown in
Figure 4B, exhibiting a mean diameter of 20.1 ± 4.9 nm. Next,
AgNPs were characterized by TEM (Figure 4C), which yields a
size distribution of AgNPs (Figure 4D) determined by Nano
Measurer software, with a mean diameter of 20.3 ± 4.8 nm. It is
clear that the size from the automated data processing agrees very
well with the TEM characterization, suggesting that our
algorithm is able to reliably analyze the oxidative signals of
AgNPs obtained in nano-impact experiments.

CONCLUSION

Efficient and reliable data analysis in NIE is challenging due to
the large data volume and the interference from the
background noise. Here, we propose an automated data
processing method named spike detection algorithm,
including baseline extraction based on moving average
filter, spike identification via the recognition of each of
spike points by setting thresholds, and spike area
integration using trapezoidal numerical integration. Using
NIE of direct AgNPs oxidation as a model, the feasibility of
the current algorithm is successfully verified, demonstrating
that it is able to provide high level of accuracy and efficiency in

FIGURE 2 | Baseline extraction and spike identification (A) Region of an identified single current spike. The blue and pink dashed lines represent the baseline and the
defined threshold, respectively. The dots represent the experimental data points, with the discrete measurement points of a spike shown in red (B) Illustration of data
processing on current-time trace usingMATLAB. The blue line is the rawbackground noise and the pink line is a combination of baseline and spikes signals after computation.

FIGURE 3 | Rule to identify single and multiple AgNP impact (A) Troughs of a cluster of spikes above the baseline indicate that the spike clusters are from multiple
impact events of a single AgNP (B) Troughs of a cluster of spikes below the baseline indicate that the spike clusters are individual spikes from multiple single AgNPs.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7180004

Zhao and Zhou Data Processing for Nano-Impact Electrochemistry

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


processing NIE data and to push forward the current manual
fitting into the stage of automatic data processing. This
method may provide opportunities for applying NIE into
high-throughput sensing applications.
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