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Abstract

Motivation: Best performing named entity recognition (NER) methods for biomedical literature are

based on hand-crafted features or task-specific rules, which are costly to produce and difficult to

generalize to other corpora. End-to-end neural networks achieve state-of-the-art performance with-

out hand-crafted features and task-specific knowledge in non-biomedical NER tasks. However, in

the biomedical domain, using the same architecture does not yield competitive performance com-

pared with conventional machine learning models.

Results: We propose a novel end-to-end deep learning approach for biomedical NER tasks that lev-

erages the local contexts based on n-gram character and word embeddings via Convolutional

Neural Network (CNN). We call this approach GRAM-CNN. To automatically label a word, this

method uses the local information around a word. Therefore, the GRAM-CNN method does not

require any specific knowledge or feature engineering and can be theoretically applied to a wide

range of existing NER problems. The GRAM-CNN approach was evaluated on three well-known

biomedical datasets containing different BioNER entities. It obtained an F1-score of 87.26% on the

Biocreative II dataset, 87.26% on the NCBI dataset and 72.57% on the JNLPBA dataset. Those

results put GRAM-CNN in the lead of the biological NER methods. To the best of our knowledge,

we are the first to apply CNN based structures to BioNER problems.

Availability and implementation: The GRAM-CNN source code, datasets and pre-trained model

are available online at: https://github.com/valdersoul/GRAM-CNN.

Contact: andyli@ece.ufl.edu or aconesa@ufl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Named entity recognition (NER) is one of the first steps in the proc-

essing natural language texts. This task is aimed at identifying men-

tions of entities (e.g. persons, organizations and locations) in

documents. In the biomedical domain, BioNER aims at automatically

recognizing entities such as genes, proteins, diseases and species.

BioNER is considered more difficult than the general NER prob-

lem, because:
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1. Millions of entities have been discovered, and the number is con-

stantly increasing with the sequencing of new species.

2. The same biological entity can be described in different ways

(Kim et al., 2004).

3. The names of many biomedical entities are typically long (i.e.

containing more than four words) (Zhou et al., 2004).

4. Long sequences are usual in biomedical text.

There are several kinds of methods applied to extract named

entities from biological texts. These include dictionary-based

(Hirschman et al., 2002), rule-based (Ananiadou, 1994), machine

learning based (Collier et al., 2000) and deep learning approaches

(Limsopatham and Collier, 2016).

Dictionary-based approaches (Hirschman et al., 2002) are lim-

ited by the size of the dictionary, misspellings, the use of synonyms

and the constant increase of vocabulary. Rule-based approaches

(Ananiadou, 1994; Tsai et al., 2006), use common naming struc-

tures or morpho-syntactic features. These methods require extensive

domain knowledge in order to develop rules, which are then not

easily applicable to other domains. Machine learning-based methods

suppose the initial definition of the features of interest. The most

effective machine learning approaches applied to the NER problem

are conditional random field approaches (CRF). The performance of

CRF models rely heavily on the features, for example, orthographic,

morphological, linguistic-based, conjunctions and dictionary-based.

Those features are generally developed by experts, implying that

they are task-specific and costly to develop. In this group of meth-

ods, we can cite ABNER (Settles, 2005), BANNER (Leaman et al.,

2008) and Gimli (Campos et al., 2013).

Deep learning demonstrates state-of-the-art performance in many

areas (LeCun et al., 2015) including speech recognition (Hinton et al.,

2012), image classification (He et al., 2016), image segmentation (Li

et al., 2016), part-of-speech (POS) tagging (Ma and Hovy, 2016) and

NER (Lample et al., 2016; Ma and Hovy, 2016). Fully connected

neural network is used (Collobert et al., 2011) to effectively identify

entities in a newswire corpus. The application of character and word

embeddings in Bi-directional Long Short-Term Memory (LSTM)

(Lample et al., 2016; Ma and Hovy, 2016) achieved state-of-the-art

performance in several sequence-to-sequence datasets, such as

CoNLL03 (Tjong Kim Sang and De Meulder, 2003) for NER and

Penn Treebank WSJ (Marcus et al., 1993) for POS tagging.

Nevertheless, deep learning methods typically require a large amount

of labeled data for supervised learning and take more time and com-

puting resources to train than the classical machine learning methods.

Despite the good performance of the deep learning methods in

many areas, the application of Bi-directional LSTM to the bioNER

problem did not obtain as good results as conventional machine

learning approaches (Limsopatham and Collier, 2016). Bi-directional

LSTM uses the information contained in whole sentences. We

hypothesized that long sentences could contain information unrelated

with the target entities, and hence, in domains with long sentences,

such as the biomedical literature, the utilization of local information

rather than whole sentences may help improve precision.

Inspired in the inception model by (Szegedy et al., 2015), we pro-

pose a novel neural network architecture to capture local information

around each word in biomedical texts via Convolutional Nueral

Network (CNN). To add some linguistic knowledge into our model,

we also use POS tags as part of the input. This approach uses multiple

n-gram features with different sizes together with its POS tag to cap-

ture each word’s environment. Our method, called GRAM-CNN, is

an end-to-end model requiring no task-specific resources or hand-

crafted features. Details on CNN can be found in subsection 2.1.1.

The GRAM-CNN approach was evaluated on three biomedical

datasets, Biocreative II (BC2) (Smith et al., 2008), NCBI disease cor-

pus (NCBI) (Do�gan et al., 2014) and the JNLPBA task (Kim et al.,

2004). It obtained an F1-score of 87.26% for BC2, 72.57% for

JNLPBA and 87.26% for NCBI, always ranking among the top 2

best-performing methods. These results reveal that local information

can efficiently predict the label of words and demonstrate that

GRAM-CNN is a versatile approach that can theoretically be

applied to wide range of BioNER tasks.

2 Materials and methods

Consider the following sentence from the BC2 dataset: ‘STUDY

DESIGN: Salivary immunoglobulin A levels of each of 20 subjects

were determined on 3 occasions: first, while the subject was still

smoking; second, 7 days after cessation of smoking; third, on the

14th day after cessation’. In this sentence, the information about the

study design (number of subjects and time points) is not relevant to

understand that Salivary Immunoglobulin A is a protein. However,

the words ‘levels of each of 20 subjects’, surrounding ‘Salivary

Immunoglobulin A’, contain the term level that can successfully be

used to tag Salivary Immunoglobulin A as a protein. Our approach

focusses on this local context to better extract relevant information

for the classification problem. We apply several convolutional ker-

nel sizes (i.e. number of words around the target entity) to focus on

the local context at multiple scales.

2.1 The GRAM-CNN method
The main steps of the GRAM-CNN method are as follows (Fig. 1):

1. Generate the word, POS tag and character embeddings.

2. Concatenate the character embeddings of each letter of a word

with its word embedding and POS tag embedding.

3. Extract each word’s local features by GRAM-CNN with several

kernel sizes as the final representation of each word (vector of

CNN features) (see Fig. 3 for an example of kernel size 3).

4. Apply CRF to model labels jointly based on the output of

GRAM-CNN.

In this section, the GRAM-CNN architecture is described in

detail following the order from inputs to outputs, layer by layer.

Fig. 1. Overall scheme of the GRAM-CNN approach. First, we apply the POS

tag (diamonds on the left), word (diamonds in the middle) and character (dia-

monds on the right) embedding and concatenate all embeddings into a com-

bined vector (the 3 squares). Second, we feed the concatenated vector into

the GRAM-CNN to retrieve the local context information. Finally, we model

the predicted labels using CRF to get the final result. In this example, we use

3 different kernels in GRAM-CNN (1, 3, 5). The ‘B-Gene’, ‘I-Gene’ and ‘I-Gene’

are labels corresponding to ‘A3’, ‘adenosine’ and ‘Receptor’, respectively, in

IOB tagging scheme (Sang and Veenstra, 1999). Further details of CNN-3 are

given in Figure 3
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2.1.1 Embedding

Word embeddings bridge the gap between deep learning and natural

language processing. Through this method, words are represented as

dense vectors of real numbers, and those words that are semantically

related are close in the high dimension space.

We used a pre-trained word embedding from biomedical texts

proposed in 2016 (Chiu et al., 2016) that recovered 87.34% of the

words of the BC2 dataset. For the POS tag embedding, randomly

initialized vectors were used to represent each tag. POS tags are

extracted by the NLTK toolkit (Bird et al., 2009). During training,

we fixed the word embeddings and trained POS tag embedding

together with the whole system.

The word embedding method cannot give a useful representation

of words that are absent from the training vocabulary (out-of-

vocabulary problem). To solve this issue, character level embedding

from words was applied (Kim et al., 2015). The character embed-

ding was implemented with a CNN (Fig. 2).

In this implementation, each character in a word was represented

by a vector of a fixed length d. A word with length l can be repre-

sented by a matrix M¼Rl�d. Each kernel w in CNN is a filter with

shape Rk�d, where k is the kernel size. The kernel size is equal to the

size of a convolutional window across k characters.

Oi ¼ f ðConvðW;Mt:tþk�1Þ þ bÞ: (1)

f is the non-linear activation function (tanh in our experiments) and

b is a bias vector. Conv is the convolution operation. O is the output

vector of one kernel convolution with length l – kþ1. Its max value

is used to represent one kernel’s feature. We used k¼2, 3, 4 and 40

filters for each k. Character embeddings were initialized randomly

and trained with the whole network.

2.1.2 GRAM-CNN

GRAM-CNN is a CNN model allowing to extract local information

between a target word and its neighbors (Fig. 3). The representation

of an input word is a vector concatenating pre-trained word embed-

ding and character embedding. In GRAM-CNN, all convolutional

filters process the same input at the same time, and this allows the

model to take advantage of multi-level feature extractions with dif-

ferent kernel sizes (Szegedy et al., 2015). This architecture is similar

to character embedding mentioned in Section 2.1.1, and the only dif-

ference is the process of feature selection. GRAM-CNN is a

sequence-to-sequence network. Each output of GRAM-CNN corre-

sponds to one input. To achieve this, only the correlated features are

selected of the word, i.e. features directly computed by this word

and its neighbors. In this way, we were able to reduce the noise and

get a better representation of the word.

To extract local information and n-gram features without break-

ing the internal relation between embeddings, we followed

(Collobert et al., 2011) using a filter with shape Rk�ðweþceÞ (k is the

kernel size, we is the length of word embedding and ce is the length

of character embedding). Suppose we are selecting a word indexed

by i in a sentence from feature maps fj convoluted by kernel size j.

Oi ¼ tan hðfj½i� jþ 1 : i�Þ (2)

A max pooling is operated after getting the outputs from

same kernel size j. The outputs of the same word are concatenated

into one vector. This vector is the representation of the word. In this

work, 50 filters were used for each kernel size in GRAM-CNN.

Our goal is to predict a label for every word in the sentence.

GRAM-CNN returns representations of each word. We then

apply a two-layer fully connected network to get the final scores for

each label of the word. These scores are sent to CRF to model the

joint probability of words which will be described in the next

subsection.

2.1.3 CRF

A simple way to label each word is to use its own features to predict

the label independently. This is a fast and effective strategy when

labels are not correlated. However, entity names usually consist of

several words, meaning that labels do have correlations with their

neighborhoods. For example, in the IOB2 annotation (Sang and

Veenstra, 1999), I-protein cannot follow B-gene or an O (outside of

the entity) label. Therefore, it is beneficial to model the labels

jointly. For this, a linear-chain conditional random field (CRF)

(Lafferty et al., 2001) is used.

For an input of a sentence containing n words, let xi denote the

input vector of the ith word in the sentence, get x ¼ fx1; . . . ;xng.
y ¼ fy1; . . . ; yng is the potential sequence labels of x. Y(x) is the set

of all possible label sequences. We used a variant of CRF, which is

factored into unary potentials for single labels and binary potentials

Fig. 2. Diagram of the character embedding architecture. The vector of the let-

ter a is in gray. In this example, CNN is applied with two different kernel sizes:

3 (a,l,k) and 4 (l, k, a,l), resulting in the production of two feature maps (middle

squares). Then, a max pooling is applied to each feature map to get two rep-

resentations of the word (top two squares in the figure). The length of embed-

ding is two because in this example there is only one filter of each kernel size

and two kernel sizes in total

Fig. 3. GRAM-CNN architecture. An example of kernel size 3 (squared) with

an input of 10 words (word and character embedding concatenated) (on the

left). CNN is used to extract information from these vectors. After the CNN

step, a feature map is obtained (length 10� 3þ1¼8 in this example). To

extract the local information for each word, we use the correlated feature

maps obtained partially with each word. A max pooling is applied over these

feature maps, resulting in a vector of size one for each word (on the right).

For example, the feature maps correlated with the word 3 (W3, in gray) are f1,

f2, and f3 and the feature map correlated with W10 is f8
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for every transition between output labels. The score was defined

to be:

sðx; yÞ ¼
Xn

i¼0

Tyi ;yiþ1
þ
Xn

i¼1

Pi;yi
(3)

The first part of the score function is the binary score while the

second is a unitary score. Tyi ;yiþ1
is the matrix of transition scores in

which Ti, j represents the score from tag i to j. y0 and yn are start and

end tags in the sequence that are not part of the output sequence. P

is a matrix with dimensions n� t, where n is the number of words in

the sentence and t is the number of potential tags. Pi;yi
corresponds

to the score of ith word mapping to a specific tag, which is obtained

from our neural network. The softmax function was used to com-

pute the probabilities of all possible sequences.

pðyjxÞ ¼ esðx;yÞ
P

�y2YðxÞ e
sðx;�yÞ (4)

To train the CRF model, the log-likelihood of the probability

was maximized. To predict the sequence label, the sequence that has

the largest probability was selected:

y� ¼ argmax
�y inYðxÞ

sðx; �yÞ (5)

Since the model binary potentials were the only modeled models,

the Viterbi algorithm can solve the optimization problem and get an

optimized result efficiently.

2.2 Implementation details
This section introduces how the network and parameters were

trained. The GRAM-CNN approach, including the CRF layer was

implemented by TensorFlow-v1.0.0 (Abadi et al., 2015) and trained

with one Nvidia Titan X GPU. We use the tokenizer and POS tagger

from NLTK toolkit (Bird et al., 2009) to preprocess each passage.

Except for the pre-trained word embedding, all weights including

character embedding and POS tag embedding were trained together.

For character embedding, we use kernel sizes 2, 3, 4 and 40 filters

for each size. We found that kernel size ranging from 1 to 10 is best

for BC2 and NCBI datasets, while sizes 1 to 12 worked better for

the JNLPBA dataset.

2.2.1 Parameters initialization

We used a pre-trained word embedding from Chiu et al. (2016). For

an unknown word (absent of the word embedding), the word ‘UNK’

was used to represent it, which implies that all unknown words had

the same word embedding.

Character embedding was adopted to distinguish the unknown

words. In order to allow the neural network to use both word and

character embedding instead of focusing on a part of it, dropout

layer (Srivastava et al., 2014) was applied on this concatenated vec-

tor before the vector was input to GRAM-CNN.

For character embedding, 25 dimensions were used to represent

the character with a uniform sample from �
ffiffiffiffiffiffi
3

dim

q
;þ

ffiffiffiffiffiffi
3

dim

qh i
(He

et al., 2015) where dim is the embedding dimension. We used 15

dimensions for POS tag embedding with the same initialization.

Both character and POS tag embedding were trained with the whole

network. Xavier initialization (Glorot and Bengio, 2010) was used

for all the convolutional layers and fully connect layers. All bias vec-

tors were initialized to 0.

The kernel size decides how much local information (how many

words) we take into account. Each kernel size can be seen as taking

n-gram features from words. Different ranges of kernel sizes were

tested to do experiments and compare to each on different datasets.

2.2.2 Optimization method

Parameters in the network were optimized by stochastic gradient

descent (SGD) with momentum 0.9. An initial learning rate of 0.002

with a learning decay¼0.95 was used. The learning rate was

updated every 50 000 steps followed by lr ¼ lr � decayðsteps=decaystepsÞ.

Other sophisticated optimization algorithms such as AdaDelta

(Zeiler, 2012) and Adam (Kingma and Ba, 2014) were also tried.

None of them meaningfully improved on simple SGD using the

momentum settings specified above.

2.2.3 Tagging scheme

NER task is to assign every word in a sentence a label. A single

entity may contain multiple words. IOB2 (Inside, Outside,

Beginning) (Sang and Veenstra, 1999) tagging scheme was used to

tag every word in the sentence. After tokenization, every token

which is a start token of a named entity is labeled as a B-label. An

I-label is assigned to a token if it is inside a named entity. Other

words that do not belong to any named entities are labeled as an O-

label. The word ‘label’ was replaced with the type of the named

entity, for example, B-gene is a beginning token for a gene entity

and I-gene is inside a gene entity.

2.3 Datasets
To evaluate our algorithm, three biomedical NER datasets were

chosen: the BioCreative II Gene Mention task (BC2) (Smith et al.,

2008), the NCBI disease corpus (NCBI) (Do�gan et al., 2014) and the

JNLPBA corpus (Kim et al., 2004).

BC2 is concerned with the named entity extraction of gene and

gene product mentioned in the text. The training and the test data

are independent and composed of 15 000 and 5000 sentences,

respectively. Since BC2 does not provide a development dataset, we

created it with a ratio 3:1.

NCBI consists of 6892 disease mentions from 793 abstracts.

Among those, 5145 are part of the training set, 787 are part of the

development set, and 960 are part of the test set.

The JNLPBA dataset is a multi-entity dataset. It has protein,

DNA, RNA, cell type and cell line, totaling five classes and repre-

senting a challenging scenario. It presents a training set and a test set

of respectively 20 546 and 4260 sentences (51 301 and 8662 bio-

medical tags). The training set was divided with a ratio 3:1 in order

to create the development set.

Training, validation and testing sets present in the NCBI dataset

were used to evaluate these data. As the BC2 and JNLPBA datasets

do not provide a validation set, their training datasets were split at a

ratio 3:1 to created training and validation sets. The GRAM-CNN

method was compared to the others NER methods already pub-

lished and tested on the same data (Table 1).

2.4 Evaluation metrics
To evaluate the performance of the GRAM-CNN method and com-

pare the results to other existing solutions, we used Precision, Recall

and F-measure as experiment metrics:

F1� score ¼ 2 � precision � recall

precisionþ recall
(6)

precision ¼ TP

TPþ FP
(7)
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recall ¼ TP

TPþ FN
(8)

Here TP (True Positive) is the number of entities that are cor-

rectly identified. FP (False Positive) is the number of chunks that are

mistakenly identified as an entity. FN (False Negative) is the number

of entities that are not identified. In BC2 and JNLPBA, the scripts

provided along with the datasets were used to evaluate the perform-

ance. Precision represents the ability of a system to predict only true

items, and recall makes sure that a system can predict all true items.

3 Results

The described GRAM-CNN method was applied to three different

datasets and six different entities. Results were compared with other

deep learning methods and conventional machine learning

approaches.

3.1 BC2
Compared to other deep learning methods (Table 2), GRAM-CNN

increased the previous best F1-score by 6.68%. With an F1-score of

87.26%, it was also the best method among the non-ensemble meth-

ods and ranked second on the BC2 dataset. GRAM-CNN performed

better than the widely used BANNER (Leaman et al., 2008),

ABNER (Settles, 2005), Gimli (Campos et al., 2013) and IBM

(Ando, 2007). Moreover, among the top four methods, GRAM-

CNN is the only one that does not require additional work. The

IBM approach uses semi-supervised learning with additional data;

AIIAGMT (Hsu et al., 2008) ensembles eight different CRF models

with two different CRF frameworks; and Gimli is an ensemble of

several models. The GRAM-CNN neural network approach, end-

to-end without ensemble and gazetteers, obtained a result of high

quality without any additional data.

3.2 NCBI
The results obtained from the NCBI dataset are summarized in

Table 2. DNorm (Leaman et al., 2013) uses supervised semantic

indexing, trained with pairwise learning to rank, then uses a CRF to

return the score. TaggerOne (Leaman and Lu, 2016) was proposed

recently, as it simultaneously performs NER and normalization and

achieves an F1-score 82.9%. Deep learning methods play a leading

role in the NCBI dataset. RNN with orthographic features has a

result of 84.26% F1-score (Limsopatham and Collier, 2016).

Our method, outperforming all other tested algorithms in recall

(88.07%) and F1-score (87.26%), ranked first on this dataset.

3.3 JNLPBA
JNLPBA corpus (Kim et al., 2004) has protein, DNA, RNA, cell

type and cell line totaling five different classes of entities. On this

corpus, the top 3 methods presented an F1 score varying by less than

0.5% (Table 3).

NERBio (Tsai et al., 2006), the best system on JLPBA corpus,

obtained an F1-score of 72.98%. NERBio was implemented as a

rule-based, post-processing approach that was designed especially

for the JNLPBA task. On the BC2 dataset, NERBio only got an F1-

score of 79.05%, which was under average and indicated that this

solution is limited on other corpora.

In another hand, GRAM-CNN achieved an F1-score 72.57%. It

outperformed most conventional machine learning systems and

ranks second in the table with similar performance compared to

NERBio. However, and contrary to NERBio, GRAM-CNN showed

a high-performance on all the 3 tested datasets.

3.4 Error analysis
While GRAM-CNN was the one method that showed a constant

top performance across different datasets, it was not free of mis-

classifications. This section provides an error analysis of our

method. We focused on the JNLPBA dataset, as this is a multi-class

classification problem and therefore, more challenging than the

NCBI and BC2 datasets.

Table 1. Datasets used to evaluate our approach. BC2 and JNLPBA

do not provide separation of training and development datasets

BC2 NCBI JNLPBA

Target entities Genes Diseases Protein, DNA, RNA,

cell type and cell line

Type of data sentences mentions sentences

Size of training set 10 000 5145 15 410

Size of development set 5000 787 5136

Size of test set 5000 960 4260

Note: We created them with a ratio 3:1.

Table 2. Results of BC2 and NCBI datasets

Type Ensemble Approach BC2 NCBI

Precision Recall F1 Rank Precision Recall F1 Rank

M N ABNER (Settles, 2005) 86.93 54.49 64.68 11 � � � �
D N FeedForward * 76.43 58.28 66.13 10 72.05 75.12 73.55 7

D N BiLSTM * 74.25 65.39 69.54 9 77.53 73.33 75.37 6

M N DNorm (Leaman et al., 2013) � � � � 82.8 81.9 80.9 5

M N TaggerOne (Leaman and Lu, 2016) � � � � 85.1 80.8 82.9 4

M N NERBio (Tsai et al., 2006) 92.67 68.91 79.05 8 � � � �
D N CNN-BiLSTM * 80.75 79.76 80.25 7 84.33 84.06 84.17 3

D N ORTH-CNN-BiLSTM * 83.01 78.28 80.58 6 86.67 81.98 84.26 2

M N BANNER (Leaman et al., 2008) 88.66 84.32 86.43 5 � � � �
M Y Gimli (Campos et al., 2013) 90.22 84.82 87.17 4 � � � �
M N IBM (Ando, 2007) 88.48 85.97 87.21 3 � � � �
D N GRAM-CNN (our method) 90.41 84.32 87.26 2 86.46 88.07 87.26 1

M Y AIIAGMT (Hsu et al., 2008) 88.95 87.65 88.30 1 � � � �

Note: * in the name of the approaches indicates result from (Limsopatham and Collier, 2016). D is short for ‘Deep learning’, M for ‘machine learning’. Y and

N are ‘Yes’ and ‘No’. Best performance in each column is in bold.
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Table 4 shows several types of errors obtained with the GRAM-

CNN method on the JNLPBA test set.

In sentence A (Table 4), the word ‘tumor’ is described as a

‘Cell_type’ in the test set and was not predicted as a ‘Cell_type’ by

GRAM_CNN. We noticed that, in the test set, the word tumor is

associated with a cell type label in only 67% of the cases. This

shows the difficulty for biocurators to be consistent in the annota-

tion for nontrivial cases. This inconsistency was reflected in the pre-

dictions made by the NER methods.

Sentence B (Table 4) shows an example of misannotation of the

border of the entity. In this case, the entity was recovered but the

parenthesis situated just before the entity was seen as a part of

the entity. A post-treatment of the protein name to ensure complete

parenthesis-pairs could help solve this issue.

In sentence B, the GRAM-CNN method divided the reference

to ‘T- and B-lymphocyte’ as two different entities: ‘T-’ and

‘B-lymphocyte’. In sentence C, a similar reference to entities ‘B-cell

or non-lymphoid cell lines’ was considered this time as two different

entities by the GRAM-CNN approach. Those differences in the

annotation in the test set show a case where the annotation as one

or two entities can both be considered as true and was treated incon-

sistently by the biocurators during their preparation of the test set.

Sentence C shows a case where an entity composed of several

words ‘CD4þT-cell gene Rpt-1’ was partially recovered and misan-

notated. In this case, GRAM-CNN cut the entities in two parts and

labeled the first part ‘CD4þT-cell gene’ as DNA but labeled the sec-

ond part ‘Rpt-1’ as protein.

Sentence D presents an interesting case of false positive;

‘lymphocytes’ was recovered as a ‘Cell_type’ by GRAM-CNN but is

not labeled in the test set. Since ‘lymphocytes’ is a cell type, this

example is not a ‘real’ false positive of GRAM-CNN but a false neg-

ative case in the test set.

Table 3. Results of JNLPBA dataset measured in F1 score

Approach JNLPBA

Protein DNA RNA Cell Type Cell Line Overall

POSBioTM (Song et al., 2004) 69.07 60.08 64.07 64.48 57.33 66.28

Fin04 (Finkel et al., 2004) 72.67 67.86 68.83 69.06 52.40 70.06

ABNER (Settles, 2005) 72.60 65.10 61.60 72.00 56.00 70.50

NERSuite (Tsai et al., 2006) 72.74 68.58 67.23 72.11 56.11 71.07

GENIA Tagger (Tsuruoka et al., 2005) 72.79 66.20 64.29 74.31 57.81 71.37

Gimli (Campos et al., 2013) 74.68 69.27 67.24 70.49 58.64 72.23

Zho04 (Zhou et al., 2004) 73.77 69.83 64.10 75.13 59.23 72.55

GRAM-CNN (our method) 74.37 68.64 66.95 73.58 59.44 72.57

NERBio (Tsai et al., 2006) 75.12 70.00 72.65 72.77 57.39 72.98

Note: This corpus requires multi-class recognition (Protein, DNA, RNA, Cell Type, Cell Line), we compare each subclass’ score and overall score. The best

score is in bold.

Table 4. Examples of errors obtained with our approach applied on the JNLPBA test set

Sentence example A

To investigate whether the tumor expression of beta2microglobulin beta2M could serve as a marker of tumor biologic behavior, the authors studied

specimens of breast carcinomas from 60 consecutive female patients.

Ground Truth: Detect: Error type

tumor Cell_type False negative

breast carcinomas Cell_type False negative

Sentence example B

[1, 25-Dihydroxyvitamin D3 receptors in lymphocytes and T- and B-lymphocyte count in patients with glomerulonephritis].

1, 25-Dihydroxyvitamin D3 receptors Protein [1, 25-Dihydroxyvitamin D3 receptors Protein Beginning

T- and B-lymphocyte Cell_type T- Cell_type Entity cut

B-lymphocyte Cell_type

Sentence example C

Analysis of the region 3’ to the CD4þ Tcell gene Rpt1 (encoding regulatory protein Tlymphocyte 1) led to the definition of a silencer element that

inhibits heterologous gene expression in certain CD4þ Tcell lines but not in Bcell or nonlymphoid cell lines.

CD4þ T-cell gene Rpt-1 DNA CD4þ T-cell gene DNA Entity cut

Rpt-1 Protein

T-lymphocyte 1 Protein regulatory protein T-lymphocyte 1 Protein Entity include in a longer sentence

heterologous gene DNA False negative

B-cell or Cell line B-cell or non-lymphoid cell lines Cell line Consecutive entities regrouped

non-lymphoid cell lines Cell line

Sentence example D

In the patients concentration of total and ionized form of Ca2þ was decreased down to 2.04 mmole/L and 1.09mmole/L, respectively, while an increase

in parathormone (PTH) by 36% and a distinct decrease in 25 (OH) D concentration (lower than 1.25ng/ml) was found in blood content of cAMP

was also decreased in lymphocytes by 33%.

lymphocytes Cell_type Error in the test set
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Among the randomly picked examples of errors of the GRAM-

CNN method on the JNLPBA set, a fair proportion of errors corre-

sponds to inconsistencies and errors in the test set. This could parti-

ally explain the smaller F1-score generally obtained by the NER

methods on this test set compared to the results obtained from

NCBI and BC2.

4 Discussion

The basic strategy of the GRAM-CNN is to address the BioNER

problem by focussing on local information around each word rather

than considering whole sequences as LSTM does. Several design

choices contribute to the success of the GRAM-CNN method. First,

GRAM-CNN uses a combination of word, character and POS tag

embedding. The word embedding is pre-trained on biomedical text.

The character embedding should provide the ability to represent

new or misspelled words that are absent from the word embedding.

Part-of-speech tag embedding provides the ability to take into

account the grammatical information. Second, sentences in the bio-

medical text are typically longer than in other sources (14.53 words

per sentence for CONLL-2013, 26.49 for JNKPBA). Several topics

may be discussed in the same sentence and we hypothesize that local

patterns can be found within these long sentences. In GRAM-CNN,

the combination of multi-size CNN kernels focusing on the direct

surrounding of each word reveals these local patterns, resulting in

better performance than methods that merely considers the complete

sentence, as is the case of LSTM.

Despite the fact that the GRAM-CNN method was successfully

applied to three different datasets, some particular data structures

are not yet supported. Our method is suitable for mentions consist-

ing of a word or a group of consecutive set of words, and it’s also

robust to misspellings. The three evaluated datasets fall into these

categories. However, GRAM-CNN is not prepared to consider over-

lapping or disjoint mentions, neither mentions present in tables.

Modifications to the IOB2 annotation (Sang and Veenstra, 1999)

would be required to allow these possibilities. Supplementary Table

S1 describes the type of mentions supported and not supported by

GRAM-CNN.

As in all deep-learning methods, GRAM-CNN requires a signifi-

cant amount of training data and is time-consuming. All the three

tested datasets contain more than 5000 examples in the training set.

A decrease of the quality of the assignation is expected if GRAM-

CNN is trained on a smaller dataset. Training time is longer com-

pared with conventional machine learning methods. The network

converged after about 100 epochs for all three datasets. For

JNLPBA and BC2 datasets, it takes about 5 and 1.5 days for NCBI

dataset. However, once training is finished, inference on a test set is

comparatively fast, taking from 2 to 5 min to complete on around

5000 sentences.

Finally, it was recently shown that combining NER and normal-

ization can improve the performance (Leaman and Lu, 2016). This

suggests that within a multi-task architecture, combining our

GRAM-CNN approach with a normalization procedure may

improve performance. We anticipate that entities containing con-

junctions and punctuations usual in biomedical NER will remain

difficult to handle after normalization, which will still be a challenge

for our and other approaches.

5 Conclusion

We hypothesized that local context information plays an important

role in biomedical NER tasks. We implemented GRAM-CNN, a

novel end-to-end neural network using both character embedding

and word embedding for the biomedical NER tasks. This method,

without using any hand-crafted features or domain knowledge,

ranked among the top 2 methods on each tested dataset and

achieved F1-scores of 87.26% in the BC2 dataset, 87.26% in NCBI

dataset and 72.57% in JNLPBA dataset. To the best of our knowl-

edge, this method is the first to achieve competitive performance

using deep learning compared with conventional machine learning

approaches in biomedical NER.

By applying the GRAM-CNN method on three different data-

sets, we showed that the GRAM-CNN approach is a versatile

approach that can be widely applied to BioNER problems without

requiring any hand-crafted features or humanly designed rules.
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