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STUDY QUESTION: Are the transient receptor potential cation channels vanilloid 3 (TRPV3) present and able to mediate strontium (Sr**)
induced artificial activation in human oocytes?

SUMMARY ANSWER: Sr** did not induce Ca”" rises or provoke activation in human oocytes, however, mRNA for the TRPV3 channel
was present in metaphase Il (MIl) human oocytes after VM and TRPV3 agonists induced Ca** rises and oocyte activation, demonstrating the
channels were functional.

WHAT IS KNOWN ALREADY: Selective activation of TRPV3 by agonists induces Ca>" entry and promotes mouse oocyte activation, and the
absence of TRPV3 channels in mouse oocytes prevents Sr*+ mediated artificial activation. Sr** is sometimes used to overcome fertilization failure
after ICSI in the clinic, but its efficiency is still controversial and the mechanism(s) of how it mediates the Ca®" flux has not been studied yet in human.

STUDY DESIGN, SIZE, DURATION: The protein distribution (n = 10) and mRNA expression level (n = |9) of the TRPV3 channels was
investigated in human MIl oocytes after IVM. The S** (10 mM) and TRPV3 agonists (200 pM 2-aminoethoxydiphenyl borate [2-APB] and
200 pM carvacrol)-induced Ca®* response was analyzed in human (n = |15, n= 16 and n = |6, respectively) and mouse oocytes (n = |5, n =
|9 and n = 26, respectively). The subsequent embryonic developmental potential following the parthenogenetic activation using these three
agents was recorded in human (n = 10, n = 9 and n = 9, respectively) and mouse (n = 20 per agent) oocytes, by determining pronucleus, or
2-cell and blastocyst formation rates.

PARTICIPANTS/MATERIALS, SETTING, METHODS: MIl oocytes from B6D2F| mice (6—10 weeks old) as well as human VM
oocytes and IVO oocytes (from patients aged 25—38 years old) with aggregates of smooth endoplasmic reticulum clusters were used. The
expression of TRPV3 channels was determined by immunofluorescence staining with confocal microscopy and RT-PCR, and the temporal
evolution of intracellular Ca®* concentration was measured by time-lapse imaging after exposure to Sr** and TRPV3 agonists (2-APB and car-
vacrol). Artificial activation efficiency was assessed using these agents.

MAIN RESULTS AND THE ROLE OF CHANCE: Sr** did not promote Ca®* oscillations or provoke activation in human oocytes.
Transcripts of TRPV3 channels were present in IVM MIl human oocytes. TRPV3 protein was expressed and distributed throughout the
ooplasm of human oocytes, rather than particularly concentrated in plasma membrane as observed in mouse MIl oocytes. Both agonists of
TRPV3 (2-APB and carvacrol), promoted a single Ca®* transient and activated a comparable percentage of more than half of the exposed
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human oocytes (P > 0.05). The agonist 2-APB was also efficient in activating mouse oocytes, however, significantly fewer mouse oocytes
responded to carvacrol than 2-APB in both the Ca®* analysis and activation test (P < 0.001).

LIMITATIONS REASONS FOR CAUTION: The availability of fresh IVO matured oocytes in human was limited. Data from TRPV3

knockout model are not included.

WIDER IMPLICATIONS OF THE FINDINGS: The benefit of clinical application using Sr** to overcome fertilization failure after ICSI

requires further validation.

STUDY FUNDING/COMPETING INTEREST(S): This study was supported by FWO-Vlaanderen, China Scholarship Council and
Special Research Fund from Ghent University (Bijzonder Onderzoeksfonds, BOF). No competing interests are declared.
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WHAT DOES THIS MEAN FOR PATIENTS?

This study looks at a way of trying to overcome fertilization failure after fertility treatment by helping the processes which occur in the egg at this
time. Sometimes a substance called strontium is used in clinics to try to initiate fertilization if ICSI is not working. It is still controversial as it is not
known how it might work, although there is some evidence that it works in mice.

In this study the researchers looked at both human and mouse eggs. They looked closely at the possible way that strontium initiates fertiliza-
tion and development of the eggs, and found that strontium did not seem to work with human eggs and that the processes involved were differ-
ent. They conclude that more evidence is needed about any possible benefits of using strontium when ICSl is not working.

Introduction

Mammalian oocyte activation is triggered by sperm factor phospholip-
ase C zeta (PLC), which initiates a series of oscillations of Ca®* levels
within the ooplasm (Saunders et al., 2002; Tesarik, 2002). The PLC{
hydrolyzes the precursor lipid phosphatidylinositol 4,5-bisphosphate to
form both diacylglycerol and inositol 1,4,5-trisphosphate (IPs). Further
downstream, the IP5 binds to its cognate receptors (IP3Rs) present in
the oocyte and thus generates the Ca®" release from endoplasmic
reticulum (ER) (Fedorenko et al., 2014; Mak and Foskett, 2015). To
enable the series of oscillations, extracellular Ca®* influx is further
required to restore the Ca®* concentration in the ER during oocyte
activation (Miao et al., 2012; Wakai et al., 2013). As such, the Ca*" sig-
naling mediates successful fertilization and plays a vital role in supporting
further embryonic development (Ramadan et al., 2012; Wakai et dl.,
2013). Irregularities in Ca** oscillation pattern of the oocyte during acti-
vation may thus prevent successful fertilization and reduce embryonic
developmental potential (Ajduk et al., 201 |; Miao and Williams, 2012).
In IVF centers worldwide, deficiencies during oocyte activation are
associated with fertilization failure (FF) or low fertilization rate follow-
ing treatment involving ICSI (Rawe et al., 2000; Yanagida, 2004; Swain
and Pool, 2008; Neri et al., 2014). The oocyte activation potential of
sperm from patients who experienced FF can be evaluated in heterol-
ogous ICSI models (Araki et al, 2004; Heindryckx et al., 2005).
Thereafter, the technology of assisted oocyte activation (AOA) is fre-
quently applied during ICSI, with the principle of inducing a Ca**
increase within the FF oocytes. Thus far, a number of physical, mech-
anical and chemical AOA methods have been evaluated, with success-
ful oocyte activation and development to term after applying electrical
pulses (Egashira et al., 2009), modified ICSI procedures (Tesarik et al.,

2002), Ca’* ionophores (Heindryckx et al., 2008; Ebner et al., 2012;
Vanden Meerschaut et al., 2014) and strontium chloride (SrCly) (Kim
etal.,, 2012, 2014).

Despite several studies reporting successful pregnancies obtained fol-
lowing AOA treatment with S (Yanagida et al., 2006; Kyono et dl.,
2008; Kim et al., 2012, 2014), the efficiency of Sr** as an activating agent
for human oocytes is still under debate. In contrast to mice and rats
oocytes studies, in which repetitive Ca®™" transients are observed when
Sr2t is used (Whittingham and Siracusa, 1978; Roh et dl., 2003), there is
a lack of evidence supporting the same for human oocytes (Versieren
et al, 2010). Recently in mouse, transient receptor potential cation
channels, subfamily V, vanilloid 3 (member 3) (TRPV3) were identified
to mediate Sr** induced oocyte activation (Carvacho et al., 2013; Lee
et al, 2016). The TRPV3 are highly temperature-dependent channels
(Peier et al., 2002; Smith et al., 2002) and are modulated by various stim-
uli and ligands, including natural compounds, such as carvacrol, thymol
and eugenol, as well as 2-aminoethoxydiphenyl borate (2-APB) (Ramsey
etal., 2006; Xu et al., 2006). These agonists, in particular 2-APB and car-
vacrol, showed their capacity to activate TRPV3 channels and promote
Ca** influx, and as consequence, provoked mouse oocyte activation
(Carvacho etal., 2013; Lee et al., 2016).

In animal studies, Sr** has shown to be a highly efficient activating
agent in parthenogenetic activation (Kishikawa et al., 1999; Versieren
et al,, 2010) and somatic cell nuclear transfer of mouse (Otaegui et al.,
1999), bovine (Méo et al., 2004; Yamazaki et al., 2005) and porcine
oocytes (Che et al.,, 2007). Moreover, S*** was reported to be the
most effective AOA method in a mouse model with deficient sperm
activation capacity (Vanden Meerschaut et al., 2013) and more recently
in a knockout mouse model for PLCC (Hachem et al., 2017), compared
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to other agents. Since Sr** induces Ca** rises similar to the peaks pro-
voked by rodent sperm, it is of interest to investigate the Sr** triggered
Ca®* release and oocytes activation, as well as the expression and func-
tionality of the TRPV3 channels in human oocytes. In addition, the
TRPV3 channel agonists, such as 2-APB and carvacrol, could be used as
an alternative AOA method in human.

Materials and Methods

All chemicals were purchased from Sigma-Aldrich (Bornem, Belgium) unless
otherwise indicated.

Ethical approval

The study was approved by the local Ethical Committee of the Ghent
University Hospital, Belgium (2009/130, 2010/808 and 2010/ 182). Written
informed consents were obtained from all patients. All procedures involving
animal handling and sacrifice were approved by the Ghent University Hospital
Ethical Committee for Laboratory Animals (ECD no. | 1/41).

Source and culture of human oocytes

Patients (25-38 years old) undergoing ICSI treatment at the Ghent
University Hospital between October 2014 and June 2015, were included in
this study. Patients undergoing a hormone stimulated cycle were admini-
strated a GnRH agonist (Decapeptyl; Ferring, Belgium) or antagonist
(Cetrotide; Merck Serono, Germany). Ovarian stimulation was performed
by administering hMG (Menopur; Ferring, Belgium) or recombinant (rec)
FSH (Gonal-F; Merck Serono, Germany) at a dose of 112.5-300 U daily
and owulation was induced with 50001U hCG (Pregnyl;MSD, Belgium).
Oocytes were enzymatically denuded by brief exposure to 80 IU/ml hyalur-
onidase (Irvine Scientific, Belgium), followed by mechanical denudation prior
to ICSI. Nuclear status was assessed and classified as germinal vesicle (GV)
(presence of a GV structure), metaphase | (Ml) (absence of a both polar
body and a GV structure) or metaphase Il (Mll) stage (presence of a polar
body and absence of a GV structure). Donated GV oocytes were further
cultured in medium 199, supplemented with 10ng/ml epidermal growth
factor, | mg/ml estradiol, 10 mIU/ml recFSH, 0.5mIU/ml hCG, | mM
L-glutamine, 0.3 mM sodium pyruvate, 0.8% (v/v) human serum albumin (Red
Cross, Belgium), 100 1U/ml penicillin G and 100 mg/ml streptomycin sulfate
for 24 h. Immature Ml stage oocytes were cultured in Sydney IVF COOK
cleavage (CC) medium (Cook Ireland Ltd, Belgium) for 3 h or 24 h based on
the first polar body extrusion. All oocytes were cultured at 37°C in 6% CO,
and 5% O, In vivo matured (IVO) fresh Ml oocytes showing visible aggregates
of tubular smooth ER clusters (SERs) were collected as well, for this study.
Although fertilized SER oocytes can lead to healthy live births, the clinical
application of them is still under critical review at our Department, owing to
the previously reported malformations and impaired pregnancy outcomes
(Otsuki et al., 2004; Sa et al., 201 |; ltoi et al., 2016). We included a total of
104 oocytes (37 GV-MII, 46 MI-Mll and 2| IVO MIl with SERs), allocated to
the different groups. The distribution of IVM and IVO MIl oocytes across the
same sets of experiments was analyzed using the Chi-square test, and no sig-
nificant difference was observed (Table |, P > 0.05).

Source and culture of mouse oocytes

B6D2F| hybrid female mice (6—10-week-old) were stimulated with 7.51U
pregnant mare’s serum gonadotrophin (PMSG, Folligon®, Intervet, Boxmeer,
The Netherlands), followed by 7.5 U hCG (Chorulon®, Intervet, Boxmeer,
The Netherlands) 4648 h later. MIl oocytes were harvested in HEPES-
buffered potassium simplex optimized medium (KSOM-HEPES) supplemented

with 4 mg/ml bovine serum albumin (BSA, Calbiochem, Belgium) 12-14h
after hCG injection. Cumulus cells surrounding the oocytes were removed
by treatment with 200IU/ml hyaluronidase (0.3 mg/ml, type VIII) in
KSOM-HEPES. Oocytes were cultured under paraffin oil at 37°C in 6%
CO; and 5% O, in KSOM containing 4 mg/ml BSA until further treatments
(Lawitts and Biggers, 1991).

Ca”* imaging in human and mouse oocytes following exposure to Sr*+
and TRPV3 agonists. Human (n = 47) and mouse oocytes (n = 67) were
loaded with 7.5 M of the radiometric Ca>* sensitive dye Fura-2 acetoxy-
methyl (AM) ester (Invitrogen, Life Technologies Europe B.V., Belgium) at
37°C in 6% CO,, 5% O, and for 30 min and then washed extensively.
Subsequently, oocytes were placed in individual glass bottom dishes
(MatTek, Corporation, Ashland, USA) and Ca** imaging was performed on
an inverted epi-fluorescence microscope (TH4-200, Olympus Soft Imaging
Solutions GmBH, Belgium) with a X20 objective. Fluorescence was recorded
at an emission wavelength of ~510nm every 5s. The ratio of both Ca**
induced signals (340/380 nm) was proportional to the concentration of free
intracellular Ca** (expressed in arbitrary units, AU).

For measuring the Ca®* responses of human oocytes following Sr*+ expos-
ure, the fura-2 loaded IVM (n = 12) and SERs (n = 3) oocytes were trans-
ferred to a drop of GIBCO®Ca>*/Mg** free Earle’s Balanced Salt Solution
(EBSS) supplemented with 10mM SrCl, (Life Technologies, Leuven,
Belgium). The Ca”" images were recorded every 5's for a duration of 6 h.
Following the first 2 h of exposure, a group of human oocytes (n = 5) that
did not respond to the Sr2* was subsequently exposed to 10 pM ionomycin
(cat. no. 19657) dissolved in COOK Cleavage medium for 15 min. The Ca**
images were acquired to assess their ability to mobilize the intracellular Ca**.
The S** induced Ca** oscillations of mouse oocytes were recorded every
5s for a duration of 2 h, immediately after transferring the eggs to a drop of
Ca?*-free KSOM with 10 mM SrCl,, in the glass bottom dish.

Following the application of TRPV3 agonists, the Ca®* responses of both
human and mouse oocytes were investigated. Ca>* images were recorded
from human oocytes exposed to 200 uM 2-APB (n = 16) or 200 pM carva-
crol (n = 16) in 1% polyvinyl alcohol (PVA)-supplemented albumin-free
IVF™ medium (Vitrolife, Goteborg, Sweden) for 30 min. The PVA was pre-
viously reported to substitute for BSA in mouse embryo culture medium fol-
lowing TRPV3 agonists activation (Carvacho et al., 2013). Mouse oocytes
were subjected to the same concentration of the agonists but supplemented
in 1% PVA KSOM (BSA-free) medium for 30 min. The stock solutions of
TRPV3 agonists were prepared by dissolving them in dimethyl sulphoxide
(DMSO), as carried out for ionomycin in our clinic (Heindryckx et al., 2008).
The amount of DMSO added to the activation medium was tested and
shown not to induce Ca** release or activation of mouse oocytes.

All oocytes were distributed randomly across the groups and tested within
2 h after assessing the maturation state. A maximum of three oocytes were
measured simultaneously. Baseline drifting was adjusted before retrieving
values for amplitude (value at maximum increase in fluorescence intensity
per peak) expressed in AU. Relative amplitude (RA, amplitude subtracted
from the baseline and expressed in AU) and AUC of the Ca®" rise
(expressed in AU X minutes) was calculated.

Parthenogentetic activation of Mll human
and mouse oocytes

To test the activation efficiency of 10 mM Sr**, human oocytes were incu-
bated in Ca**-free EBSS medium and mouse oocytes were activated in
Ca’-free KSOM medium with Sr** for a duration of 4 h. For creating diploid
parthenogenetic embryos, 2 pg/ml cytochalasin D (CCD) was added to
both of the activation media. In the agonist activation tests, human oocytes
were treated with 200 pM 2-APB for 30 min or 200 pM carvacrol for 10 min
dissolved in IVF medium at 37°C, while mouse oocytes were exposed at
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the same conditions as the human oocytes but within KSOM medium
(albumin-free 0.1% PVA). CCD was added to the subsequent culture
medium for 4 h. Following activation, human oocytes were further cul-
tured in CC medium for 16 h, and mouse oocytes were incubated in
KSOM for 60-72h followed by a 24 h extended culture in COOK
Blastocyst medium. The activation of human oocytes was evaluated by
formation of a single pronucleus (IPN) 16h after treatment. Mouse
embryo development was assessed at 24 (two-cell), 72 (morula/early
blastocyst) and 96 h (blastocyst) post-activation time.

Immunofluorescence staining of TRPV3
channels

Oocytes were fixed and stained as previously reported (Carvacho et dl.,
2013). Briefly, the zona pellucida (ZP) of the oocytes was removed with
Tyrode’s solution. The zona-free oocytes were washed intensively in 2% goat
serum and 1% BSA-supplemented PBS and fixed in PBS-BSA containing 2%
paraformaldehyde for 45 min at room temperature. Oocytes were washed
and blocked in PBS containing 0.1 M glycine, 2% goat serum and 0.01%
Tween 20 for at least | h. Oocytes were then permeabilized with 0.1% Triton
X-100 for 15 min at room temperature. Subsequently, samples were washed
with PBS supplemented with 2% goat serum and |% PVA followed by incuba-
tion at 4°C with the primary antibody against TRPV3 (1:100, [0 pg/ml,
Neuromab, Davis, CA, USA). After washing, oocytes were treated with the
secondary antibody Alexa Fluor 488-conjugated goat anti-mouse IgG (H + L)
(1:200, Molecular Probes, Eugene, OR, USA) for | h at room temperature,
followed by extended washings. In addition, chromosomes were stained with
ethidium homodimer-2 (1:500, Life Technologies, Carlsbad, CA, USA) for | h
at room temperature. The negative controls were treated with the secondary
antibodies alone. Finally, the oocytes were mounted in Mowiol containing
0.01% phenylenediamine. To validate the immunostaining of TRPV3 protein, a
different fixation process and antigen retrieval experiment was performed
(Supplementary Data), however, no protocol showed improved immunos-
taining results (Supplementary Fig. SI). All samples were imaged using a laser
scanning microscope, Nikon AIR confocal microscope (Nikon Instruments,
Paris, France) with a x60 Plan Apo VC oil immersion objective. The TRPV3
distribution and chromosome alignments were obtained from Z-stacks
(0.5-0.75 pm/Z-step), using Image] software (National Institutes of Health,
Bethesda, MD, USA).

RT-PCR on pooled IVM human
oocytes

RNA was extracted from pooled IVM Mll and IVO SER human oocytes
(Group I, n =11 and Group I, n = 8, Table I), using a PicoPure RNA
isolation kit, as described by the manufacturer (Life Technologies, CA,
USA). The following cDNA synthesis was performed using the
Superscript VILO cDNA synthesis kit (Invitrogen, USA). Primers (5'-3")
were designed to amplify the fragment spanning exons 6 and 7 of
TRPV3 (Forward AGGCTTCTACTTCGGTGAGAC, Reverse AGGG
CGTGAAGGATGTTGTTG) using Primer3 program.

The RT-PCR was performed on the cDNA of these two groups of
human oocytes and Day 5 arrested human embryos (n = 4), while
GAPDH was used as a positive control. Briefly the PCR conditions are
as follows: initial denaturation at 94°C for 5 min followed by 35 cycles
of denaturation at 94°C for 305, annealing at 64°C for 30's, extension
at 72°C for 45 s and a final extension at 72°C for 10 min. The RT-PCR
products were subsequently loaded onto the fragment analyzer and
analyzed using PROsize program (Advanced Analytical Technologies,
Ankeny, IA, USA). Subsequently, the RT-PCR products was purified
using Exo-AP and bi-directional Sanger sequencing was performed on
the purified RT-PCR products using the Big Dye Terminator kit (ABI,
USA). The Sanger sequencing products were further cleaned using mag-
netic beads with 85% alcohol and analyzed using the ABI 3130 genetic
analyzer (ABI, USA).

Statistical analysis

The Statistical Package for the Social Sciences version 21 (SPSS® Statistics,
IBM corp, NY, USA) was used for statistical analysis. Proportions were
compared by a contingency table analysis followed by a chi-square or
Fisher’s exact test. Means (RA and AUC) from multiple groups were
compared using ANOVA and Bonferroni’s multiple comparison test.
Differences yielding a P value <0.05 were considered as being statistic-
ally significant.

Table I The allocations of IVM and IVO human oocytes across all groups in the study.

No. oocytes (n)

Ca** imaging St I5
2-APB 16
Carvacrol 16
Immunostaining TRPV3 10
RT-PCR Group | I
Group Il 8
Activation test Sr2t 10
2-APB 9
Carvacrol 9

GV-MIl n (%) MI-MII n (%) IVO with SERs n (%)

6 (40%) 6 (40%) 3 (20%)
6 (38%) 6 (38%) 4(25%)
8 (50%) 531%) 3(19%)
4 (40%) 6 (60%) n/a

3.(27%) 8 (73%) n/a

2 (25%) 5 (63%) I (12%)
2 (20%) 4 (40%) 4 (40%)
3(33%) 3(33%) 3(33%)
3(33%) 3(33%) 3(33%)

n/a, Not applicable.

IVO: in vivo matured.

SER: aggregates of tubular smooth endoplasmic reticulum clusters.
2-APB: 2-aminoethoxydiphenyl borate.

TRPV3: transient receptor potential cation channels vanilloid 3.
MI: metaphase .

MIl: metaphase II.
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Figure | Sr*' is not capable of provoking Ca®* release in human oocytes. The intracellular Ca®* level of fura-2 acetoxymethyl ester loaded
human and mouse oocytes was recorded by Ca**-imaging, following exposure to 10 mM Sr** for 2 h. (A) Sr** cannot induce Ca* release in
human metaphase Il (MIl) oocytes during 2 h of measurement. (B) Mouse Ml oocytes exhibit repetitive Ca>* transients following exposure to
10 mM Sr**. (C) Exposure of human oocytes to ionomycin following Sr>* incubation verifies the reactivity of human ococytes to another artificial

oocyte activation trigger.

Results

Sr’* failed to induce Ca** release and
activation in human Mll oocytes

To verify the Ca®* releasing and activating ability of Sr** exposure,
IVM and IVO MII human oocytes (n = 25, Table I) were subjected to
10 mM Sr**. Following the exposure, the changes of intracellular Ca**
levels of analyzed oocytes were recorded by Ca** imaging. However,
no increases in the intracellular Ca®* concentrations were observed in
a total number of |5 oocytes within a duration of 6 h (Fig. |A shows
records from the first 2 h). In contrast, all mouse oocytes (n = 15)
exposed to the same concentration of Sr** showed dynamic intracellu-
lar Ca®* oscillations during the 2 h analysis (five traces are presented in
Fig. IB). To test the reactivity to Ca** triggers of the human oocytes,
five IVM human oocytes were further subjected to 10 pM ionomycin
following a 2 h exposure of Sr*. Al five IVM oocytes exhibited a single
Ca** rise with a rapid upstroke followed by a slower decline towards
the baseline immediately after the ionomycin exposure (Fig. 1C and
Table ). Activation capacities of the human oocytes (n = |10) were further
evaluated following Sr2t exposure. None of the human oocytes showed
IPN after 16 h following Sr** exposure while, in contrast, all of the mouse
oocytes activated and cleaved, |6 h post Sr** activation (Table IlI).

TRPV3 channels are expressed in human
oocytes

The TRPV3 channels were recently identified as the major channels to
conduct Sr** influx and induce activation of mouse oocytes (Carvacho
etal., 2013; Lee et l., 2016). Since Sr** failed to activate human oocytes
or elicit Ca”* transients, we then examined the expression and the func-
tion of the channels. Following the fluorescence staining, we observed a
non-specific distribution of TRPV3 channels throughout the ooplasma of
the analyzed human oocytes (n = 10) (Fig. 2A and B). To validate the
staining, we further examined the TRPV3 localization in mouse oocytes
(n = 10), which (unlike human) showed a distribution that was particu-
larly concentrated at the plasma membrane, as reported previously
(Carvacho et al., 2013; Lee et dl., 2016) (Fig. 2C and D). To further con-
firm this result, TRPV3 mRNA expression levels in human oocytes were
investigated at transcriptional level by RT-PCR. The transcripts of TRPV3
were detected in pooled IVM MiIl and IVO SERs human oocytes (Group
I,n=11and Group Il, n = 8, Table l), as demonstrated by the expected
mRNA products in both groups (Fig. 3A). Sanger sequencing of the RT-
PCR products further revealed that the sequencing reads were aligned
with the TRPV3 cDNA sequence downloaded from the University of
California Santa Cruz genome browser with the transcript containing
791 amino acids (NM_001258205) using DNASTAR (Fig. 3B).



6 Luetal
Table Il The Ca?* response of human oocytes following exposure to various activation agents.
Activation agent No. oocytes Survived oocytes,n (%) Responded oocytes,n (%) RA ofthe Ca’* rise AUC of the Ca’* rise
Sr2t I5 15 (100%) 0 n/a n/a
2-APB 16 16 (100%) 4 (25%) 0.70 +0.07° 2.36 +0.90°
Carvacrol 16 16 (100%) 9(31%) 2324073 4.98 + 1.93°
lonomycin post Sr** 5 5 (100%) 5 (100%) 2.44 +0.20° 13.14 +9.32¢
lonomycin post 2-APB 9 8 (89%) 8 (100%) 191 +0.74 6.45+5.50
lonomycin post carvacrol 7 7 (100%) 7 (100%) I.14 £0.90° 2.30 + 0.80¢

Oocytes are either exposed to 10 mM Sr** for 2 h or subjected to 200 pM 2-APB or 200 uM carvacrol for 30 min. The subsequent exposure of 10 pM ionomycin is for |15 min.
ANOVA and Bonferroni’s multiple comparison test. 2P < 0.01, P < 0.05, n/a, not applicable. Values with the same superscripts differ significantly. Data are shown as mean =+ SD.

2-APB, 2-aminoethoxydiphenyl borate.
RA, relative amplitude.

Table lll The response of human and mouse oocytes following exposure to Sr2*, 2-APB and carvacrol.

Oocytes Activating agent No. Survived, n (%) IPN, n (%) 2-cell, n (%) Blastocyst, n (%)
Human St 10 10 (100) 0P n/a n/a

2-APB 9 8(89) 5 (63)° n/a n/a

Carvacrol 9 7 (78) 5(@71)° n/a n/a
Mouse Sr2t 20 19 (95) n/a 19 (100)® 18 (95)

2-APB 20 14 (70) n/a 13 (93)° 12 (92)

Carvacrol 20 20 (100)° n/a I (5)%e I (100)

Oocytes are exposed to 10 mM Sr2* for 4 h, or subjected to 200 pM 2-APB for 30 min or 200 pM carvacrol for 10 min. Chi-square and Fisher’s exact test: **%°P<0.01, °P<0.05, n/a,

not applicable. Values with the same superscripts differ significantly.
PN, pronucleus.

TRPV3 agonists triggered Ca’*" release
and provoked oocyte activation of human
and mouse oocytes

The Ca** releasing and activating ability of the TRPV3 channels were fur-
ther investigated by subjecting human oocytes to the agonists 2-APB and
carvacrol. Following the exposure of 16 MIl human oocytes to 200 uM
2-APB, the intracytoplasmic Ca>" increased in 25% (4 out of 16) of
them, displaying a small rise during the first 5min of measurement
(Fig. 4A and Table Il). When subjecting |6 human oocytes to the same
concentration of carvacrol, a similar proportion (31%, 5/16) of the
oocytes responded, and exhibited a significant increase in Ca** level
compared to the Ca®* rise triggered by 2-APB (P = 0.0034), during the
first 10 min of exposure (Fig. 4B and Table Il). Moreover, four more IVM
oocytes showed much lower Ca®" fluctuations (RA 0.28 + 0.14, AUC
I.54 + 0.56) which were not defined as responding oocytes (Fig. 4B and
Table Il). All of the human oocytes survived following these chemical
exposures and imaging. The groups of human oocytes which failed to
respond to these TRPV3 agonists, were further exposed to ionomycin
to evaluate the response of the oocytes to other Ca* triggers. All
oocytes exhibited a sharp Ca®* rise following the ionomycin exposure,
showing a positive reactivity to the Ca** ionophore (Table II).

The addition of 200 pM 2-APB to MIl mouse oocytes (n = 26) dra-
matically increased Ca®* levels and immediately provoked a protracted
peak during the 30 min exposure (Fig. 4C). Following the exposure, 73%

(19/26) oocytes survived and 89% (17/19) showed intracellular Ca**
release (Fig. 4C). The seven damaged oocytes showed a specific pro-
tracted Ca** pattern (Fig. 4C, inset picture). Carvacrol (200 pM) evoked
increases of intracellular Ca®* in all subjected mouse oocytes (n = 26),
however, only displaying a small peak during the 10 min of exposure
(Fig. 4D). Moreover, the 54% (14/26) that responded to carvacrol
exhibited a minor Ca”" rise fluctuation (absolute amplitude <0.2) in the
first 5 min of exposure (Fig. 4D, inset picture).

Furthermore, the activation potential of human and mouse Mll ococytes
was investigated as well, following the application of the two TRPV3 ago-
nists. We allocated in total 18 [IVM and IVO human oocytes (Table ) and
40 mouse oocytes to the 2-APB and carvacrol (each 200 pM) activation
tests. Interestingly, more than half of the human oocytes activated and
formed |IPN, observed at |6 h post stimulation (63 and 71% for 2-APB
and carvacrol, respectively, Table lll). When exposing mouse oocytes to
200 pM 2-APB, 70% of them survived following the stimulation, and sub-
sequently, more than 90% of them cleaved and developed to blastocysts
(Table Ill). In contrast, carvacrol induced significantly less (5%) cleavage to
the two-cell stage compared to the 2-APB group (P < 0.0001, Table II).

Discussion

To date, Sr** has been applied as an AOA method to overcome FF or
low fertilization rates (Kyono et al., 2008; Kim et al., 2012, 2014) in
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Figure 2 The localization of TRPV3 channels in human MIl oocytes. Human and mouse oocytes were stained with Transient receptor potential cat-
ion channels vanilloid 3 (TRPV3) antibody and analyzed by confocal microscope. (A) Chromosomes of IVM human oocytes are encompassing two
regular rings, observed from the optical axis passing through the spindle poles. (B) TRPV3 protein of human IVM MIl oocyte shows a diffused, non-
specific pattern. (€) Chromosomes of mouse in vivo matured (IVO) oocytes are aligned at the equatorial plate. (D) Mouse TRPV3 channels are
expressed and concentrated at the cytoplasmic membrane.
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Figure 3 TRPV3 mRNA expression levels in IVM MIl and IVO human oocytes with aggregates of smooth endoplasmic reticulum clusters. The
mMRNA expression of TRPV3 was analyzed by RT-PCR and verified by Sanger sequencing in pooled IVM and in vivo matured (IVO) human oocytes. (A)
RT-PCR products from the agarose gel show the transcripts of TRPV3 are expressed in a group of pooled IVM human oocytes and a group of pooled
IVM and IVO human oocytes. (B) Chromatogram showing the exons 6—7 junction of the TRPV3 gene after Sanger sequencing of the RT-PCR product
from pooled IVM human oocytes.
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Figure 4 The TRPV3 agonists, 2-APB and carvacrol, induced a Ca** response in both human and mouse Ml oocytes. The intracellular Ca>* level of
fura-2 acetoxymethyl ester loaded human and mouse oocytes was recorded by Ca**-imaging, following exposure to 200 pM 2-aminoethoxydiphenyl
borate (2-APB) and 200 pM carvacrol for 30 min. (A) Increased intracellular Ca>* was provoked by 2-APB in 4 out of 16 IVM and IVO human Ml
oocytes, displaying a small peak. The three overlapped Ca®* rises of the responding oocytes are shown in the inset picture. (B) Five out of 16 human
MIl oocytes responded to carvacrol, showing a sharp Ca" rise. (C) Elevated intracellular Ca®* in 17 out of 19 alive mouse oocytes following the
exposure to 2-APB, displaying a large Ca>* peak. The inset picture showed the Ca®* pattern of another seven damaged oocytes during 2-APB stimula-
tion. (D) A lower Ca”" response was observed in all mouse oocytes (n = 26) in response to carvacrol, 54% of which (14/26) exhibited a minor Ca>*
rise fluctuation (absolute amplitude <0.2) in the first 5 min of exposure (picture inset).

several IVF centers. However, the efficiency and the exact mechanism
of S** as an activation agent in human oocytes remains largely
unknown. In the present study, we investigated the activation capacity
and Ca®" response of human oocytes after Sr** exposure. Since it was
recently shown that the TRPV3 channel mediates Sr** induced artificial
activation in mouse oocytes (Carvacho et al., 2013), we evaluated the
presence and functionality of these TRPV3 channels in human oocytes.
We demonstrated that Sr** failed to mediate Ca”* release and induce
activation in human oocytes, despite the presence and functioning of
TRPV3 channels.

In contrast to other artificial activation agents that induce a single
Ca®" transient of mammalian oocytes (Vanden Meerschaut et al.,
2014; Nikiforaki et al., 2016), Sr** activates rodent eggs by inducing a
series of CaZ* like oscillations (Whittingham and Siracusa, 1978; Roh
et al., 2003), which closely mimic the pattern of Ca®* rises triggered by
PLCC at fertilization. As such, Sr** has been applied initially as an AOA
agent in the clinic to overcome FF after ICSI. Consequently, improved
fertilization rates and embryo qualities were reported for several
couples with repetitive FF (Kyono et al., 2008; Chen et al., 2010),
frozen—thawed testicular spermatozoa (Kim et al., 2012) and a glo-
bozoospermia case (Yang et al., 2012), with resulting healthy live

births. Despite these studies showing the potential of S** to overcome
activation failure in human, we demonstrated that Sr** was not capable
of inducing a Ca®" increase or provoking activation of human oocytes.
These discrepancies could be due to the lack of diagnostic methods
used in these studies to show they were real sperm-related activation
deficiencies (Kyono et al., 2008; Chen et al., 2010; Kim et al., 2014).
Still, one patient with globozoospermia (Yang et al., 2012) was also suc-
cessfully treated with Sr**, which could be explained by the fact that
some globozospermic patients can achieve successful fertilization even
after the application of routine ICS| in the absence of AOA (Huang
et al., 2010). Therefore, it is difficult to know whether the patients
enrolled in those AOA studies using Sr** as the activating agent really
required AOA in first instance, as diagnostic evidence (heterologous
ICSI, genetic screening of PLCz, Ca®" pattern analysis) was not obtained
to show a lack of activation capacity in their sperm. However, it is still
possible that the Sr** might act through unknown Ca®*-irrelevant path-
ways or through the mechanical permeabilization created during ICSI.
More studies are required to verify this further.

To enable activation of mouse oocytes, extracellular Sr** influxes are
transported across its major membrane channel, TRPV3 (Carvacho
et al., 2013), promoting downstream oscillations in [Ca®*1i/[Sr*"] of
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the oocytes, probably by sensitizing IPsRs and thus facilitating Ca**
oscillations (Zhang et al., 2005), or substituting for Ca* in the potenti-
ation of IP3Rs (Girard and Clapham, 1993; Marshall and Taylor, 1994;
Lee, 2016). Thus, the failure to activate human oocytes with Sr** alone
could be attributed to the absence of membrane TRPV3 channels
(which was proven not to be the case in the present study) or, unlikely,
the inability of the residues to conduct Sr**, which localize at position
412 on the loop of the membrane proximal domain on the N terminus
responsible for switching the temperature dependence of the channel
(Latorre et al., 2007; Liu and Qin, 2017), as well as the insensitivity of
IPsR1 in responding to Sr** in human oocytes. Further investigations
are required to verify these options.

Furthermore, we did confirm that the transcripts of TRPV3 channels
were present in VM human oocytes. The TRPV3 channels were also
recently demonstrated to be expressed in pooled fresh IVO human
oocytes by a whole transcriptome analysis, albeit at low levels (Kocabas
et al, 2006). The diffuse cytoplasmic localization of TRPV3 protein
might contribute to the observed inability of conducting Sr** influx by
TRPV3 or the aberrant Ca®" release pattern following 2-APB treat-
ment, owing to failure of trafficking functional TRPV3 protein to the
membrane during in vitro culture, as the cytoskeleton modulates the
function of TRPV3 channels (Kuipers et al., 2012; Smani et al., 2014;
Lee et al., 2016). Unfortunately, we could not rule out the possibility of
low specificity of the immunostaining TRPV3 antibody that was used in
the present setting. Moreover, the TRPV3 protein distribution in human
oocytes could be impaired by IVM, as no TRPV3 channels are
expressed on the plasma membrane of mouse GV oocytes and the
TRPV3 proteins are transferred from the ooplasm to the plasma mem-
brane during oocyte maturation in mouse (Lee et al., 2016). Future ana-
lysis, for example tracking the TRPV3 protein distribution in IVM and
IVO human oocytes by TRPV3 tagging with ruby fluorescent protein
(Lee et al., 2016), is required to verify this.

Although the expressed TRPV3 channels in human oocytes failed to
conduct Sr** influx or the conducted Sr** was not sufficient to promote
Ca®" release from the ER, they were shown to be functional in support-
ing an agonist triggered Ca®* rise and oocyte activation in both mouse
and human oocytes. In view of the efficiency of activating rodent oocytes,
2-APB was suggested as a potential AOA agent targeting TRPV3 channels
(Lee et dl., 2016; Lee, 2016). However, in our view, it is too soon to
encourage its use at this moment, as both 2-APB and carvacrol acti-
vate multiple Ca®* related channels (Bilmen and Michelangeli, 2002;
Bilmen et al., 2002; Colton and Zhu, 2007; Pires et al., 2015) and the
exact mechanism remains largely unclear. Moreover, 2-APB
mediated Ca>" influx exclusively from the external culture medium
(Xu et al., 2006; Lee et al., 2016), whereas, CaZt jonophore pro-
moted Ca®* increase from both the ER and extracellular Ca** influx
(Lu et al, 2018). Currently, ionomycin is still the most recom-
mended agent to overcome FF after ICSI (Heindryckx et al., 2005;
Vanden Meerschaut et al., 2014; Nikiforaki et al., 2016) due to its
high efficiency in provoking a Ca®* rise and inducing activation, as
demonstrated in both mouse and human oocytes (Vanden
Meerschaut et al., 2014; Nikiforaki et al., 2016).

Supplementary data

Supplementary data are available at Human Reproduction Open online.
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