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When Do We Need Massive Computations to Perform
Detailed COVID-19 Simulations?
Christopher B. Lutz and Philippe J. Giabbanelli*

The COVID-19 pandemic has infected over 250 million people worldwide and
killed more than 5 million as of November 2021. Many intervention strategies
are utilized (e.g., masks, social distancing, vaccinations), but officials making
decisions have a limited time to act. Computer simulations can aid them by
predicting future disease outcomes, but they also require significant
processing power or time. It is examined whether a machine learning model
can be trained on a small subset of simulation runs to inexpensively predict
future disease trajectories resembling the original simulation results. Using
four previously published agent-based models (ABMs) for COVID-19, a
decision tree regression for each ABM is built and its predictions are
compared to the corresponding ABM. Accurate machine learning
meta-models are generated from ABMs without strong interventions (e.g.,
vaccines, lockdowns) using small amounts of simulation data: the
root-mean-square error (RMSE) with 25% of the data is close to the RMSE for
the full dataset (0.15 vs 0.14 in one model; 0.07 vs 0.06 in another). However,
meta-models for ABMs employing strong interventions require much more
training data (at least 60%) to achieve a similar accuracy. In conclusion,
machine learning meta-models can be used in some scenarios to assist in
faster decision-making.

1. Introduction

As of November 2021, COVID-19 was directly responsible for an
estimate of over 5 million deaths and over 250 million cases.[1]

Taking the United States as an example, these numbers translate
to almost 750 000 deaths from about 46 million cases,[2] while
noting that fatality may be underestimated[3] and differs across
sub-groups based on factors such as socio-economic status or
race and ethnicity.[4] Although reports previously considered that
“transition toward normalcy in the United States remains most
likely in the second quarter of 2021,”[5] the delta variant has effec-
tively triggered a “new phase in the pandemic”[6] as can be seen
with a rebound of over 100 000 new cases per day in the United
States in August and September.[2] Similar phenomena can be
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observed worldwide and continue to re-
quire action by government officials to
limit the spread of disease.[7] For exam-
ple, France has implemented a COVID-
19 “health pass” while Italy has a similar
“Green Pass”; mandates for masks or vac-
cines are on the agenda across several US
states; and lockdown as well as travel curbs
are making a comeback in China. A broad
set of intervention strategies is available to
policymakers,[8–11] including vaccines, pre-
ventative care (e.g., masks and social dis-
tancing), or lockdowns (e.g., remote work
and travel restrictions). Implementing one
of these strategies involves several logistical
parameters: for instance, testing requires
capacity for contact tracing and policies for
quarantine (e.g., is a negative test required
to leave quarantine? is a number of days
required?); similarly, vaccination involves a
complex logistical chain from shipping to
administering doses.[12]

In addition to the many possible com-
binations of interventions and parameter
values, the “right set” of interventions can
vary across places (e.g., based on disease
incidence and hospital capacity), across

time (e.g., in response to a newwave of infections), and across in-
dividuals (e.g., priority for vaccination to those most at risk). This
results in a very large search space of possible interventions.[13]

Although the necessity of immediate actions in the early days
of the pandemic may have resulted in choosing an intervention
based on minimal insight, there is now evidence for serious con-
sequences in rolling a sub-optimal intervention: lives may be
lost, the cost of future interventions may be heightened, or the
adherence (hence the impact) of future interventions may be
lowered.[14–16]

Computer simulations using agent-based models (ABMs) can
aid officials in making these decisions, by modeling the effects
of specific interventions in specific places (e.g., small towns,[17]

educational institutions,[18,19] supermarkets[20]), populations
(e.g., targeted vaccinations[21]), or time windows (e.g., during a
yearly mass pilgrimage[22]). Several modeling frameworks are
available to quickly run simulations for specific interventions,
while accounting for individual heterogeneity in risk factors
and contact patterns (e.g., by embedding agents across multiple
networks such as community and work). However, significant
computing resources are required to perform detailed simula-
tions that track individual transmissions and evaluate various
interventions.[23,24] Our analysis across six projects showed that
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cloud computing or high-performance computing clusters were
frequently needed.[25] This is exemplified by the model from
Chang et al., which ran on 4264 compute cores.[23]

So far, the primary solution to perform resource-intensive
agent-based COVID-19 simulations has been to find more com-
puting power. For example, the COVID-19 High-Performance
Computing Consortium (covid19-hpc-consortium.org) was cre-
ated to make private computing resources available to COVID-19
researchers.[26] Similarly, the Partnership for Advanced Comput-
ing in Europe (PRACE) offered a fast-trackmechanism for access
to supercomputers (prace-ri.eu/hpc-access/hpcvsvirus), and na-
tional laboratories issues calls for rapid-response research.[27]

These computing requirements can be limiting in the con-
text of pandemic responses, because officials are forced to
wait for results before acting to prevent the spread of the
disease. It also stresses inequities in simulation research, as
some groups may struggle to perform their simulations in a
timely manner due to the lack of resources at smaller research
organizations.[28]

In this paper, we examine whether massive computations are
an absolute requirement to support decision-makers in com-
prehensively examining the expected consequences of various
intervention scenarios in the context of COVID-19. Specifically,
we assess whether we can replace a (computationally expensive)
COVID-19 ABM with a (cheaper) machine learning model.
The core idea is to assess whether it is possible to perform
just enough simulations to train an accurate machine learning
model, which can then be used to predict the remaining simula-
tion results inexpensively. Our approach consists of generating
data from four previously published and validated ABMs for
COVID-19[12,24,29,30] and using the data to train machine learning
regression meta-models. By varying the amount of data used
to train these meta-models, we characterize the relationship
between how much data is used to train the meta-model and
how accurate that meta-model is. Our specific contributions are
as follows:

• Wedevelopmachine learning regressionmeta-models for four
COVID-19 ABMs to predict the total proportion of the popula-
tion that will become infected, in response to the intervention
scenarios captured by the model’s parameters.

• We examine the affects that different amounts of training data
have on the overall accuracy of those meta-models, thus es-
tablishing the situations under which a COVID-19 ABM may
require computing power to achieve accurate results.

The remainder of this paper is organized as follows. In
Section 2, we summarize the key features of COVID-19 and
interventions that are available in the four ABMs used in
this study. Our background also briefly explains how ABMs
are created for COVID-19 and how machine learning can be
used to generate simulation meta-models. Then in Section 3,
we cover our methods starting with the implementation and
verification of the selected ABMs, and then detailing how we
performed our machine learning regressions. In Section 4,
we analyze the results produced by the verification data for
our ABMs and the machine learning regressions. Next in
Section 5, we discuss the interpretation and limitations of our
results. Finally in Section 6, we provide concluding remarks

and suggest future work that could be undertaken based on our
results.

2. Background

In this section, we will examine key details of COVID-19 and
available interventions, as well as how ABMs are created for it.
Then, we summarize how machine learning has been used pre-
viously to create meta-models for simulations.

2.1. COVID-19

COVID-19, caused by the SARS-CoV-2 virus, was first reported
in Wuhan, China in December 2019[31] with newer studies sug-
gesting a first case as far back as mid-November 2019.[32] The
virus spreads through droplets that are released when an infected
individual coughs or sneezes. As a respiratory disease, the pri-
mary mode of transmission is thus via exposure to droplets, ei-
ther indirectly (e.g., via contact through contaminated objects
or hands) or directly (air borne).[33,34] The virus infects cells in
an individual’s lungs, interfering with the lungs’ ability to func-
tion properly.[35] Symptoms for the disease include fever, loss
of smell, or cough.[36,37] A systematic review of 45 studies re-
ported that 73% of individuals experience at least one persistent
symptom.[38] Most commonly, symptoms such as fatigue, sleep
disorders, or loss of smell can be experienced formonths.[39] Less
common consequences include multi-organ damage,[40] for ex-
ample, in the the cardiovascular system,[41] kidneys,[42] nervous
system,[43] or immune system.[44]

Prior to the development of vaccines, all interventions for
COVID-19were necessarily non-pharmaceutical. These interven-
tions included the use of masks, social distancing, regional lock-
downs, and contact tracing. Masks reduce the spread of COVID-
19 by lowering the potential for infected particles from entering
the environment, and higher mask compliance leads to more ef-
fective disease mitigation.[45] Social distancing and the closing of
restaurants, gyms, and other public locations led to a statistically
significant reduction in the spread of COVID-19 as well.[46] Con-
tact tracing, which helps officials control the spread of the virus
by tracking who may have been in contact with an infected indi-
vidual, has also been found to be effective.[47]

In December of 2020, the first pharmaceutical intervention
(i.e., vaccine) for COVID-19 became available.[48] The messen-
ger RNA (mRNA) vaccines for COVID-19 contain a small piece
of the SARS-CoV-2 virus’s mRNA that triggers the immune sys-
tem to start producing an immune response to the virus. The
FDA found that the Pfizer vaccine was 95% effective against
COVID-19,[48] but effectiveness may be reduced by mutations.[49]

Mutations known as “variants of concern” impact aspects such
as transmissibility and vaccine effectiveness.[50] In particular,
some variants can evade antibodies caused by infection and
current vaccines,[51] which calls for the development of next-
generation vaccines and antibody therapies.[52] The existence of
repeat infections[53] as well as breakthrough infections[54,55] (i.e.,
infection of a fully vaccinated person) have led to question the
possibility of herd immunity,[56] that is, the assumption thatmost
transmission would be blocked if a given threshold of the popu-
lation gains immunity.
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2.2. Agent-Based Models for COVID-19

In early 2020, given the urgency of the COVID-19 pandemic and
the scarcity of data, the first generation of COVID-19 models was
based on a compartmental approach in which individuals are ag-
gregated into groups (e.g., susceptible, infected) and a simulation
proceeds by applying flow equations between groups. These clas-
sic compartmental epidemiological models focused on estimat-
ing key epidemiological quantities such asR0, the number of new
cases generated by each infected individual.[57,58] Although these
models were imperfect in different ways,[59–61] expert predictions
have still outperformed the general public[62] and their models
“have influenced public health policies and increased the famil-
iarity of the general public as well as policymakers with the mod-
eling process, its value, and its limitations.’[25] The most com-
monly used epidemic models categorized the population into
susceptible, infected, and recovered (SIR) or added an intermedi-
ate stage for exposure (SEIR).[63] A review ofmodels produced be-
tween January and November 2020 found that the SIR and SEIR
approaches represented 46.1% of all models, whereas ABM only
accounted for 1.3% of studies at the time.[64]

As the evidence base progressed, modelers realized that the
assumptions of compartmental models (e.g., treating individu-
als as part of homogeneous groups) were limiting. In the words
of Tolk et al., “As the pandemic unfolded, it quickly became ev-
ident these were not valid assumptions: the virus does not im-
pact all populations evenly, and the interaction among differ-
ent groups is far from even.”[65] The rationale for the use of

individual-level simulation models such as ABM thus centers on
the notion of heterogeneity: heterogeneity of risk factors for in-
dividuals (e.g., age and underlying or “pre-existing” conditions
that increase the risk of severe illness conditions[66,67]), hetero-
geneity of behaviors (e.g., interest in vaccination,[68] compliance
with mask policies[69,70]), heterogeneity in socio-ecological vul-
nerability across places (e.g., lower access to resources in rural
counties,[71] urban sub-populations at risk[72]), and heterogene-
ity in contact patterns.[73,74] Although the need was clear, the de-
velopment of ABMs was initially challenged by a lack of data,
limited understanding of the disease, and occasionally a limited
skillset.[25] The situation has changed with the growing evidence
base on COVID-19, the availability of mobility data, and the de-
velopment of reusable frameworks to instantiate ABMs specifi-
cally for COVID-19 (e.g., COVASIM,[75] OpenABM-Covid19,[76]

various modeling pipelines[77]).
An ABM represents individuals (as agents) and their interac-

tions with the environment as well as other agents. Each agent
can have a state along with additional characteristics such as age
or position within social networks. States in several ABMs are in-
spired by classic compartmental epidemiological models, hence
it is common to use a SEIR model to represent the progression
of each agent.[29,78,79] Although earlier models may have relied on
only four stages (SEIR), newer ones have introduced new stages
to account for vaccination in two doses, disease severity, and the
difference between asympatomatic and symptomatic individu-
als (Figure 1). In contrast with their mathematical predecessors,
ABMs include the movements of agents over a space (e.g., a grid)

Figure 1. Flow diagram describing the possible journey of an agent, in the study of Li and Giabbanelli.[12] Additional model logic is governed by algo-
rithms, to identify agents who will be vaccinated or infected.
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Table 1. Characteristics of the agent-based models.

Characteristic Li[12] Shamil[24] Silva[29] Badham[30]

Model states

Healthy (susceptible) Yes Yes Yes Yes

Infected (not contagious) Yes Yes Yes

Infected (contagious, asymptomatic) Yes Yes Yes

Infected (contagious, symptomatic) Yes Yes Yes Yes

Hospitalized Yes Yes

Mild infection Yes

Severe infection Yes Yes

Critical infection Yes Yes

Recovered (immune) Yes Yes Yes Yes

Dead Yes Yes Yes Yes

Vaccinated (first dose) Yes

Vaccinated (waiting) Yes

Vaccinated (second dose) Yes

Fully vaccinated Yes

Model characteristics

Time resolution Days Hours Hours Days

Work network Yes Yes Yes

School network Yes Yes

Community network Yes Yes Yes Yes

Home network Yes Yes Yes

Number of agents 656 000 10 000 Varies 20 172

Table 2. Examples of wallclock time across hardware configurations for the
four COVID-19 ABMs considered here.

Model Wallclock time per simulation
run [s]

Hardware setup

Li[12] Between 900 and 1200 Cloud computing (Azure)

Shamil[24] 32 492.86 on average High-performance computing
cluster

Silva[29] 727.12 on average High-performance computing
cluster

Badham[30] 34.63 on average Personal computer

and interactions with other agents or their environment (e.g.,
contaminated surfaces), which leads to the spread of the simu-
lated disease. One of the factors that makes ABM agents unique
is their ability to model individual characteristics such as age or
other risk factors in the context of infectious disease.
States and characteristics found in the four chosen models for

our study are expanded in Table 1. Although eachmodel has been
previously published with a detailed technical description, we
provide a succinct overview of eachmodel in the subsequent sub-
sections to keep this manuscript self-contained. Since a key mo-
tivation for our approach (and the use of meta-modeling in gen-
eral) is to create a cheaper proxy to a computationally expensive
model, we exemplify the wallclock time typically required by the
four chosen models, across platforms (Table 2). These platforms
show the diversity of hardware that end users of models can ac-
cess, from cloud-computing services (Microsoft Azure with AMD

EPYC platform for Li and Giabbanelli[12]) and high-performance
computing clusters (Intel Xeon processors with 96 Gb of mem-
ory for Shamil et al.[24] and Silva et al.[29]) to personal computers
(AMD Ryzen with 16 Gb of memory for Badham et al.[30]).

2.2.1. Li and Giabbanelli Model

The ABM developed by Li and Giabbanelli[12] is built on the Co-
vasim framework, by including several modifications that intro-
duce vaccination. This ABM uses 656 000 agents and simulates
the spread of COVID-19 for 180 days. This model contains states
for susceptible agents, as well as several different states of infec-
tion, including asymptomatic infection, and three other levels of
infection frommild to critical (Figure 1). It also includes the abil-
ity to simulate two vaccine doses for agents, which can remove
them from the pool of susceptible agents. In addition to vaccine
support, the model also inherits the ability to handle quarantines
and contact tracing from Covasim. Finally, the Covasim platform
embeds agents across different networks (e.g., community, work,
school) to model how interventions have different impacts across
settings (e.g., social distancing in the community, face masks at
work).

2.2.2. Shamil et al. Model

The ABM created by Shamil et al.[24] includes two possible agent
configurations for different cities in the United States. One such
configuration is a simplified representation for New York City,
which contains 10 000 agents simulated for 90 days. It con-
tains states representing different states of contagion and symp-
toms, with agents initially healthy and transitioning through a
non-contagious state into a contagious asymptomatic state, then
into a contagious symptomatic state, and finally into a recov-
ered or dead state. This model includes representations of large-
scale gatherings and various other day-to-day activities that could
spread the virus, such as attending work or school. This ABM
provides support for contact tracing and quarantines.

2.2.3. Silva et al. Model

The ABM released by Silva et al.[29] models agents in infected
states, as well as different levels of virus severity and hospital-
ization. Age and risk factors are also included for each agent, and
these can be usedwhen determining a lockdown policy. This sim-
ulationmodels the interactions of different agents from different
home environments as well, and allows for lockdowns that pre-
vent agents from traveling and interacting. This ABM provides
support for quarantines, lockdowns, and masks.

2.2.4. Badham et al. Model

The ABM built by Badham et al.[30] models agents in infected
states, and contains states for hospitalization and critical in-
fection. Community spread is represented as the agents move
around their environment, although movement of agents can
be restricted by several policies. This ABM provides support
for social distancing, hospital simulation, isolation, and move-
ment restrictions.
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Figure 2. Flowchart for the process of training a meta-model.

2.3. Simulation Meta-Modeling

Meta-models, also known as surrogate models, are approxima-
tions of a more complex model.[80] Although an approximation
may be less accurate, this is usually tolerated in exchange for a
significant improvement (i.e., reduction) in computational cost
such as wallclock time.[80] For example, a meta-model for hydro-
dynamic and thermal simulation reduced compute time by 93%
while only reducing accuracy by 4%.[81] In another simulation of
social networks, simplifications resulted in an 85% decrease in
runtime and a 32% decrease in memory requirements.[82]

As the notion of “models” can be broadly conceptualized across
fields, it is important to distinguish two settings. In pure math-
ematics, meta-models are mathematical functions that approxi-
mate the output of another, more complex mathematical func-
tion. In the simulation of interest here, meta-models are models
that predict the results of a simulationwith less computational re-
quirements. Machine learning is one approach to create simula-
tion meta-models. One common type of machine learning meta-
model is a regression model,[83–85] which is appropriate when the
output of the simulationmodel (which we seek to approximate) is
a discrete value based on its input parameters. Another common
type of machine learning meta-model is a classification model,
which produces a class (i.e., a group with similar characteristics)
based on input parameters.[86] In this paper, we focus on regres-
sions, whereby the objective is to provide a accurate but faster
proxy to the final result of an expensive simulation.
Figure 2 provides a high-level illustration for the process

for constructing a simulation meta-model via machine learn-
ing. Gathering data for a meta-model involves running the
simulation multiple times with varying input parameters. The
parameters that should be varied during simulation runs are the
desired meta-model input parameters.[87] For example, to train a
clinically relevant meta-model of the human immunodeficiency
virus (HIV), a HIV simulation model may be run for several
values of clinically relevant parameters such as the start and
expected efficacy of treatment.[88] The data produced by the
simulation model then becomes the input or training data for
themeta-model. The number of data points gathered for training
depends on the computational requirements of the simulation
itself.[89] Once the meta-model has been trained, its results are
compared against the simulation itself using an error metric
such as the mean-square error (MSE), root-mean-square error
(RMSE),[87] or normalized RMSE.[90]

Several sampling methods or “designed experiments” allow to
produce the training data for themeta-model, that is, select values
of the simulation parameters. Such techniques include random
sampling, factorial sampling, and Latin hypercube sampling,[91]

which have a long track record when applied to simulations.[92]

Random sampling picks a certain number of entries or parame-
ter values at random, which may lead to a cluster of points (i.e.,
oversampling in some areas) or an absence of points (i.e., under-

sampling). Factorial sampling explores every value of a parameter
combined with every value of every other parameter.[93] For exam-
ple, if two different parameters could be either 0 or 1, the factorial
set would be (0, 0), (0, 1), (1, 0), and (1, 1). Latin hypercube sam-
pling uses each value for a parameter only once, but ensures an
even spread over the domain of parameter values.[94]

3. Experimental Section

In this section, we explain how we used each ABMs to per-
form the machine learning regressions. A table is provided to list
the parameter values used in generating data from each model.
When the parameter values require further explanations, a sec-
ondary table is also included; additional details can be found
in the peer-reviewed manuscripts corresponding to each model.
Apart from the Li and Giabbanelli model for which we already
had data (as it was produced by our group), we accessed the pub-
lic implementations for each of their other models, verified the
code vis-a-vis the corresponding publication, and then produced
the simulation data. A flowchart of the overall process is provided
in Figure 3.

3.1. Data Generation and Collection

The datasets generated based on the following procedures can
all be openly accessed by readers from our third-party repository,
https://osf.io/d7vqa/. Our approach to data collection relied on
a factorial design of experiments, thus gathering data for combi-
nations of parameter values. We also assessed whether the mod-
els experienced bifurcations or noticeably different simulation
paths, as each pathway in a model’s execution could then require
dedicated data collection. As the models did not exhibit bifurca-
tions (Figure 4), we focused on the creation of a comprehensive
dataset in terms of combinations of parameter values.

3.1.1. Li and Giabbanelli Model

This model was produced by our research group and utilized as
part of a factorial analysis (in the absence of vaccines)[13] or via a
grid search (with vaccines).[12] It was thus the only case in which
we had an existing and extensive simulated dataset to rely upon.
For our meta-modeling purposes, we split the original dataset
into three separate sets based on their vaccine plans: no vaccines
in Table 3 and the two vaccination plans in Table 4. The first sub-
set of data captured simulations that did not include a vaccine, the
second subset contained the simulations that used one vaccine
plan (under the Trump administration), and the third subset con-
tainedwas formed of vaccine simulations under the other vaccine
plan (from the current Biden administration). These three sets of
data were used to train three different meta-models, since the
two vaccine datasets contained vaccination while the first, non-
vaccine dataset was limited to non-pharmaceutical interventions.
The number of simulation runs per combination of parameter
values varies, as it was set to automatically spawn new runs until
a 95% confidence interval would be reached (in contrast with a
pre-determined fixed number of runs). The dataset had a total of
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Figure 3. Our process for training a machine learning regression meta-model, detailing data generation from simulations (top) and machine learning
(bottom).

n = 727 706 data points, which are approximately evenly divided
between the vaccine subsets (n = 209 042 for the Trump admin-
istration and n = 207 990 for the Biden administration) and the
non-pharmaceutical subset (n = 310 674).

3.1.2. Shamil et al. Model

For the Shamil et al. model,[24] we ran the New York city
configuration with four different values for two parameters

using a factorial design, where every possible combination is
used. We also performed ten replications on each combina-
tion. The parameters we used are explained in Table 5. The
85% smartphone ownership level is based on a survey by the
Pew Research Center from February 8, 2021.[95] The 14-day
quarantine is based on the recommendations of the CDC at
a time close to when the model was developed, in December
2020.[96] In total, we generated n = 240 data points from this
model.

Figure 4. Examples of paths of 100 individual simulation runs over time in two of the models. Simulation parameters were: a) distancing policy: by
contact, short/long movement reductions: 0.25, contact reduction 0.4; b) 500 agents, grid size 500, half lockdown, masks required, contagion distance
0.5. The 95% confidence intervals were: a) 0.89204 ± 0.04045 (0.85159 to 0.93248), b) 0.23349 ± 0.00691 (0.22657 to 0.24040).
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Table 3. Parameters and values explored by Li and Giabbanelli in the ab-
sence of vaccines. When vaccines are present, only 6 combinations to pro-
vide broadly different scenarios in Table 4.

Parameter Values used

Mask wearing In all networks, work and school only,
community only

Reduction in social contacts At work and in schools: 5%, 30%. In
the community: 10%, 30%

When to test quarantined individuals Start of quarantine, end of
quarantine, both

Test sensitivity 55%, 100%

Delay in contact tracing None, 1 week

% of contacts of a positive case that
can be traced

20%, 100%

When to start contact tracing for an
exposed individual

Immediately, upon confirmation from
a positive case

Table 4. Parameters and values used by Li and Giabbanelli. The two in-
tervention settings (Trump administration, Biden administration) are run
separately. Each intervention setting is run with all combination of the
other parameter values.

Parameter Values used

Vaccination Trump administration: 20 million vaccines in Jan’21,
30 in Feb’21, 50 million monthly thereafter Biden
Administration: 1 million vaccines every day

Non-pharmaceutical
interventions

6 scenarios, including a no-intervention case. The
dataset in Table 3 explores the scenarios. (For a
complete description of the six scenarios, see
Table 2 in Li & Giabbanelli[12])

% of population
seeking vaccines

From 20% to 60%. Intermediate values are
automatically determined to maximize
information.

Vaccine efficacy From 88% to 99%. Intermediate values are
automatically determined to maximize
information.

3.1.3. Silva et al. Model

For the Silva et al. model,[29] we ran the model with a factorial de-
sign on five different parameters, running each for 60 days in the
model. We also performed 30 replications on each combination.
The parameters we used and their values are listed in Table 6. To
verify that we used this model correctly, we replicated Figure 5a
from the original paper[29] that used tracked agent states over 60
days with no interventions and a population and grid size of 300.
In total, we generated n = 13 500 data points from this model.

Table 5. Parameters and values used in the Shamil et al. model dataset.

Parameter Values used

Days required for contact tracing 1, 3, 5, 7

Percentage of contacts that can be traced 0.5, 0.6, 0.7, 0.8

Percentage of the population who own a smartphone 0.85

Days required in quarantine 14

Table 6. Parameters and values used in the Silva et al. model dataset.

Parameter Values used

Population size 500, 750, 1000

Grid size 500, 750, 1000

Type of lockdown none, total, half, conditional, vertical
(explanations in Table 7)

Masks required? True, False

Contagion distance 0.05, 0.25, 0.5, 0.75, 1

Figure 5. Latin hypercube for TreeLearner hyperparameters.

3.1.4. Badham et al. Model

For the Badham et al. model,[30] we ran the model with a factorial
design on 4 different parameters, performing 30 replications.
All other settings are set to the default values for the model’s 1.1
version. The parameters we altered are explained in Table 8. To
verify that we used this model correctly, we replicated Figure 4
from the original paper[30] that tracked daily hospital admissions
per day. In total, we generated n = 2430 data points from this
model.

Table 7. Explanations of values for the lockdown type parameter (c.f. Ta-
ble 6).

Lockdown type Description

none No lockdown

total Lockdown required for everyone

half Lockdown required for random 50% of the
population

conditional Lockdown required for anyone in a contagious
environment

vertical Lockdown required for anyone in an at-risk category
or in a contagious environment
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Table 8. Parameters and values used in the Badham et al. model dataset.

Parameter Values used

Social distancing policy None, AllPeople, ByContact (explanations in
Table 9)

Contact reduction 0.2, 0.4, 0.6

Short movement reduction 0, 0.25, 0.5

Longer movement reduction 0, 0.25, 0.5

Table 9. Explanations of values for the social distancing policy parameter
(c.f. Table 8).

Distancing policy Description

None No distancing

AllPeople Everyone reduces their contacts by the “contact
reduction” amount

ByContact Probability of contact is reduced by the “contact
reduction” amount

3.2. Normalization and Model Training

To perform our regressions, we used TreeLearner regressors
from the Orange data mining library (orange3 version 3.26.0)
running on Python (version 3.8.3). When we loaded our datasets,
we converted their cumulative infection numbers to proportions
of the total population, so that the results from the four different
models are comparable. Then, we used a tenfold cross-validation
method to actually train our meta-models. Cross-validation in-
volves separating data into ten different “folds.” One by one, these
folds are used as testing data for our model, while the other nine
folds are used to train the model. We also needed to optimize the
parameters of our regressor, so we used hyper-parameter opti-
mization to maximize our meta-model accuracy.
Hyperparameter optimization ensures that the regressor is us-

ing the most accurate set of model parameters, and it does this
by performing a second set of cross-validations, which is known
as a nested cross-fold validation design. The training data from
the first set of folds is divided into a further ten folds, where one
fold at a time is used as a validation set. Then, the remaining nine
folds are used to train a model using the different combinations
of parameters to select the best combination. To select our param-
eters, we used a Latin hypercube design, which ensures that the
sample space for parameters is covered effectively. We optimized
the two parameters that have the most impact on the decision
tree regressor:

• the maximum depth of the tree. A smaller depth forces the
meta-model to be simplified. We considered values from 5 to
50 by steps of 5.

• the minimum number of samples to split a node . The ma-
chine learning algorithm stops sooner and delivers a simpler
model if we raise the minimum number of samples. We ex-
amined values from 10 to 100 by steps of 10.

For details on the impact of these parameters on a decision tree,
we refer the reader to two recent examples of optimization.[97,98]

The optimization process was conducted using a Latin hypercube
with ten different samples (Figure 5).

3.3. Model Evaluation

Once the hyperparameter optimization selected the most ac-
curate set of parameters, these parameters were used to build
the model for the outer folds. Then, we were able to analyze
how the accuracies of the models changed in comparison with
the amount of data that was used to train them by calculating
the RMSE for their predicted infected proportions (Equation 1).
RMSE is a common errormetric for regressionmodels[99–101] and
it is useful because the units for RMSE are the same as the units
for the simulation output (i.e., our errors for this paper are mea-
sured in proportions of the population).

RMSE =

√∑n
k=0(ŷk − yk)2

n
(1)

While the RMSE is informative for the quality of the regres-
sion, it does not suffice to compare two models, especially when
the inputs are auto-correlated in the simulationmodel and are as-
sumed to be independent in the meta-model. Consequently, we
complement the RMSE by comparing the point estimates of the
meta-model and simulation model on different outputs (num-
ber of deaths, number of infections) and across levels of policy-
relevant control parameters (e.g., reduction in contacts).
Finally, wemeasure the time necessary to train themeta-model

(wallclock time measured in seconds). This measure is impor-
tant to assess whether the complete pipeline is truly time-saving
for the end user, as the training time may otherwise be a hid-
den and potentially prohibitive cost for some machine learning
methods. In sum, if we need few expensive simulations to create
a meta-model that achieves a low RMSE and the meta-model can
be created quickly, then there is a demonstrated incentive to use
our solution instead of current practices.

4. Results

The ABMs used for this study were chosen as we could access
their code and verify our use of the model vis-a-vis published
figures in peer-reviewed manuscripts. The first subsection fo-
cuses on this verification effort, by contrasting the results that
we obtained from the model with the authors’ published results;
figures were all reproduced with the authors’ permission. The
second subsection is centered on the machine learning results.
To provide full transparency and support replicability efforts re-
garding machine learning, the training data used in this sub-
section is openly accessible on the third-party repository https:
//osf.io/d7vqa/ , provided by the Open Science Framework.

4.1. Agent-Based Model Verification

As noted in Section 3.1.1, the model by Li and Giabbanelli[12] was
not subject to verification, since we directly used data produced
by the model. That is, we already had access to its full simulation
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Figure 6. Figure 5a from Shamil, et al.[24] (left) with our replication (right) using five repetitions. The left figure is reproduced with permission.[24]

Copyright 2021, The Authors, published under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.

results. In contrast, the other two models had to be verified since
we did not have a spreadsheet of results to use and hence we
ran the code provided by the authors. The verification sought to
replicate the published work of the authors, to ensure that we
were using their model adequately.
For the Shamil model, we replicated Figure 5a from Shamil

et al.[24] at six different contact tracing levels (0, 0.6, 0.7, 0.75, 0.8,
and 0.9). Qualitatively, we note that shapes and trajectories of the
infections are similar in our replication (Figure 6). However, val-
ues occasionally differ and some of the curves for the higher trace
levels also overlapped in our replication, which is not something
found in the original. Hence, results are not reproduced in terms
of outcome, but they are “analysis reproducible”[102] since the
same conclusions about the effect of a COVID-19 interventions
are reached based on the authors’ original results and the results
obtained here. Based on previous attempts at replicating simu-
lation models,[103] a possibility is that the high variability in the
model’s output results in noticeable differences across individ-
ual runs and only a large number of runs (e.g., to achieve a 95%
confidence interval) would allow to create comparable curves. In
other words, the discrepancies are a likely consequence of output
variability in the published work.
For the Silva model, we replicated Figure 5a from Silva et al.[29]

using a population size and grid size of 300 (Figure 7). The state
counts in our replication closely follow the average state counts

in the original figure. For the Badham model, we replicated Fig-
ure 4 from Badham et al.[30] using the model’s atJul13 scenario
(Figure 8). The shape and values in our replication closely follow
the original figure. Bothmodels were thus reproduced at the level
of the outcome.

4.2. Machine Learning Results: RMSE and Point Predictions

The RMSE for the Li and Giabbanelli model[12] without vaccines
is shown in Figure 9. The RMSE is around 0.0795 regardless of
the sample size, which shows that running as little as 5% of the
experiments from the ABM suffices to then infer the rest via ma-
chine learning. However, we note that the error margins do ben-
efit from an early increase in data, of up to 30% of the sample
size. The situation changes when vaccines are introduced. For
both the Trump administration’s vaccine plan and the Biden ad-
ministration’s plan, we see that the RMSE strictly decreases as
the sample size increases (Figure 10). The error can be as low as
0.0034, while noting that the decrease is essentially from a low
initial error (RMSE of about 0.0041 to 0.0043 at 5% of the sample
size) to a slightly lower error.
Different situations are observed among the other three mod-

els. For the Shamil et al. model,[24] results show an error around
0.065 when usingmost of the data (Figure 11). Most interestingly,

Figure 7. Figure 5a from Silva et al.[29] (left) with our replication (right) using ten repetitions. The left figure is reproduced with permission.[29] Copyright
2021, Elsevier.
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Figure 8. Figure 4 from Badham et al.[30] (top) with our replication (bottom) using 1000 repetitions. The top figure is reproduced under the terms of
the Creative Commons CC-BY License.[30] Copyright 2021, The Authors, published by JASSS.

the error has a non-monotonic relation with the sample size: it is
lowest at the smallest sample size (0.1%) and at about half of the
sample (0.45%), but higher in between. For the model by Silva
et al.,[29] we see a decrease in RMSE as th sample size increases
(Figure 12). Again, we note that the gains should be contextual-
ized given the small range of the RMSE: 10% of the dataset suf-
fices to achieve and error of 0.028 and even taking the full dataset
only brings it down to 0.0225 at the best. Finally, the model by
Badham et al.[30] shows a decrease of RMSE as the sample size
increases up to 50% of the dataset, and then the error plateaus
(Figure 13). Relative to its scale, we emphasize that the total de-
crease in RMSE between the 5% and 100% sample sizes is only
around 0.01.
To further assess the errors, we compared the outcomes of the

meta-model and the four simulation models on two variables of
interest (death cases, infections) across several values of policy-
relevant parameters such as the tracing percentage or contact
reduction. Results show that the meta-model follows the simu-

lation model very closely across several intervention scenarios
(Figure 14-a,c,d). Although Figure 14d stands out, the tight y-
axis means that the meta-model has settled on one value (0.19)
whereas the simulation model still makes very small changes (by
at most 5 × 10−5). The main discrepancy is seen in Figure 14e,
where the meta-model follows the overall trend of the simulation
but point estimates can deviate by as much as 0.025.

4.3. Training Times

For each ABM, we measured how long it took to create the ma-
chine learning meta-model based on 100% of the data. This is an
upper bound, as the previous section has shown that comparable
estimations are obtained when the meta-model is trained with
less data. Results (Table 10) were obtained on a personal com-
puter, showing that the meta-model can be built within minutes.
The training time depends on the complexity of the search space,
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Figure 9. Graph of the root-mean-square error of the predicted proportion of the population that was infected at different sample sizes for the Li and
Giabbanelli dataset without vaccines.

Figure 10. Graph of the root-mean-square error of the predicted proportion of the population that was infected at different sample sizes for the Li and
Giabbanelli dataset using a) the Trump administration vaccine plan and b) the Biden administration vaccine plan.

as evidenced by variations for a single model based on either the
policy scenario (Li and Giabbanelli) or the desired output (Silva
et al.). These time estimates can be contextualized based on Ta-
ble 2, which showed the time to run a single simulation fromeach
ABM. The contrast reveals that the costs of building the meta-
model are less than running a single simulation from the corre-
sponding ABM, which often needed a computing cluster. In con-
clusion, there is no “hidden cost” in building the meta-models as
this operation is computationally inexpensive compared to the
simulations.

5. Discussion

As real-world data does not directly support what–if analyses and
policy evaluation of alternatives, high-resolution models such
as ABMs are needed to support policymakers in running de-
tailed scenarios and building trust in their outcomes. However,
these ABMs can be computationally intensive, thus requiring re-
sources that policymakers may not have readily at their disposal,
or taking too long given the urgent need for actions. In this case,
meta-models are needed to support analysts and decision-makers
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Figure 11. Graph of the root-mean-square error of the predicted proportion of the population that was infected at different sample sizes for the Shamil
et al. dataset.

Figure 12. Graph of the root-mean-square error of the predicted proportion of the population that was infected at different sample sizes for the Silva
et al. dataset.

by generating results faster, on a ubiquitous hardware. While
many other works have been devoted to either creating ABMs for
COVID-19 or applying machine learning to real-world data,[65]

our study is the first to combine these techniques to examine
whether access to COVID-19 ABMs could be democratized by
making them more computationally affordable for end users.
Specifically, we analyzed how the amount of data used to train a
regression meta-model affects its accuracy and differentiated sit-
uations where more data is required from situations where small
amounts of data are sufficient. This analysis contributes to the
broader literature on assessing and simplifying COVID-19 mod-

els, which has already established that the number of parameters
could be decreased significantly.[59]

Our results shows that models which do not have strong in-
terventions like lockdowns or vaccines do not require as much
training data, hence it is possible to run few computationally
expensive simulations and then switch to an inexpensive meta-
model. The Covasim model with no vaccines and the Shamil
model showed no discernible downward trend in their RMSE
values, so adding more training data would not guarantee an in-
crease in model accuracy. While the Badham model showed a
slight decrease in RMSE, it only decreased by 0.01 from 5% to
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Figure 13. Graph of the root-mean-square error of the predicted proportion of the population that was infected at different sample sizes for the Badham
et al. dataset.

Figure 14. Comparison of outcomes from the meta-model (blue) with the simulation model (red) across variables of interest (top row: infections;
bottom row: death cases) and policy scenarios for the four models. Other parameters were fixed as follows: a) distancing policy: by contact, short/long
movement reductions: 0.25; b) layers impacted: all, contact reduction in work/school/community: 0.7, daily tests: 1.1M, quarantine: both, test sensitivity
0.55, time to contact trace 7 days, no presumptive quarantine; c–d) 500 agents, grid size 500, conditional lockdown, masks; e) 3 days required for contact
tracing.

100% sample size. Conversely, the models which did have strong
interventions showed a strong downward trend in their RMSE
values. Both Covasim models that used vaccines only began to
stabilize after 60% of the data was used in training, and while the
Silva model stabilized slightly faster, it took around 45% of the
data to do so. Note that the RMSE values were low to start with
(e.g., less than 0.0045 for Covasim with vaccines), so the initial
error may already be tolerable for some end users as part of a
tradeoff between accuracy and computational needs.

There are threemain limitations to our work. First, we focused
on peer-reviewed COVID-19 ABMs that we could run to obtain
data and for which we could verify our use of the model vis-a-vis
published results. As shown in previous calls for transparency
in COVID-19 modeling, modelers do not systematically provide
their code,[104] despite the existence of several platforms in which
scientists can openly share code and data.[105] In a transparency
assessment, Jalali et al. found that most models do not share
their code,[106] which echoes similar observations about practices
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Table 10. The maximum time to train a model on a personal computer
shows that the cost is less or equal than performing a single simulation
run (Table 2), which confirms that our overall approach can be time-saving
for decision-makers.

Model Scenario Time [s] to build
meta-model on
100% data

Data points

Li and Giabbanelli No vaccine 217.5882 310 674

Vaccine, Trump
administration

375.5181 209 042

Vaccine, Biden
administration

396.3571 207 990

Silva et al. Predicting infections 41.0124 13 500

Predicting deaths 34.1787

Badham et al. N/A 10.1618 2 430

Shamil et al. N/A 4.7391 240

in agent-based modeling across application domains.[107,108] Our
criteria thus meant that we could only assess a subset of existing
models and it is possible that different trends or initial error levels
are observed in other models. We note that projects that shared
their code were also transparent regarding how their computa-
tional results were produced,[109] hence we were able to perform
verification and we applied the same level of transparency when
conveying the model’s parameters.
Second, several key parameters and assumptions regarding

COVID-19 continue to change. For example, a study on almost
100 000 volunteers in July 2021 found a vaccine effectiveness
of 49%, which is less than the lowest value assumed in some
of the previous modeling studies.[12,110] Other studies have
shown that vaccinated individuals have a comparable viral load
to unvaccinated ones within the first few days,[111,112] whereas
the flow diagrams used in many models have considered that
vaccinated individuals were fully removed from the population.
Our conclusions are limited to COVID-19 ABMs developed
so far, since future models may exhibit markedly different
dynamics. In particular, bifurcation may be present in future
models, which would require an analysis of models by clusters
of trajectories rather than average dynamics.[113] Although in
reality there are rare events whose large impact (e.g., super-
spreader events, highly publicized case of a celebrity) can set
the rest of the simulation on a very different trajectories, most
current ABMs to not (yet) account for these events, hence
they are easier to approximate with a meta-model. Many of
the COVID-19 models exhibiting bifurcations are built from
nonlinear differential equations rather than ABMs; these models
provide abundant illustrations of the existence of bifurcations of
various types,[114–118] such as Hopf bifurcation (and the related
Neimark–Sacker bifurcation) or period-doubling bifurcation.
Finally, the size of the datasets that we generated were limited

by the high computational needs of the COVID-19 ABMs. For ex-
ample, the Shamil model required around 8 h per run on a node
of a high-performance computing cluster. Given this limitation,
our conclusions focus on the trend (e.g., is there a reduction in
error as more simulations are used?) rather than on a precise
point-estimate of the error (e.g., exactly how many simulations
are required to achieve a given error level).

There are several potential avenues for future work. We fo-
cused on predicting the final result of the simulation, but there
would also be merit to predicting the time series of outputs. Al-
though the use of meta-modeling of simulations for time series
is more common for financial simulations,[119] there could also
be an opportunity for future studies to apply these techniques in
the case of COVID-19 ABMs. In particular, several such ABMs
(e.g., COVID-Town[120]) have been developed to perform a joint
analysis of economic and epidemic dynamics, hence they are par-
ticularly interested in the shape[121] of the economic recovery over
time (i.e., the time series).
Another possibility would be to explore the prediction of mul-

tiple outputs. Indeed, various stakeholders may be interested in
the effects of a COVID-19 intervention on different outcomes
ranging from epidemiological (e.g., number of new cases) to lo-
gistical (e.g., spare capacity in intensive care units) and economi-
cal (e.g., loss in productivity or revenues). Creating a multi-value
regression model would thus address the multi-value optimiza-
tion problem whereby decision-makers seek a balance between
the effects of an intervention on health, the economy, and other
(possibly non-correlated) issues. While we may expect that more
simulations are necessary to train an accuratemeta-model able to
predict several partially correlated outputs, the specific relation-
ship is still a question. That is, we still need to establish how the
number of predicted outputs raises the need for simulation data.
In the interim, modelers can follow our approach to predict the
effect of an intervention onto different evaluation metrics, but
they would create one regression model per metric rather than a
singlemodel predicting allmetrics at the same time.Figure 15 ex-
emplifies the performance of a model trained to predict the num-
ber of deaths rather than infections on the Silva et al. ABM, show-
ing that the model is already accurate with a very small fraction
of the data and can be further improved if more data is provided.
Finally, the amount of data necessary to train an accurate

model may be further reduced depending on the design of
experiments.[122] Indeed, when a high-resolution simulation sys-
tem is used to train a meta-model, the design of experiments
to produce the data is essential for the success of the meta-
model.[123,124] In ABMs that have a very large number of param-
eters, an important first step would be to assess which ones play
a role in determining the output, either by themselves or in con-
tribution with other parameters (second order effect, third order
effects, etc). This can be approached by a factorial design of ex-
periments and an ensuing analysis to decompose the variance
in the output onto the action of parameters. As aforementioned,
such analyses have shown that the number of parameters could
be decreased significantly.[59] This approach may be less appli-
cable to the ABMs studied here, as they have only a handful of
parameters, which play a statistically significant role either di-
rectly or in contribution with other parameters.[13] In this case,
an adaptive design of experiments may be more helpful[125–127]

than a fixed design.

6. Conclusion

In this paper, we analyzed how the amount of data used to train
a simulation meta-model affected the accuracy of the model. We
found that for models with no strong interventions such as vac-
cines or lockdowns, a small amount of data could generate a
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Figure 15. Root-mean-square error of the predicted proportion of the population that died (rather than be infected) as a function of the fraction of data
used to train the meta-model. Insets provide a per-fold graph showing the same RMSE (y-axis) across folds in a 10 cross-fold validation (x-axis); note
that folds are unordered hence insets cannot be used as trend graphs.

model with similar accuracy to one trained on a much larger
amount of data.However,models which had strong interventions
took large amounts of data to train a model that achieved a sta-
ble accuracy. These results indicate that modeling the spread of
COVID-19 without strong interventions can be done with very lit-
tle data, but when stronger interventions are considered, much
more data is required to train an accurate model.
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