
1Scientific RepoRts | 6:31299 | DOI: 10.1038/srep31299

www.nature.com/scientificreports

Reciprocity in spatial evolutionary 
public goods game on double-
layered network
Jinho Kim1, Soon-Hyung Yook1,2 & Yup Kim2

Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real 
world systems, many interaction topologies are not isolated but many different types of networks are 
inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game 
(SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and 
numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, 
depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network 
reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. 
Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary 
dynamics on multiplex networks and inter-connected networks at the same time.

Cooperation is a ubiquitous phenomenon in nature from micro-organisms to human society. The emergence of 
cooperation among the selfish individuals has been a long lasting conundrum in various scientific disciplines1–12. 
There have been many attempts to explain how the cooperation emerges through the interaction among selfish 
individuals. Among those studies game theory has provided an important theoretical framework to understand 
the emergence of cooperation through the strategic interactions among individuals. And it has been success-
fully applied to diverse fields such as evolutionary biology and psychology1, computer science and operations 
research2,3, political science and military strategy4,5, cultural anthropology6, ethics and moral philosophy7, eco-
nomics8,9, traffic flow10,11 and public health12. The central aim of game theory is to determine conditions needed 
for cooperation to emerge between egoistic individuals13–15. Recently, many studies have focused on spatial evo-
lutionary games to understand how steady-state strategies emerge in various structures and to identify the char-
acteristic features of steady-state strategies15–18. Interestingly, in structured population, individuals only interact 
with their nearest neighbors and it becomes possible for cooperators to survive by forming clusters in which they 
defend themselves against defectors’ exploitation. This is known as network reciprocity16–25.

Spatial evolutionary games have mainly been studied on a single, isolated network. However, empirical evi-
dences show that many, if not all, real world systems are not isolated but many different types of networks are 
interlinked26. For example, family, friendship and work-related networks are interlinked by each individual in 
society. Metabolic synthesis, protein-protein interaction, signaling and regulatory networks altogether constitute 
an inter-cellular network in a cell. Various financial, trade and political networks are also interlinked to form a 
global economic system. The ecological system is also composed of different level of hierarchical networks. Thus, 
the game theory on a single network cannot provide a complete explanation on how the cooperation emerges 
in nature. Only recently, spatial evolutionary games on the interdependent networks, multiplex networks, and 
interconnected networks have been studied to understand how imitation and interaction between the networks 
influence the final cooperation levels26–32.

In the interconnected network, there are actual physical links between different networks rather than the 
dependency links in interdependent networks. Propagation of microcredit across the countries, possibly across 
the interconnected networks is an example of the propagation of cooperations from one network to another. In 
Bangladesh, microcredit has grown in popularity in the 1970s. Group-lending is a key part of microcredit. The 
loan to one participant in group-lending depends upon the successful repayment from another member, thus 
cooperation among participants is very important in microcredit. After few years, microcredit is widely used in 
developing countries and is presented as having “enormous potential as a tool for poverty alleviation”33. In 2007, 
there are more than 500 organizations in the United States that provide to microcredit owners34.
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To understand how the coupling between networks develops the cooperation or the network reciprocity, 
in this report, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random 
networks (DRN’s). Especially, the spatial evolutionary public goods game (SEPGG) has attracted considerable 
attention, because it offers valuable insights into prevailing socioeconomic problems such as pollution, deforest-
ation, mining, fishing, climate control and environmental protection18. SEPGG has been intensively studied to 
find interesting results such as the cyclic dominance35,36, transition nature37, payoff distribution38, and the effects 
of underlying topologies19,26–31,38–44. The effects of loner39,45, punishment and reputation46, and noise47 on the 
emergence of cooperation have been also investigated. As a prototype of interconnected network, we consider 
a double-layered random networks (DRNs), but the generalization to interconnected network with more than 
two layers is straightforward. A DRN consists of two random networks with any size and average degree. If 
the size of each layer is the same then the DRN can be regarded as a multiplex network, in which each layer 
has the same set of nodes. On the other hand, if the size of each layer is different, then each node of one ran-
dom network with the smaller size is linked to a randomly chosen node of the other network. In this case the 
DRN can be regarded as an interconnected network in which two different networks are interlinked through 
the interconnected links. Therefore, the DRN considered in this study can provide a more general framework to 
investigate the emergence of cooperation in various types of interlinked networks. We use the biased imitation 
process24, in which a randomly chosen agent imitates the strategy of the interlinked neighbor on the opposite 
layer with probability p, or that of a randomly chosen node among intralinked neighbors on the same layer with 
the probability 1 −  p. By simulations, we obtain the steady-states depending on p. Especially, for p >  0, we find 
that the anomalous cooperator-enhanced states on the layer which have no cooperators for p =  0. This anoma-
lous cooperator-enhance states resembles the propagation of microcredit. We also explain theoretically how this 
network reciprocity occurs.

Previous Study
To understand “Tragedy of the commons”48 problem with large participants has been studied through the SEPGG 
on the complete graph (CG) and dense random networks17. Depending on the multiplication factor r and the 
size of graph N, either Loner-only state (L-state), which is the anomalous state with no active participants, or 
Defector-only state (D-state), which means the state of “tragedy of the commons”, has been shown to appear on 
CG17. Furthermore, we have shown the following crossover behaviors as the mean-degree 〈 k〉  of underlying ran-
dom networks changes17. For small r, the L-state crosses over to the D-state and the D-state successively crosses 
over to the Cooperator-only state (C-state) as 〈 k〉  decreases. For large r, the direct crossover from the D-state 
to the C-state occurs as 〈 k〉  decreases. We have been found that cooperation gradually increases as the number 
of participants or 〈 k〉  decreases, which is the origin of these crossovers. Hence, the crossovers describe how the 
enhanced cooperation on sparse networks overcomes “tragedy of the commons” on dense networks.

Results
SEPGG on double-layered random network. Now we want to explain how the double-layered random 
networks (DRNs) are composed. The first random network (layer) with the size N1 and the average intradegree 
〈 kintra〉 1 and the second random layer with N2(≥ N1) and 〈 kintra〉 2 are separately constructed. Then, to make DRN 
with ninter(≤ N1) interlinks, ninter different nodes both on the first layer and the second layer are chosen randomly. 
Each chosen node on the layer 1 is made to be randomly linked to a chosen node of the second layer without 
making multiple interlinks to a certain node. (See Fig. 1 ). We call a DRN with N1 =  N2(= N) and 〈 kintra〉 1 =  〈 kintra〉 2  
a symmetric DRN and a DRN with N1 ≤  N2 or 〈 kintra〉 1 ≠  〈 kintra〉 2 an asymmetric DRN.

SEPGG model on a constructed DRN is defined as what follows. Each agent is assigned to a node on DRN. 
The strategy si of the agent on a node i can be Cooperator (C), Defector (D) or Loner (L). In each update an agent 
i is randomly chosen. First, we calculate the payoff Pi of i using the following rule. Let ni,C be the number of agents 
with C, ni,D be that with D and ni,L be that with L among the ki,intra +  ki,inter +  1 agents. Here ki,intera (ki,inter) is the 
intradegree (interdegree) of node i and ni,C +  ni,D +  ni,L =  ki,intra +  ki,inter +  1. Pi is given by,
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Here, c is the cost contributed to the common pool by a C, r(> 1) is the multiplication factor and σ is the fixed 
payoff of an L. We imposed the condition 0 <  σ <  c(r −  1)35. Then, i changes its strategy through a biased imitation 
process as what follows24. With the probability p, the interlinked neighbor j on the opposite layer is selected. With 
the probability 1 −  p, an intralinked neighbor j on the same layer is randomly selected. If i has no interlink, we 
choose a neighbor j from the same layer regardless of p. The strategy of i is changed into the strategy of j with the 
transition probability fij, where
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Here, β(≥ 0) controls the amount of noise. When β →  0 i randomly adopts the strategy of j. However, for β >  0 we 
have shown that there exist distinctive states on random network17. As summarized below the steady-state 
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depends only on σ≡
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2  and 〈 kintra〉 17. Therefore, in this paper, we mainly use β =  c =  σ =  1 for the 

numerical analyses without loss of generality.

Results on the DRN with N1 = N2 = N and kinter = 1. Let’s first study the SEPGG model on the DRN with 
N1 =  N2 =  N on which any agent i has one interlink or ki,inter =  1. We focus the steady-state densities 
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When p =  0, there exists no coupling between the layers and the steady-states of each layers are the same as 
those on a single random network, which we have already studied in ref. 17. The followings are brief summary of 
previous results. Depending on r and 〈 k〉 α(= 〈 kintra〉 α +  〈 kinter〉 α), the steady-state on each layer for p =  0 becomes 
one of the following 5 states. For r0 =  0.3(< 1)
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Next we consider the case of p =  1(complete coupling). In complete coupling, any pair of interlinked nodes with 
identical strategies, i.e., a C-C pair, a D-D pair or an L-L pair, cannot be changed. Any pair with different strategies 
should change into a pair with identical strategies by the first successful transition. Therefore, the final steady-state is 
the absorbing state in which any interlinked pair has a common strategy and ρ ρ ρ ρ ρ ρ= = =, ,C
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Considering the final absorbing state under the initial condition, ρ ρ ρ ρ ρ ρ= = =, ,C
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be anomalous effects to break the density symmetry between layers during evolution. So, we expect ρ1,C(t) =  ρ2,C(t), 
ρ1,D(t) =  ρ2,D(t), ρ1,L(t) =  ρ2,L(t) for p =  1, which is confirmed by simulations on various DRNs. To understand the 
steady-state behavior for p =  1 in a mean-field level, we study the PGG model on the symmetric DRN of two complete 
graphs (CGs). The payoff of a node on CG simply depends on ρC, ρD and ρL

17. When N 1, the payoff of a node with 
D on both CG 1 and 2 is written as =
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 and the payoff of a node with C is PC(t) =  PD(t) −  c. 

Therefore, the transition probability f(1,D)(2,C)(t) that a D-node on the CG 1 accepts the C-strategy of the interlinked 
node on the CG 2 is equal to f(2,D)(1,C) and β= = + ≡β
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fCD(≡ f(1,C)(2,D) =  f(2,C)(1,D)) =  exp(βc)/[1 +  exp(βc)], fLD(≡ f(1,L)(2,D) =  f(2,L)(1,D)) =  1/[1 +  exp(β(σ −  [rcρ1,C(t)]/ 

Figure 1. Schematic diagram for the construction of a DRN. The first random layer with the size N1 and the 
average intradegree 〈 kintra〉 1 and the second random layer with N2(≥ N1) and 〈 kintra〉 2 are separately constructed. 
To construct random layers we use the Erdös-Rényi (ER) network model57 whose degree distribution is known 
to satisfy the Poisson distribution. Then, for DRN with ninter(≤ N1) interlinks, ninter(≤ N1) different nodes are 
randomly chosen on both layers. Then, ninter links are made, so that one-to-one correspondence between the 
chosen nodes on the first layer and those on the second layer occurs.
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[ρ1,C(t) +  ρ1,D(t)])) and fLC(≡ f(1,L)(2,C) =  f(2,L)(1,C)) =  1/[1 +  exp(β(σ −  [rcρ1,C(t)]/[ρ1,C(t) +  ρ1,D(t)] +  c))]. Similarly, fDL(≡ 
f(1,D)(2,L) =  f(1,L)(2,D) =  1 −  fLD) and fCL(≡ f(1,C)(2,L) =  f(1,L)(2,C) =  1 −  fLC) are obtained. Since the first successful update 
changes an interlinked pair of nodes with different strategies (active pair) into the pair with the same strategies  
(dead pair), the final absorbing state appears very rapidly. If the active pair is changed into the dead pair in accord-
ance with the initial transition probabilities, then the steady-state for p =  1 on the DRN of two CGs is calculated by
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As shown in Fig. 2(a), the mean-field equation (3) explains the simulation results on the DRN of two CGs for 
any r very well. When r 1, 
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and ρα D
S
,  as well as ρα C

S
,  gets smaller as r decreases for r <  20.

Next, we study how the steady-state on the DRN with general 〈 kintra〉 α’s for p =  1 varies from the mean-field 
result. In Fig. 2(b,c), the simulation results on symmetric DRNs are shown. The result for large r (or r =  30) in 
Fig. 2(b) deviates from the mean-field result. The deviation becomes much more enhanced as 〈 kintra〉 α gets smaller. 
Furthermore, ρα C

S
,  ρα( )D

S
,  also gets larger (smaller) compared to the mean-field result. ρα L

S
,  is nearly the same as the 

mean-field expectation for the very small 〈 kintra〉 α. The result for small r (or r =  2) in Fig. 2(c) is nearly the same as 
the mean-field result for small 〈 kintra〉 α. For small 〈 kintra〉 α, ρα C

S
,  is slightly larger than the mean-field result and both 

ρα D
S
,  and ρα L

S
,  are slightly smaller than the mean-field results.

In Fig. 3, the simulation results for p =  1 on asymmetric DRNs are shown. When p =  1 the interlinked pairs of 
the same strategies make dead pairs as in the symmetric DRN, the ρα

S’s on both layers are the same when N1 =  N2. 
As shown in Fig. 3, for a given 〈 kintra〉 1, ρα

S’s are nearly constant regardless of 〈 kintra〉 2 except for 〈 kintra〉 2 ≲  〈 kintra〉 1. 
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Figure 2. ρα,
S

C, ρα,
S

D and ρα,
S

L on the symmetric DRNs with N = 16,000 for p = 1. (a) Plots of ρα C
S
, , ρα D

S
,  and ρα L

S
,  

on the DRN of two complete graphs against r. The lines represent the mean-field results from equation (3).  
(b) Plots of ρα C

S
, , ρα D

S
,  and ρα L

S
,  against 〈 kintra〉 1(= 〈 kintra〉 2) of the symmetric DRN for r =  30.0. The horizontal lines 

represent the mean-field results. (c) Plots of ρα C
S
, , ρα D

S
,  and ρα L

S
,  and mean-field results for r =  2.0. The symbols 

and lines standing for ρS’s in this figure are used commonly in any plot in this paper.
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Thus, the steady-state ρα
S’s on the asymmetric DRNs depends mainly on 〈 kintra〉 1 and independent of 〈 kintra〉 2 except 

for the symmetric range 〈 kintra〉 2 ∼  〈 kintra〉 1. For large r (r =  30) both ρα C
S
,  and ρα L

S
,  on the asymmetric DRN with the 

small 〈 kintra〉 1 (Fig. 3(a)) is larger than that on the DRN with the large 〈 kintra〉 1 (Fig. 3(b)), while ρα D
S
,  for the small  

〈 kintra〉 1 is smaller. For small r (r =  2) as shown in Fig. 3(c,d), the dependences of ρα C
S
,  and ρα D

S
,  on the asymmetric 

DRN on 〈 kintra〉 1 are the same as those for large r. In contrast, ρα L
S
,  on the asymmetric DRN is nearly constant of the 

mean-field values regardless of 〈 kintra〉 1. When r gets larger in the interval r ≳  20, ρα C
S
,  (ρα D

S
, ) on the asymmetric 

DRN becomes slightly larger (smaller) than that for mean-field expectation, but ρα L
S
,  hardly varies.

Now we want to explain the theoretical origins of the results for p =  1 in Figs 2 and 3. As explained when deriv-
ing the mean-field result, we use the fact that the final absorbing state for p =  1 appears very rapidly. Thus, the 
initial configuration is very important to decide the final absorbing state. Topologically localized cluster of a cer-
tain strategy on CG is impossible to form if there exist Cs, Ds and Ls simultaneously. In contrast, on the layer with 
relatively small 〈 kintra〉 α, it is quite easy to form localized clusters of the same strategies due to fluctuation of the 
distribution of Cs, Ds and Ls. Such localized clusters reinforces the network reciprocity16–23,25. As 〈 kintra〉 α 
decreases, it becomes much easier to form localized clusters. If a node i of a C-cluster on one layer is interlinked 
to a node j of a D-cluster on the opposite layer, then the node j is changed into a C-node when Pi >  Pj or 
r >  (ni,C +  1)(nj,D +  1)/[ni,C(nj,D +  1) −  (ni,C +  1)] for p =  1. Since in RN ni,C and nj,D is roughly comparable with  
〈 kintra〉 α, small 〈 kintra〉 α enhances the fluctuation. Thus, large r and small 〈 kintra〉 α make more D-nodes in D-cluster 
be changed into C-nodes compared to the mean-field expectation. This enhances the network reciprocity as 
shown in Fig. 2(b,c). If a node of a C-cluster on one layer is interlinked to a node of an L-cluster on the opposite 
layer, the C-node wins over the L-node for large r, but the L-node wins over the C-node for small r. Therefore, the 
fluctuation effect makes more C and suppresses D compared to the mean-field result and this effect becomes more 
enhanced as 〈 kintra〉 α decreases. In addition, it enhances L for small r and suppresses L for large r. Thus, on the 
symmetric DRN, ρα C

S
,  increases and ρα D

S
,  decreases as 〈 kintra〉 α for large r as in Fig. 2(b). For small r, D-node is rel-

atively hard to change its strategy into C. As a result the fluctuation effect is suppressed a little bit compared with 
large r and appears only on the DRN with small 〈 kintra〉 α as in Fig. 2(c). On the asymmetric DRN, the C-cluster is 

Figure 3. ρα,
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D and ρα,
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L on the asymmetric DRNs with N = 16000 for p = 1. (a) Plots of ρα C
S
, , ρα D

S
,  and ρα L

S
,  

against 〈 kintra〉 2 and mean-field results for r =  30.0 and 〈 kintra〉 1 =  4. (b) Plots of ρα C
S
, , ρα D

S
,  and ρα L

S
,  against 〈 kintra〉 2 

and mean-field result for r =  30.0 and 〈 kintra〉 1 =  20. (c) Plots of ρα C
S
, , ρα D

S
,  and ρα L

S
,  against 〈 kintra〉 2 and mean-field 

result for r =  2.0 and 〈 kintra〉 1 =  4. (d) Plots of ρα C
S
, , ρα D

S
,  and ρα L

S
,  against 〈 kintra〉 2 and mean-field result for r =  2.0 

and 〈 kintra〉 1 =  20.
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more easily formed on the layer with smaller 〈 kintra〉 α (or the layer 1), which makes the D-nodes in the opposite 
layer change their strategy into C. Thus the steady-state is decided by the layer 1. This effect becomes more 
enhanced as 〈 kintra〉 1 decreases. This fluctuation effect on the asymmetric DRN explains the behaviors of ρα C

S
,  and 

ρα D
S
,  in Fig. 3. The fluctuation effect on ρα L

S
,  is relatively weaker as in Fig. 3.

We now explain the results for the steady-state on the asymmetric DRN for 0 <  p <  1, which show novel net-
work reciprocity. On the asymmetric DRN with 〈 kintra〉 1 and 〈 kintra〉 2(> 〈 kintra〉 1), the steady-state should mainly 
depend on 〈 kintra〉 1 as expected from the result for p =  1. To see this effect on the asymmetric DRN we first set  
〈 kintra〉 1 =  10, which is small enough that the steady-state on the layer 1 is the C-state when p =  0 (i.e., the state I 
and IV). If 〈 kintra〉 2 is also small enough, the state is the trivial C-state on both layers. If r0 <  1 and 〈 kintra〉 2 is in the 
moderately large, then the D-state (the state II) appears on the layer 2 for p =  0.

We first carry out the simulations on the asymmetric DRN with 〈 kintra〉 2 =  40 which is moderately large intra-
degree for r0 =  0.3(< 1). As shown in Fig. 4(a), ρ ρ ρα α α{ , , }C

S
D

S
L

S
, , ,  for p =  0 or p =  1 reproduce the previously 

explained corresponding results very well. As p increases, ρ C
S

1,  first decreases slowly from ρ = =p( 0) 1C
S

1,  to 
ρ . = .p( 0 6) 0 9C

S
1,  and increases slowly to ρ = . = .p( 0 97) 0 93C

S
1, . Furthermore, ρ < .0 1D

S
1,  and ρ  0L

S
1,  for 

0 <  p <  1. In contrast, ρ C
S

2,  rapidly increases as p increases from 0 and reaches 0.8 for p =  0.1 and increases rela-
tively slowly until ρ = . = .p( 0 97) 0 93C

S
2, . The C-dominant state on the layer 1 exists for any p(< 1) as expected 

from the C-state(state I) for p =  0. The steady-state on the layer 2 for p >  0 is rather surprising, because  
ρ C

S
2,  becomes very large for even very small p. This indicates that the inter-layer coupling drastically enhances the 

network reciprocity. To see the origin of this result, we study ρα,C(t), ρα,D(t), ρα,L(t). For small p(= 0.1), ρ1,C(t) 
(ρ1,D(t)) increases (decreases) rapidly at early time t as shown in Fig. 4(b). Due to the weak inter-layer coupling, 
ρ1,C(t) increases to ρ  1C

S
1,  when 20 ≲  t as the case p =  0. Since the layer 2 would be in D-state when p =  0 as 

shown in Fig. 4(a), ρ2,D(t) increases and is slightly larger than ρ2,C(t) at small t. Through the inter-layer coupling, 
D’s on layer 2 can easily change their strategy into C due to the larger payoff of C on the layer 1 when ρ1,C(t) 
becomes large enough. As a result ρ2,C(t) increases to ρ . 0 8C

S
2,  when 20 ≲  t ≲  30 both ρ2,C(t) and ρ2,D(t) follow 

ρ1,C(t) and ρ1,D(t). Thus, for small p, the C-dominance on the layer 1, which is fully developed due to weak 
inter-layer coupling, induces the C-dominance on the layer 2 at later time. For moderate p(= 0.6), the depend-
ences of ρ1,C(t) and ρ1,D(t) on t are much more similar to those of ρ2,C(t) and ρ2,D(t) as shown in Fig. 4(c). For 
moderate p, the effects from the inter-layer coupling are nearly equal to the effect of the intra-layer interactions. 
Due to the increased inter-layer coupling, ρ2,C(t) increases nearly synchronously with ρ1,C(t). Such rapid increase 
of ρ2,C(t) makes remnant D’s on the layer 2. Those remnant D’s on the layer 2 get relatively high payoff from the 
intra-layer interactions with relatively dense C’s induced by inter-layer coupling. Then, through the inter-layer 
coupling, ρ C

S
1,  slightly decreases by remnant D’s on the layer 2 for 0.2 ≲  p ≲  0.6. For large p(> 0.6), ρ C

S
1,  increases as 

p increases. In this case, ρα(t)’s first reach ρα
S for p =  1 very rapidly as shown in Fig. 4(d). Then, through the 

intra-layer interactions, ρ1,C(t) increases very slowly from ρ =p( 1)C
S

1, , so that ρ C
S

1,  increases as p increases for 
p >  0.6. In contrast to the subtle dependence of ρ C

S
1,  on p, ρ C

S
2,  monotonically increases as p increases and 

ρ ρ= . = = . = .p p( 0 97)( ( 0 97)) 0 93C
S

C
S

2, 1, . The behavior of ρα D
S
,  is easily understood from the behavior of ρα C

S
,  in 

Fig. 4(a–d). ρα L
S
,  is nearly equal to 0, which can be understood from the result p =  0. These mechanisms explain the 

dependence of steady-state on p in Fig. 4(a) rather well.

Figure 4. ρα,
S

C, ρα,
S

D and ρα,
S

L on the asymmetric DRN with 〈kintra〉1 = 10 and 〈kintra〉2 = 40 r0 = 0.3 and 
N = 16000 are used. (a) Plots of ρ C

S
1, , ρ D

S
1,  and ρ L

S
1,  against p (Left) and the same plots of ρ C

S
2, , ρ D

S
2,  and ρ L

S
2,  (Right) 

on the DRN with 〈 kintra〉 1 =  10 and 〈 kintra〉 2 =  40 for r0 =  0.3. (b) Time dependences of ρα,C(t), ρα,D(t) and ρα,L(t) 
on t for p =  0.1. (c) The same plots as (b) for p =  0.6. (d) The same plots as (b) for p =  0.999. t is the Monte-Carlo 
time.
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Next, we study the inter-layer coupling effects on the asymmetric DRN with 〈 kintra〉 1 =  10 and 〈 kintra〉 2 =  500 for 
r0 =  0.3(< 1). For p =  0, the steady-state on the layer 1 is the C-state (the state I) and the steady-state on the layer 2 
is the L-state (the state III) as shown in Fig. 5(a). As p increase, ρ = 1C

S
1,  ρ =( 0)D

S
1,  sustains for p <  0.2 and ρ C

S
1,  

(ρ D
S

1, ) simply decreases (increases) to ρ =p( 1)C
S

1,  ρ =p( ( 1))D
S

1, . ρ = 0L
S

1,  except for p =  1. In contrast, ρ C
S

2,  increases 
very rapidly for small p and reaches the maximum at p =  0.34, ρ = . .p( 0 34) 0 76C

S
2, . Then, ρ C

S
2,  simply decreases 

for p >  0.34 to ρ =p( 1)C
S

2, . ρ D
S

2,  shows rather complex behavior. For very small p(< 0.05), ρ D
S

2,  rapidly increases to 
the maximum, ρ = . = .p( 0 05) 0 9D

S
2, , and decreases for 0.05 <  p <  0.34 to the minimum, ρ = . = .p( 0 34) 0 23D

S
2, . 

Then, ρ D
S

2,  monotonically increases for p >  0.34 to ρ =p( 1)D
S

2, . ρ = 0L
S

2,  for 0 <  p <  1. When p ≲  0.34, ρα(t)’s show 
nearly the same behavior as those in Fig. 4(b). For larger 〈 kintra〉 2 it is more difficult to make C’s through intra-layer 
interaction and more inter-layer coupling or large p is needed to increase ρ C

S
2, . The time-dependences as in 

Fig. 4(b) do not occur for the larger p(> 0.34) on the DRN with 〈 kintra〉 1 =  10 and 〈 kintra〉 2 =  500. As p increases 
further (p >  0.34), ρα(t)’s behave nearly the same as in Fig. 4(c), which decreases (increases) ρC

S’s (ρD
S’s) on both 

layers. Due to large 〈 kintra〉 2(=500), ρα(t)’s as in Fig. 4(d) do not happen. Instead, ρα
S’s for larger p approach to 

ρ =α p( 1)S ’s smoothly. These mechanisms explain the dependence of steady-state on p in Fig. 5(a) rather well.
We also study the SEPGG for r0 =  10.0(> 1) on the asymmetric DRN with 〈 kintra〉 1 =  100 and 〈 kintra〉 2 =  2000. As 

shown in Fig. 5(b), the steady-state for p =  0 on the layer 1 is the C-state (state IV) and that on the layer 2 is the 
D-state (state V). For p >  0, ρ ρ=  1C

S
C

S
1, 2,  except for very small p. Thus, on this DRN, ρα(t)’s show nearly the 

same behavior as those in Fig. 4(b) for p ≠  0 due to the very large r. Furthermore, the payoff of D on layer 2 is less 
than that of C’s in layer 1 in general. Thus, the D’s in the layer 2 easily change into C’s through the inter-layer cou-
pling as p increases, which makes ρ p( )D

S
2,  approaches to zero for p >  0.1.

In Fig. 6 we display the behavior of ρα p( )S ’s for r0 =  0.3(< 1) on the asymmetric DRN with 〈 kintra〉 1 =  40 and  
〈 kintra〉 2 =  500. As shown in Fig. 6, the steady-state for p =  0 on the layer 1 is the D-state (state II) and that on the 
layer 2 is the L-state (state III). Except for .p 0 5, ρ = 1D

S
1,  and ρ = 1D

S
2, . But for .p 0 5, both ρ C

S
1,  and ρ C

S
2,  show 

anomalous behavior.  ρ C
S

1,  and ρ C
S

2,  become maxima at  .p 0 43 as  ρ = . = .p( 0 43) 0 53C
S

1,  and 
ρ = . = .p( 0 43) 0 39C

S
2, . For smaller p(< 0.4) and larger p(> 0.6), the intra-layer interactions make ρ =1D

S
1,  and the 

inter-layer couplings make ρ =1D
S

2, . In contrast, the delicate anomalous behavior around .p 0 5 is confirmed to 

Figure 5. ρα,
S

C, ρα,
S

D and ρα,
S

L on the asymmetric DRN. N =  16000 are used. (a) Plots of ρ C
S

1, , ρ D
S

1,  and ρ L
S

1,  
against p (Left) and the same plots of ρ C

S
2, , ρ D

S
2,  and ρ L

S
2,  (Right) on the DRN with 〈 kintra〉 1 =  10 and 〈 kintra〉 2 =  500 

for r0 =  0.3. (b) The same plots as (a) on the asymmetric DRN against p with 〈 kintra〉 1 =  100 and with 〈 kintra〉 2 =   
2000 for r0 =  10.0.
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be originated from the balance between the inter-layer processes and the intra-layer processes, because for 
.p 0 5, the intra-layer processes happen at nearly the same rate as the inter-layer processes. We confirm the 

following cyclic process I)-II)-III)-IV)-I) by simulations for .p 0 5. I) The intra-layer interactions on the layer 1 
make C-dense regions. II) This C-dense regions induce C’s on the layer 2 through the inter-layer coupling. III) 
The C’s on the layer 2 make D’s by the intra-layer interactions. IV) The D’s on the layer 2 shrink the C-dense 
regions through the inter-layer coupling. This cyclic process makes non-zero ρα C

S
,  and ρα D

S
,  around .p 0 5. This 

anomalous effect also makes to appear the network reciprocity that ρ >α 0C
S
,  from the inter-layer coupling, with-

out which there cannot exist any C on both layers.
We also study the model for 0 <  p <  1 on the symmetric DRN. We check for various p and r and find that the 

steady-state densities on the symmetric DRN show exactly the same behavior as those on the single random net-
work. We found that the steady-state on one layer inevitably is the same as that on the other layer. From the com-
parison of ρα

S’s for various p and r to confirm that the steady-state on the symmetric DRN for 0 <  p <  1 is exactly 
the same as on the corresponding single network, and find that p only makes the time-delay (see Supplementary 
Information).

Results on the DRN with 〈kintra〉 < 1 or N1 ≠ N2. We also study the model on the DRN with N1 =  N2 =  N 
and 〈 kintra〉  <  1. In Fig. 7(a), the results on the asymmetric DRN with 〈 kintra〉 1 =  10, 〈 kintra〉 2 =  40 and 〈 kintra〉  =  0.5 
for r0 =  0.3(< 1) are shown. Comparing Fig. 7(a) to Fig. 4(a), the dependences of ρα

S’s on p(< 1) for 〈 kintra〉  =  0.5 are 
nearly the same as those up to p =  0.5 for kinter =  1. In contrast ρα

S’s at p =  1 for 〈 kintra〉  =  0.5 show the nontrivial 
behaviors, because N〈 kintra〉  =  0.5N interlinked pairs of nodes become dead pairs in the steady-state. On the DRN 
with 〈 kintra〉  <  1 the dependences of ρα

S’s on p(< 1) are generally confirmed to be nearly the same as those up to 
p =  〈 kintra〉  except at p =  1.

To know the effects of the difference between two layer sizes, we study the model on the DRN with N1 ≠  N2. In 
Fig. 7(b), the results on the DRN with N1 =  16000, 〈 kintra〉 1 =  10 and N2 =  32000, 〈 kintra〉 2 =  57 for r0 =  0.3(< 1) are 
shown. At p =  0, the steady-state of the layer 1 is the C-state (State I) and the steady-state of the layer 2 is the 
D-state (State II). As p increase, ρ = 1C

S
1,  ρ =( 0)D

S
1,  sustains for p <  0.05 and ρ C

S
1,  (ρ D

S
1, ) simply decreases (increases) 

to ρ = . = .p( 0 97) 0 52C
S

1,  ρ = . = .p( ( 0 97) 0 48)D
S

1, . ρ = 0L
S

1,  except for p =  1. In contrast, ρ C
S

2,  increases very rap-
idly for small p( ≲  0.1) and reaches the maximum at p =  0.19, ρ = . .p( 0 19) 0 56C

S
2, . Then, ρ C

S
2,  decreases slowly 

for p >  0.19 to ρ = . .p( 0 97) 0 51C
S

2, . ρ D
S

2,  decreases very rapidly for small p( ≲  0.1) and reaches the minimum at 
p =  0.19, ρ = . .p( 0 19) 0 44D

S
2, . Then, ρ D

S
2,  increases slowly for p >  0.19 to ρ = . .p( 0 97) 0 49D

S
2, . Because 

N1 <  N2, the intra-layer interactions on the layer 2 are stronger than those for N1 =  N2. The difference between the 
results in Fig. 7(b) and those in Fig. 5(a) are originated from the enhanced intra-layer interactions on the layer 2. 
Due to the enhanced intra-layer interactions in layer 2, the there are more D’s than to the case of N1 =  N2 and ρD

S’s 
(ρC

S’s) on both layer increase (decrease) compared to those in Fig. 5(a). We also study the model on the DRN with 
N1 =  16000, 〈 kintra〉 1 =  40 and N2 =  32000, 〈 kintra〉 2 =  14 and find nearly identical results to those in Fig. 5(b). 
Because N1 <  N2, the enhanced intra-layer interactions on the layer 2 induce the strong network reciprocity. As a 
result the C-state appears on both layers. We generally confirm that the intra-layer interactions on the layer with 
the larger size affect the steady-state considerably.

Discussion
In summary, we study the SEPGG on DRN. When two CG’s of the same size interact through the inter-coupling 
with kinter =  1 and p =  1, the steady-state density, ρα

S of each strategy on each layer α can be exactly described by the 
mean-field theory. If the 〈 kintra〉 α decreases then ρα

S’s on each layer slightly deviates from the mean-field expecta-
tion. Such deviation is relatively small when the multiplication factor r is small. While if 〈 kintra〉 1 <  〈 kintra〉 2 

Figure 6. ρα,
S

C, ρα,
S

D and ρα,
S

L on the asymmetric DRN with 〈kintra〉1 = 40 and 〈kintra〉2 = 500. r0 =  0.3 and 
N =  16000 are used. Plots of ρ C

S
1, , ρ D

S
1,  and ρ L

S
1,  against p (Left) and the same plots of ρ C

S
2, , ρ D

S
2,  and ρ L

S
2,  (Right) on 

the DRN with 〈 kintra〉 1 =  40 and 〈 kintra〉 2 =  500.
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(asymmetric DRN), then ρα
S’s are determined by ρα

S’s on the layer 1 and the network reciprocity can be reinforced 
through the inter-layer coupling for 0 <  p <  1. For 0 <  p <  1 on the symmetric DRN, ρα

S’s show exactly the same 
behavior with those on the corresponding single network, and p only makes the time-delay (see Supplementary 
Information). The schematic diagrams of the non-vanishing ρα

S’s are also provided in Supplementary Information. 
Furthermore, we also investigate the behavior of ρα

S’s on the DRN with 〈 kintra〉  <  1 or N1 ≠  N2. On the DRN with  
〈 kintra〉  <  1, we find that ρα

S’s are nearly the same as those for 〈 kintra〉  =  1 with p =  〈 kintra〉 . Finally, if N1 <  N2 then the 
steady-state density is determined by the state of layer 2, thus the network reciprocity of the entire network can be 
enhanced when 〈 kintra〉 2 is small enough.

Furthermore, since each individual in real world interacts to each other through several different channels of 
interactions, such interaction topology sometimes can be well described by the multiplex networks in which all 
the layers have the same set of nodes in general. The DRN with N1 =  N2 and kinter =  1 could be related to a kind of 
multiplex networks. In addition, DRN with N1 ≠  N2 or kinter <  1 corresponds to the interconnected networks in 
which each layer has different set of nodes. Therefore, our SEPGG on DRN model would provide more general 
framework to study the emergence of cooperation in more realistic systems.

Finally, we want to make some remarks on important open questions. Although we do not assume any 
detailed topological properties, many studies have revealed that some topological properties of a network such as 
degree heterogeneity22,49–52, degree-degree correlation53, and clustering coefficient54 can significantly change the 
evolution of cooperation. The cost heterogeneity is also known to play a nontrivial role in the emergence of coop-
eration22. As β changes many interesting phenomena related to the phase transition has been reported55,56. Thus 
it would be very important to study how such topological properties, cost heterogeneity, and noise level affect the 
evolution of cooperation in interlinked networks.
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