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Abstract: Our understanding of the mechanisms of microgravity perception and response in prokary-
otes (Bacteria and Archaea) lag behind those which have been elucidated in eukaryotic organisms.
In this hypothesis paper, we: (i) review how eukaryotic cells sense and respond to microgravity
using various pathways responsive to unloading of mechanical stress; (ii) we observe that prokary-
otic cells possess many structures analogous to mechanosensitive structures in eukaryotes; (iii) we
review current evidence indicating that prokaryotes also possess active mechanosensing and mechan-
otransduction mechanisms; and (iv) we propose a complete mechanotransduction model including
mechanisms by which mechanical signals may be transduced to the gene expression apparatus
through alterations in bacterial nucleoid architecture, DNA supercoiling, and epigenetic pathways.
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1. Introduction

On 17 December 1946, the first documented experiment to study the response of a
living organism to spaceflight was performed, with the launch and recovery of fungal
spores on a V-2 rocket from White Sands, New Mexico [1]. Since that time, considerable the-
oretical and experimental effort has been devoted to understanding how living organisms
sense, respond, and adapt to long-term spaceflight, particularly regarding their exposure
to chronic microgravity. Extensive investigations conducted in space have resulted in a
relative wealth of understanding of microgravity effects at the mechanistic level in eukary-
otic organisms including humans [2], animals [3], plants [4], and protists [5]. In contrast
to the situation in eukaryotes, it has proven more difficult to elucidate at the mechanistic
level how single-celled prokaryotes (Bacteria and Archaea) sense and respond to reduced
gravity [6–8].

In this hypothesis paper, we briefly review the state of our understanding of how
eukaryotic cells sense, respond, and adapt to spaceflight microgravity, via various path-
ways responsive to the unloading of mechanical stress. We observe that prokaryotic cells
possess many structures analogous to mechanosensitive structures in eukaryotes. We
review and update the evidence indicating that prokaryotes possess and actively utilize
mechanosensing and mechanotransduction mechanisms, and we expand upon existing
models to include the role of the bacterial nucleoid in converting external mechanical
information into the modulation of gene expression. This hypothesis builds upon, updates,
and expands previous work in the field, to which the reader is referred for background
information [9,10].

2. Mechanosensing in Eukaryotes

Terrestrial life on Earth has evolved in the continuous presence of gravity [10], and
eukaryotic organisms have developed systems to sense their orientation in the gravity
field and to respond appropriately. A large body of evidence has accumulated supporting
the idea that mechanics play a key role in regulating various eukaryotic cell functions
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such as cell division, differentiation, immunity, development, and motility. Many of these
diverse cellular functions are mediated through pathways of mechanosensing and mechan-
otransduction, the molecular details of which are currently being elucidated [11–14]. A
generalized and simplified schematic diagram of the steps involved in eukaryotic mechan-
otransduction is presented in Figure 1 and described below.
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matrix, and its density differs from the surrounding cytoplasm, the nucleus itself exerts 
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The simplified model above depicts an idealized mechanoreceptor as a protein com-
plex embedded in the cytoplasmic membrane that senses external physical forces (Figure 
1). The actual situation is almost certainly more complex, and likely differs considerably 
depending on the type of receptor, cell, tissue, or organism studied. On the simpler end 
of the spectrum are single transmembrane mechanosensitive ion channels that respond to 
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Figure 1. Schematic model of eukaryotic mechanotransduction pathway. An external mechanical
force generated through the extracellular matrix (ECM) or tight junctions is sensed by mechanosensi-
tive proteins in the cytoplasmic membrane (CM) and transduced through the cytoskeleton, LINC
protein complexes in the nuclear membrane (NM), and nucleoskeleton to effect transcription of
mechanosensitive genes. Colored shapes represent proteins in the transduction pathway; their
specific identities and functions are elaborated in refs. [15–17]. See text for details.

In the simplified model depicted in Figure 1, external force can consist of any number
of mechanical phenomena, such as shear, stretch, compression, or sedimentation of otoliths
or statoliths. Physical forces can also be exerted on a cell through interaction with the
extracellular matrix, or with other cells connected via tight junctions. In addition, while
not strictly an “external” force, because the nucleus itself is suspended in the cytoskeletal
matrix, and its density differs from the surrounding cytoplasm, the nucleus itself exerts
mechanical stress on the cell.

The simplified model above depicts an idealized mechanoreceptor as a protein com-
plex embedded in the cytoplasmic membrane that senses external physical forces (Figure 1).
The actual situation is almost certainly more complex, and likely differs considerably de-
pending on the type of receptor, cell, tissue, or organism studied. On the simpler end of
the spectrum are single transmembrane mechanosensitive ion channels that respond to
membrane deformation [18]. On a more complex level, the surfaces of many eukaryotic
cells exhibit focal adhesion (FA) structures which physically link the extracellular ma-
trix to the internal cytoskeleton through complexes of signaling proteins, among them
mechanosensitive transmembrane proteins. Such structures establish both physical and
functional connections between the cell and its external environment (reviewed in [19,20]).

As DNA is separated from the cytoplasmic compartment and contained within a
membrane-bound nucleus (Figure 1), how do mechanical signals reach the DNA to modu-
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late gene expression? In addition to the cytoplasmic cytoskeleton, the nucleus itself contains
a skeleton (the nucleoskeleton) composed of actin and lamin filaments. Furthermore, the
cytoskeleton and nucleoskeleton are physically connected through Linker of Nucleus and
Cytoskeleton (LINC) protein complexes [16] (Figure 1). Evidence is accumulating that
LINC complexes allow for the rapid mechanotransduction of signals from the cytoplasmic
membrane and cytoskeleton directly through the nuclear membrane to the nucleoskeleton,
enabling rapid gene expression responses (reviewed in [17]). It is thought that the LINC
complex is intimately involved in modulation of genome expression in response to mechan-
ical stimuli through chromatin remodeling and recruitment of DNA and RNA polymerases,
ligases, acetylases, methylases, and cyclin-dependent kinases, resulting in changes in
gene expression at the transcriptional, translational, post-translational, and epigenetic lev-
els [19,20]. The details of the myriad of eukaryotic mechanotransduction systems, though
not yet completely elucidated, are currently being actively investigated [17].

In the freefall environment of spaceflight, gravitational loading is negated. Numerous
studies using various cell types have shown that eukaryotic cells exhibit a morphological
sensitivity to microgravity, exposure to which can cause alterations in cell shape, size,
volume, and adherence properties [10,19,20]. These signals are converted into alterations
in chromosomal architecture, which in turn regulate the transcriptional apparatus [21].
In spaceflight research, this general “mechanotransduction” model successfully explains
the pathways for sensing and response to microgravity by plant and mammalian whole
organisms, as well as single eukaryotic cells [5,22,23]. It is unclear whether such responses
to microgravity are direct or indirect (resulting from, say, downstream effects of micro-
gravity on chemical gradients or fluid shear). However, results from parabolic aircraft
and sounding rocket flights demonstrated that the transcriptomes of human monocytes
responded immediately—within seconds—after exposure to microgravity or hypergravity
(1.8 × g) [24] suggesting that, in this case at least, gravity or its absence is exerting a direct
effect on gene expression.

3. Does a Microbial Analog of Eukaryotic Mechanotransduction Exist?

In contrast to our relatively detailed understanding of the eukaryotic microgravity
response in terms of mechanosensing and mechanotransduction mechanisms, no such
detailed model exists to explain how prokaryotes respond to gravity in general, much less
to spaceflight microgravity. The origins of this situation can be traced back to an influential
and often-cited theoretical study from 1965 asserting that microorganisms smaller than
10 micrometers should not be able to perceive gravitational forces [25]. Despite a lack
of empirical evidence supporting this contention, it has nevertheless persisted in the
spaceflight microgravity literature over the ensuing half century (for reviews, see [8,26]).

Due to a lack of fluid convection in microgravity, spaceflight has been considered to
be a quiescent environment characterized by low hydrodynamic shear and lack of con-
vective transfer of mass and heat [26]. To emulate this low-shear environment on Earth,
various rotating devices called clinostats have been developed and utilized as microgravity
analog systems [27,28]. Early experiments cultivating microbes in clinostats indicated that
certain phenotypes such as microcin B17 production by Escherichia coli [29] and virulence in
Salmonella enterica [30] were altered in the clinostat environment. These and similar observa-
tions led to the notion of mechanotransduction as a possible mechanism for a microgravity
response in prokaryotes, proposed in a 2004 review [9]. Numerous subsequent investiga-
tions have been conducted to characterize the response of various microorganisms to the
low fluid shear environment using both spaceflight and clinorotation ([31–35]; reviewed
extensively in [7,8,26]). These studies clearly established a role for hydrodynamic shear
stress, or its absence, in influencing some aspects of gene expression and some phenotypes
in some, but not all, bacteria tested [7,8]. Subsequent work mapping transcriptomic re-
sponses of S. enterica and Pseudomonas aeruginosa to spaceflight and clinorotation identified
the molecular chaperone and global regulator Hfq as being implicated in the low-shear re-
sponse, although its mechanism of action is currently unknown [33,34,36]. Several studies
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have mapped global transcriptomic responses of bacteria to the low-shear environment,
comparing cells grown in spaceflight and clinostat conditions with corresponding ground
controls [33,34,36–39], but to date, these studies have failed to yield insights into a detailed
underlying molecular mechanism [40,41].

3.1. Microbial Internal Structure

If we are to draw upon the eukaryotic mechanotransduction model of spaceflight
signal transduction as depicted in Figure 1 and extend it to microbes, it is worthwhile
first to review our current understanding of the internal structure of prokaryotes, paying
particular attention to structures involved in mechanosensing and mechanotransduction.
Our understanding of the interior architecture of living microbial cells has lagged behind
that of eukaryotes, due to their small size at the limits of optical resolution and the lack
of techniques for mechanical manipulation of such small cells [42,43]. Indeed, until rela-
tively recently the interior of the prokaryotic cell was thought to be an unordered “bag of
enzymes” with little or no intracellular compartmentalization [44]. Advances in molecular
biology, microscopic imaging technologies, and the development of fluorescent molecular
tags have changed this view radically within the past two decades; microbial cells are
now known to exhibit a high level of subcellular organization rivaling that of eukaryotic
cells [45–47].

As was mentioned in a previous review [9], microbes possess both functional and
structural analogs of the eukaryotic cytoskeleton; indeed, cytoskeletal components from
all three domains of life (Bacteria, Archaea, and Eukarya) are phylogenetically related,
indicating their descent from a common ancestor early in evolution [48]. An updated
comparison of eukaryotic and prokaryotic cytoskeletal analogs is presented in Table 1.

Table 1. Comparison of cytoskeletal analogs 1.

Eukaryotic Cytoskeletal
Structure

Eukaryotic
Subunit Analogs

Prokaryotic
Subunit Analogs Function in Prokaryotes

Microtubules α-Tubulin, β-Tubulin
FtsZ Cytokinesis
TubZ DNA positioning
RepX Plasmid replication

Microfilaments Actin Superfamily
MreB Cell shape, chromosome

segregation
FtsA Cytokinesis
ParM DNA segregation

Intermediate Filaments Keratins, Vimentin, Desmin,
Neurofilament Proteins, Lamins CreS (crescentin) Cell shape

1 Adapted from [48].

As can be seen in Table 1, numerous proteins belonging to both the actin and tubu-
lin superfamilies of eukaryotic cytoskeletal proteins have been identified in Bacteria and
Archaea. In addition to the canonical actin/tubulin/intermediate filament superfamilies,
prokaryotes contain a large number of filament-forming proteins that do not have eu-
karyotic homologs, such as ParA/B, MinC/D, and bactofilins [49]. Many of these protein
filaments organize collaboratively through interactions between themselves and supra-
macromolecular structures such as the bacterial membrane, cell wall, and nucleoid [49].
In prokaryotic cells, internal filaments serve a variety of functions, including: organizing
cell division; control of cell shape; organization and segregation of chromosomal, plas-
mid, and phage DNA; membrane remodeling; organization of cell wall synthesis; and
scaffolding of spore structures in spore-forming Firmicutes [45–47,50]. In addition, in many
cases cytoskeletal filaments have been directly visualized and characterized in prokary-
otic cells using high-resolution fluorescence microscopy and cryo-electron microscopy
techniques [50,51].

3.2. Mechanosensing in Prokaryotes

Since the early days of microbiology in the 19th century, prokaryotes have been
known to monitor and respond to their external chemical environment [52]. More recently,
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microbes have also been shown to respond to mechanical forces such as fluid flow, pressure,
and contact with surfaces or other cells [9,45,46]. Similar to eukaryotic cells, bacteria
possess mechanosensory proteins either displayed on the cell surface (e.g., adhesins) or
extending into the extracellular environment (e.g., flagella, pili). Proteins residing in the
cell envelope can sense and respond to deformations of the cell surface. The integral
membrane proteins MscS and MscL sense membrane deformation resulting from osmotic
stress and respond by opening or closing their pores to allow passage of osmotically active
solutes (e.g., potassium, glutamate, or trehalose) in order to maintain osmotic balance and
turgor pressure [53]. Adhesins present on the cell surface are able to sense forces such as
shear, compression, or tension and transduce these signals to the cell interior, activating the
production of second messenger molecules such as cAMP and cyclic di-GMP which in turn
activate or repress transcription of target genes [45]. Protein filaments such as flagella and
Type IV pili are anchored in the cell surface and extend into the extracellular environment.
These structures have long been associated with motility (flagella) and adhesion (pili), but
recently have also been implicated in the regulation of gene expression via mechanosensing
and mechanotransduction mechanisms (reviewed in [46]). For example, motility of Gram-
positive Bacillus subtilis cells through liquid media is due to the rotation of helical flagella
driven by rotary motors embedded in the cell membrane. Contact of cells with a surface
increases the torque applied onto flagella, inhibiting their rotation. This rotational inhibition
increases strain on the flagellar motor embedded in the membrane, which generates a signal
sensed by the two-component system histidine kinase DegS. DegS in turn phosphorylates
the DegU response regulator, and phosphorylated DegU up-regulates the transcription of
an entire class of genes involved in biofilm production [54,55]. Thus, an outside mechanical
force can be sensed by a bacterial cell and transduced to the transcriptional apparatus to
dramatically change its phenotype from a solitary free-swimming cell to a sessile member
of a biofilm community.

3.3. Mechanotransduction in Prokaryotes

In the above examples, perception of mechanical stress was shown to trigger classic
chemical transducers, such as second messengers or two-component systems, to effect
altered gene expression. Such mechanisms do not rely on mechanotransduction through a
cytoskeleton. Indeed, at present cytoskeletal mechanotransduction in prokaryotes has been
much less thoroughly investigated than its eukaryotic counterpart, although recent studies
have begun to uncover the roles played by prokaryotic cytoskeletal protein homologs in
the regulation of cell physiology. Some examples follow.

3.3.1. Cell Growth and Division

The prokaryotic cell wall is a dynamic network of peptidoglycan (PG) making up
the sacculus that maintains cell shape, resists lysis of the cell by turgor pressure, and
which must accommodate cell growth in varying environments. Morphogenesis of the cell
wall is ultimately governed by cytoskeletal proteins (reviewed recently in [56]). At least
two distinct machineries exist to accomplish this feat, the elongasome and the divisome.
Filaments of MreB, FtsZ, and FtsA proteins serve to organize and direct the growth and
division machinery to their proper locations.

The elongasome is responsible for the insertion of new PG into the growing sacculus
and is organized by the actin homolog MreB (Table 1). MreB filaments move circumferen-
tially around rod-shaped cells and organize the multiprotein PG synthetic machinery to
add PG in a helical fashion along the cell cylinder, allowing cell length to increase [49].

The divisome is the molecular machine responsible for cell separation (cytokinesis)
under the control of the tubulin homolog FtsZ and the actin homolog FtsA (Table 1). FtsZ
filaments organize into a centrally located ring-shaped structure (the Z-ring) that directs
the PG machinery to produce the division septum during cytokinesis [56]. Cytokinesis also
involves the separation of the cell membrane. FtsA forms filaments that directly interact
with FtsZ filaments and anchor the constricting Z-ring to the cytoplasmic membrane, ensur-
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ing that all layers of the cell envelope are constricted and separated during cytokinesis [49].
In addition, placement of the division septum at mid-cell and suppression of division at the
cell poles is accomplished by filaments of DivIVA, MinC, and MinD which form a complex
structure at the cell poles [49].

3.3.2. DNA Division, Repair, and Gene Expression

In prokaryotes, filament-forming proteins perform numerous functions on DNA in-
cluding chromosome division, chromosome and plasmid segregation, DNA repair, and
regulation of gene expression (reviewed in [49]). The actin homolog MreB is involved with
the initial stages of bacterial chromosome segregation coupled with DNA synthesis [57].
With help of ParB, the ParA protein forms collaborative filaments with DNA and is in-
volved with chromosome movement and segregation during cell division using a currently
unknown mechanism [49]. The RecA protein is central both in DNA repair and homolo-
gous recombination; it binds and forms filaments with both single- and double-stranded
DNA and has been shown to exert cytomotive properties in the movement of DNA during
double-strand break repair [49]. H-NS proteins are a class of transcriptional repressors
that nucleate at specific regulatory sequences and form stiff collaborative filaments that
sterically hinder RNA polymerase from binding to promoters in the vicinity. It is estimated
H-NS regulates the transcription of up to 5% of the genes in E. coli [49]. However, at
present, the mechanism(s) of exactly how cytoskeletal filaments are involved in coordinat-
ing DNA synthesis and chromosomal division with membrane and cell wall synthesis and
cytokinesis in prokaryotes is currently unknown and an active area of research.

3.4. Prokaryotic Nucleoid Architecture

The prokaryotic counterpart of the eukaryotic nucleus is the bacterial chromosome
or nucleoid. The nucleoid consists of genomic DNA in a complex with its complement of
nucleoid-associated proteins (NAPs). The nucleoid is not bounded by its own membrane
and is in direct contact with the cytoplasm. In the last two decades, using fluorescence
microscopy to track chromosomal loci inside bacteria cells, researchers have found that
bacterial chromosomes are organized into stereotypical patterns, with specific chromo-
somal regions localizing to defined cellular locations (reviewed in [58]). Over the past
few years, the application of genome-wide high-resolution chromosome conformation
capture (Hi-C) assays to bacteria has provided a detailed picture of the three-dimensional
folding characteristics of the entire chromosome. In parallel, super-resolution microscopy
techniques have strongly advanced our knowledge of bacterial nucleoid organization.

It is increasingly appreciated that the nucleoid adopts a specific architecture, which
alters dramatically in response to the growth phase, cellular development, and environ-
mental changes. Recent Hi-C studies of a number of bacterial species provided insights
into the three-dimensional folding of the bacterial chromosome. In Caulobacter crescentus
and B. subtilis, but not E. coli, the chromosome exhibits long-range interactions. The two
replication arms are juxtaposed from the origin to the terminus region, mediated by the
SMC condensin complex [59–63]. For all three bacterial species, the genome along its entire
length is organized into chromosome interaction domains (CIDs), ranging from ~30 to
>400 kilobase pairs. Regions within each domain interact with each other more frequently
than with regions in other domains. The domain boundaries are often enriched with
highly transcribed genes, and inhibition of transcription essentially abolishes all domain
boundaries [59,63], indicating that the 3D architecture of the nucleoid is intimately linked
to transcription.

3.5. DNA Supercoiling

The nucleoid is a highly condensed structure that must allow the replication and tran-
scription machinery to access specific genes in a coordinated fashion, in order to optimize
cell metabolism and replication under a wide range of environmental conditions [64]. To
accomplish this feat, selected parts of the nucleoid are constantly and dynamically de- and
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re-condensed in response to environmental signals. Dynamic restructuring of the nucleoid
depends critically on a host of enzymes that control DNA topology, collectively known
as topoisomerases, which maintain DNA in an optimal state of negative supercoiling.
Transcription of a gene is dependent upon the local DNA superhelical state, and in turn,
the transcription process itself influences DNA supercoiling, by overwinding DNA ahead
of the transcription complex and underwinding it behind (reviewed in [65]). A growing
body of evidence points to changes in DNA supercoiling as being a key mediator between
environmental sensing by a microbe and its response through modulation of global tran-
scription patterns. It has been shown experimentally that DNA supercoiling is sensitive to
variations in the physical environment such as: pH, oxygen, temperature, osmotic pressure,
oxidative stress, nutrition, and growth phase, among others (reviewed in [66]). In turn, it
has also been shown experimentally that alterations in DNA supercoiling can influence
the global pattern of bacterial gene transcription, and ultimately the phenotypic response
to environmental changes (reviewed in [66]). Historically, most studies in this area have
been performed using Gram-negative bacteria (E. coli, S. enterica, Vibrio cholerae); how-
ever, these investigations have been recently extended to the Gram-positive opportunist
Streptococcus pneumoniae [67]. Recent evidence suggests active transcription drives the for-
mation of boundaries between CIDs [68], likely through alterations in DNA topology [65],
thus highlighting the three-way interactions between nucleoid architecture, supercoiling,
and transcription.

3.6. Epigenetic Modification of DNA

Epigenetics is the study of heritable changes in gene expression that occur without
changes in DNA sequence (reviewed in [69]). In bacteria, the most-studied epigenetic
modification of DNA is base methylation. Specific DNA methyltransferases are responsible
for the post-replicative addition of a methyl group to the N6-position of adenine (6mA), the
C5-position of cytosine (5mC), or the N4-position of cytosine (4mC) [70]. Base methylation
can modulate the interaction of DNA-binding proteins with their cognate sites, and methy-
lation of DNA controls genome defense, chromosome replication and segregation, nucleoid
organization, cell cycle control, DNA repair, and regulation of transcription (reviewed
in [71]). In particular, a number of specific systems have been described in which gene
transcription is directly regulated by DNA methylation/demethylation/hemimethylation
([72–77]; reviewed in [71]). Furthermore, both nucleoid organization and chromosome
replication are controlled by DNA methylation [78,79]. Therefore, the available evidence
indicates that nucleoid architecture, DNA supercoiling, epigenetic DNA modification, and
transcription are all tightly linked in prokaryotes.

4. Does Mechanotransduction Play a Role in the Prokaryotic Microgravity Response?

From the examination of the studies cited above, we have seen that eukaryotic cells
possess mechanosensing and mechanotransduction systems that modulate their gene ex-
pression in response to microgravity. Further, we have seen from the results of recent
studies utilizing model bacterial species that it is becoming increasingly clear that prokary-
otes also possess complex intracellular compartmentalization, analogs of cytoskeletal
proteins, and sophisticated signal transduction networks comparable to those of eukary-
otic cells. These networks serve to sense external environmental cues through surface
structures and to transmit this information to the transcription apparatus via traditional
signaling pathways such as two-component systems. From the available information and
by analogy, we hypothesize that the prokaryotic cytoskeletal apparatus functions in an
analogous manner to its eukaryotic counterpart. We further propose that the microbial
cytoskeleton plays a key role in transducing mechanical changes sensed at the cell surface
to the nucleoid, altering its architecture and the global transcriptional apparatus. Testing
of this hypothesis will necessitate conducting new types of experiments in the spaceflight
environment, such as: visualization of cytoskeletal structures, mapping of nucleoid archi-
tecture, and measurements of DNA supercoiling and methylation patterns, to name a few.
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As many of these measurements can be very sensitive to differences in sample handling, it
will be of high importance in this endeavor to match as precisely as possible media and
growth conditions, spaceflight hardware, and pre- and post-flight sample handling, to
eliminate all possible variables with the exception of gravity. Ideally, it would be preferable
to perform all exposures in the microgravity environment (providing 1 × g by centrifuga-
tion) and to perform all inoculations, fixations, freezing, etc. at the same time and using
the same protocols. Results from such experiments hold the promise for uncovering a
new and fundamental mechanism for microbial adaptation to spaceflight microgravity,
mechanosensing and mechanotransduction.
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