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Abstract: Background: In many developed countries, mood disorders have become problematic, and
the economic loss due to treatment costs and interference with work is immeasurable. Therefore, a
simple technique to determine individuals’ depressive state and stress level is desired. Methods: We
developed a method to assess specific the psychological issues of individuals with major depressive
disorders using emotional components contained in their voice. We propose two indices: vitality,
a short-term index, and mental activity, a long-term index capturing trends in vitality. To evaluate
our method, we used the voices of healthy individuals (n = 14) and patients with major depression
(n = 30). The patients were also assessed by specialists using the Hamilton Rating Scale for Depression
(HAM-D). Results: A significant negative correlation existed between the vitality extracted from the
voices and HAM-D scores (r = −0.33, p < 0.05). Furthermore, we could discriminate the voice data of
healthy individuals and patients with depression with a high accuracy using the vitality indicator
(p = 0.0085, area under the curve of the receiver operating characteristic curve = 0.76).

Keywords: mood disorder assessment; vitality; mental activity; voice index; emotion analysis;
noninvasiveness

1. Introduction

Mood disorders have become a major issue in several developed countries [1], and
the economic loss due to treatment costs and interference with work is enormous [2].
Therefore, a simple technique to determine individuals’ depressive state and stress level is
desired. Self-administered psychological tests, such as the General Health Questionnaire
(GHQ) [3,4] and Beck Depression Inventory (BDI) [5,6], can be used as screening methods
for patients with major depressive disorders. In addition, a stress-check method that uses
biomarkers in saliva [7] and blood has been proposed [8]. Although self-administered
psychological tests are useful for early detection and as diagnostic aids, there is a problem
with reporting bias in which specific information such as smoking history and medical
history are selectively suppressed or expressed by participants [9]. Stress-check methods
that use biomarkers also have problems such as the cost of the test and the burden on the
participants during specimen collection, i.e., they are not convenient. On the other hand,
with the recent widespread use of smartphones, pathological analysis using voice data
has become popular [10–12]. Voice analysis using smartphones is not only noninvasive,
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but also, it does not require a dedicated device; thus, it can be performed conveniently
and remotely.

The voice of a depressed person has dull, monotonous, and lifeless [13] features, and
listeners can perceive patients’ prosody [14,15]. The relationship between mood illness
and voice has been observed in previous studies, e.g., studies regarding the speaking rate
of patients with depression [16–18] and studies on switching pause and percent pause
of patients with depression [15,18]. Vicsi et al. used frequency analysis and showed that
the shimmer and jitter in vowels as voiced by patients with depression were higher than
those of healthy people, and the first and second formant frequencies were low [19]. Low
formant frequencies for the same utterance mean that the voice is low.

The mel-frequency cepstral coefficient (MFCC) is often used for voice recognition.
Taguchi et al. [20] showed that MFCC2 (the second dimension of MFCC) is effective in
classifying patients with depression and individuals without depression; however, MFCC2
did not correlate with the severity of depression measured by the Quick Inventory of
Depressive Symptomatology—Self-Report, Japanese version (QIDS-SRJ) [21]. Wang et al.
showed that loudness, MFCC5 and MFCC7 are effective indicators that could be utilized
for identifying depression [22].

Research on voice emotion recognition and measurement of emotional arousal level
using voice have been encouraged. For example, the relationship between arousal level and
voice intensity or pitch has been documented [23,24]. Stress is known to have an impact
on emotions [25], and a method is being developed to estimate stress through emotion
instead of analyzing stress directly from voice data [26–28]. Mitsuyoshi et al. [26] proposed
an algorithm that estimates the expression of emotion from emotion components of the
voice—the vocal affect display. In addition, they experimentally analyzed the relationship
between this index and stress and estimated individuals’ stress level from their voice.

We are focusing on major depression-like depressive symptoms associated with stress
accumulation, which has become a problem in industry in recent years. Since emotions
such as sadness are amplified in the process of completion of stress-induced depressive
symptoms, we thought that the progress of depressive symptoms could be detected by
interposing emotion measurement. In the present study, sensibility technology (ST) that an-
alyzes emotion in speakers’ voices was used [29–31]. More specifically, this study proposes
a method to assess the mood disorder of a speaker from the emotional components in their
voice using ST, with a focus on the relationship between mood disorder and emotions.

2. Materials and Methods
2.1. Acquisition of Voices

In this study, we collected voice data in two categories—healthy individuals and
outpatients with depression. All participants provided written consent. Voice acquisition
of the patient group was performed intermittently from August 2013 to October 2014
with outpatients at Kitahara rehabilitation hospital in Japan. Voices were recorded during
patients’ conversations with physicians during examination. All data were then confirmed
audibly; overlaps with other speakers and background noises were removed manually.

Voices of healthy people were acquired from February to mid-May 2015. During the
acquisition period, participants worked normally at their jobs without visiting medical
facilities for a mood illness. Voice acquisition was continuously performed once every
several days; each time, 14 types of fixed phrases were read aloud twice. Voices were
recorded in a quiet environment with little background noise.

Voices were recorded by a gun microphone (AT9944: Audio-Technica, Tokyo, Japan)
placed approximately 100 cm from the participant or by a pin microphone (ME52W: OLYM-
PUS, Tokyo, Japan) attached to the chest at approximately 15 cm from the participant’s
mouth. The recording device was MS-PST1 (NORITSU KOKI, Wakayama, Japan) which
was not commercially available.

Table 1 shows participants’ information per group. It should be noted that the number
of participants and the number of data differed because data may have been collected
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multiple times from the same participant on different days. The average number of data
collected per healthy person was 24.4 ± 33.3 for men and 6.3 ± 6.1 for women. For patients
with depression, it was 6.0 ± 2.9 for men and 6.8 ± 3.2 for women. These collected data
were used to create algorithms to calculate vitality and mental activity.

Table 1. Experimental participant information for algorithm preparation.

Group Sex Number of Participants Mean Age Number of Data

Healthy Male 9 42.9 ± 5.6 25
Female 4 33.3 ± 15.4 25

Major
depression

Male 4 54.0 ± 12.0 24
Female 5 49.4 ± 15.4 34

Regarding the above-described recorded voice, a healthy person’s voice was recorded
uttering a fixed phrase. On the other hand, a patient’s voice was recorded during free
speech in the form of a dialogue with a doctor, and the type of speech differed between a
healthy person and a patient. Furthermore, the recording location differed. To unify both
speech types and recording environments, data for algorithm verification were collected at
the National Defense Medical College Hospital in Japan with participants’ consent.

First, from December 2015 to June 2016, fixed-phrase reading voices were collected
from outpatients with major depression. Table 2 shows the 17 types of Japanese fixed
phrases that were used for recording. At the time of voice collection, specialists evaluated
patients’ depression severity using the Hamilton Rating Scale for Depression (HAM-D) [32].
The HAM-D is not a self-assessment-type psychological test; rather, experts, such as doctors,
evaluate the characteristic items of depression symptoms. The purpose of the HAM-D is
for a professional to objectively quantify an individual’s depressive state. On the other
hand, for voices of healthy individuals, in mid-December 2016, the same fixed phrase
reading voices as the patients were recorded in the same examination room as the patients.
However, for healthy people, severity assessment using the HAM-D was not conducted.

Table 2. Seventeen phrases used for recording.

No. Phrase in Japanese Purpose (Meaning)

1 I-ro-ha-ni-ho-he-to Non-emotional (no meaning, like “a-b-c”)
2 Honjitsu ha seiten nari Non-emotional (It is fine today)
3 Tsurezurenaru mama ni Non-emotional (Having nothing to do)
4 Wagahai ha neko dearu Non-emotional (I am a cat)
5 Mukashi aru tokoro ni Non-emotional (Once upon a time, there lived)
6 a-i-u-e-o Check pronunciation of vowel sounds (no meaning like “a-b-c”)
7 Ga-gi-gu-ge-go Check sonant pronunciation (no meaning, like “a-b-c”)
8 Ra-ri-ru-re-ro Check liquid sound pronunciation (no meaning, like “a-b-c”)
9 Pa-pi-pu-pe-po Check p-sound pronunciation (no meaning, like “a-b-c”)
10 Omoeba tooku he kita monda Non-emotional (While thinking, I have come far)
11 Garapagosu shotou Check pronunciation (Galápagos Islands)
12 Tsukarete guttari shiteimasu. Emotional (I am tired/dead tired)
13 Totemo genki desu Emotional (I am very cheerful)
14 Kinou ha yoku nemuremashita Emotional (I was able to sleep well yesterday)
15 Shokuyoku ga arimasu Emotional (I have an appetite)
16 Okorippoi desu Emotional (I am irritable)
17 Kokoroga odayaka desu Emotional (My heart is calm)

Patients were included if they had been diagnosed with a major depressive disorder
according to the Diagnostic and Statistical Manual of Mental Disorders [33] and were aged
over 20 years. They were excluded if they had been diagnosed with a serious physical
disorder or organic brain disease. They were diagnosed by a psychiatrist using the Mini-
International Neuropsychiatric Interview [34]. The attending physician explained to the
patients the purpose and content of the study, that the anonymity and confidentiality of
their data were guaranteed, that they were free to withdraw at any time and that there was
no disadvantage if they refused to complete the study. Additionally, only when consent
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was obtained, the attending physician conducted voice recording after normal medical
treatment. Participants were not rewarded for their participation.

The protocol of this study was designed in accordance with the Declaration of Helsinki
and relevant domestic guidelines issued by the concerned authority in Japan. The protocol
was approved by the ethics committee of the National Defense Medical College (No. 2248)
and the Kitahara Rehabilitation Hospital Ethics Committee (No. 3). According to Japanese
law, the sensitivity of audio files is similar to that of any other personal information and
cannot be published without consent. In this research protocol, we did not obtain consent
from the subjects to publish the raw audio files as a corpus.

These voices were recorded by a pin microphone, ME52W (OLYMPUS, Tokyo, Japan),
attached to the chest approximately 15 cm from each participant’s mouth. The recording
device used was an R-26 Portable Recorder (Roland, Shizuoka, Japan). Table 3 shows
participants’ information for algorithm verification. The number of healthy individuals for
verification and the number of their voice data were the same because they were collected
only once from each healthy participant. Regarding patients, some participants performed
multiple data acquisitions. Seven, three, and one performed data acquisition twice, thrice,
and four times, respectively. Data were acquired only once from the remaining 19 people.
The recording format of the voices was linear PCM, the sampling frequency was 11,025 Hz,
and the number of quantization bits was 16 bits.

Table 3. Experimental participant information for algorithm verification.

Group Sex Number of Participants Mean Age Number of Data

Healthy Male 10 42.7 ± 6.0 10
Female 4 35.0 ± 14.4 4

Major
depression

Male 19 43.7 ± 11.0 34
Female 11 53.9 ± 8.2 12

2.2. Voice Emotion Analysis System

We used the software ST Ver. 3.0 (AGI Inc., Tokyo, Japan) [29–31] to extract emotions
from participants’ voices. The categories of emotional elements detected by ST software are
“anger”, “joy”, “sorrow”, “calmness” and “excitement”. The strength of each emotion is
represented as an integer value from “0” to 10. A value of “0” means that the input speech
does not contain the emotion at all. A value of 10 means that the input speech contains the
emotion most strongly. The unit of speech emotion analysis by ST software is “utterance”.
This is a part of continuous voice divided by breath. When a silent state changes to a speech
state, it is considered that an utterance has started. When the speech state continues for a
certain period and changes to silence, it is considered that the utterance has ended. The
presence of the silent state or speech state is determined from the volume using a threshold.
The threshold was adjusted manually for each recording, as the volume of the audio is
affected by the participant and the condition of the recording.

2.3. Algorithm
2.3.1. Vitality and Mental Activity

We proposed two scales—vitality and mental activity—as indices for the degree of
mood disorder obtained through voice analysis. Generally, “vitality” can be defined in
diverse ways; however, here, vitality refers to a scale that measures low for patients with
illnesses such as depression and high for healthy people. The main difference between
vitality and mental activity is the duration of the measurement. Vitality is calculated from
the emotional components of the voice (calmness, anger, joy, sorrow and excitement) based
on short-term voice data, such as a single phone conversation or a hospital visit.

On the other hand, mental activity is calculated based on vitality data accumulated
over a certain period. Vitality changes based on the conditions at the time of measurement
in the same manner that blood pressure changes between post-workout and rest. Similar to
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accurate identification of high blood pressure through long-term monitoring, in this study,
we aimed to accurately assess mood disorders by introducing mental activity.

2.3.2. Vivacity and Relaxation

To calculate vitality, we introduced two new indices: “relaxation” and “vivacity”. To
define these indices, we used four out of five indices output by ST: calmness, joy, sorrow,
and excitement.

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders describes
the characteristics of a major depressive episode as a continuing depressive state with loss
of interests and happiness and feelings of sorrow and emptiness [33]. In contrast, if there is
a component of joy more prevalent, relative to sorrow in emotion, it is considered a good
mood state. Consequently, vivacity for an utterance was defined as follows:

vivacity =
joy

joy + sorrow
(1)

Stress and tension are major factors in mood disorders. On the other hand, the relaxed
state is mentally positive; thus, relaxation for an utterance was defined as follows:

relaxation =
calm

calm + excitement
(2)

In other words, relaxation increases with the increasing calmness component of
emotion and decreasing excitement. Each emotional value output by ST is expressed with
integers in the range of 0–10. Therefore, vivacity and relaxation become real numbers in
the range of 0.0–1.0. Vivacity and relaxation, as defined above, were calculated for each
utterance. Furthermore, we define vivacity and relaxation for an acquired voice as the
mean value for each utterance contained in the acquired voice.

2.3.3. Vitality Calculation Algorithm

Vitality was calculated as the weighted mean of vivacity and relaxation defined in the
previous section. Figure 1 shows a scatter plot of relaxation and vivacity as calculated from
the data for algorithm preparation. Based on the straight line in the figure, vitality for each
acquired voice was defined as follows:

vitality = 0.60 × vivacity + 0.40 × relaxation (3)

2.3.4. Mental Activity Calculation Algorithm

Vitality was calculated from short-term voice data such as a single examination or
consultation. Therefore, depending on participants’ current mood, even healthy people
might score low in vitality, while patients may score high. To compensate for such a
weakness, mental activity was calculated from long-term trends in vitality. Specifically,
to express long-term trends in vitality, we calculated the mean of accumulated vitality
(vitality).

Furthermore, when vitality has little fluctuation and is stagnant at low values, the
patient was determined to have low mental activity. To actualize such a determination,
we introduce a new index: standard deviation (vitalitySD) that expresses variations in
vitalities for utterances contained in acquired voice. Then, the mean of vitality standard
deviation of the accumulated acquired voice (vitalitySD) was calculated.
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Figure 2 is a scatter plot of the mean vitality and mean standard deviation of vitality
for each participant calculated from the data for algorithm preparation. The number of
data plotted was 13 people for the healthy group and 9 people for the patient group (n =
22). When calculating the mean, we used all acquired voice data. In the figure, we added a
straight line that separates the healthy group and the patient group (0.75X + 0.25Y = 0.426).
Based on this line and using the mean and standard deviation of vitality, we define mental
activity as follows:

mental_activity = 0.75 × vitality + 0.25 × vitalitySD (4)
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2.4. Analysis Method

According to the definition of Zimmerman et al. [35], the data of the patient group
were divided into two groups by HAM-D score: no depression (≤7) and depression (≥8).
The vitality of the three groups (i.e., these two and the healthy group) were compared with
each other.

P-values from Tukey–Kramer tests, the area under the curve (AUC), sensitivity, and
specificity were used to evaluate the classification accuracy of vitality. Furthermore, the
power of the test and effect size using Cohen’s d were calculated. For all analyses, statistical
significance was set at p < 0.05.

The following analysis was performed using the statistical software R, version 3.6.1
(2019-07-05) [36], unless otherwise specified. We used the R packages of Epi version 2.41
for AUC calculation, multcomp version 1.4.16 for the Tukey–Kramer test, effsize version
0.8.1 for Cohen’s d and pwr version 1.3.0 for sample size estimation. The operating system
used was Windows 10 (Microsoft Corp., Redmond, WA, USA).

3. Results
3.1. HAM-D Score

The mean values of HAM-D score in each group are shown in Table 4. The number
of participants in each group was 11 men and 8 women in the no depression group, and
8 men and 3 women in the depression group.

Table 4. Average value of Hamilton Rating Scale for Depression (HAM-D) score for each group.

Group Number of Participants Number of Data Mean HAM-D Score ± SD

No depression
(HAM-D ≤ 7) 19 24 3.1 ± 2.3

Depression
(HAM-D ≥ 8) 11 22 16.1 ± 7.4

HAM-D: Hamilton Rating Scale for Depression; SD: Standard Deviation.

3.2. Performance Evaluation of Vitality

We evaluated the performance of vitality using the data for algorithm verification,
as shown in Table 3. Figure 3 shows the relationship between HAM-D score and vitality
for 46 data obtained from the patient group. There was a significant negative correlation
between the two (r = −0.33, n = 46, p < 0.05).

Figure 4 shows the comparison of vitality scores of the healthy group, no depression
group, and depression group. The mean vitality in each group was 0.60 ± 0.027 (n = 14),
0.55 ± 0.020 (n = 24), and 0.49 ± 0.022 (n = 22), respectively. The Tukey–Kramer test revealed
significant differences between the healthy group and the depression group (p = 0.0085).
The effect size of the vitality between the healthy and depression groups was 1.03. When
this value was used as the effect size, with a significance level of 0.05, the power of the
test was 0.84; this value is greater than 0.8, thereby indicating that the power of the test
is large. However, when the number of data for the depression group was set to 22 and
the power of the test was set to 0.8 with a significance level of 0.05 and effect size of 1.03,
the required number of samples for the healthy group was 12.13. The number of data
for the healthy group in this study is 14, so the actual data are slightly higher than the
calculated requirement.
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Next, to evaluate the discrimination performance of vitality, the AUC of the receiver
operating characteristic (ROC) curve, sensitivity, and specificity were used. Figure 5 shows
the ROC curves when vitality was used to identify whether the data for verification are
for the healthy group or for the depression group. Here, the horizontal axis represents
1-specificity (false positive rate), and the vertical axis represents sensitivity (positive rate).
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The AUC was 0.76, and the sensitivity and specificity were 0.93 and 0.55, respec-
tively, regarding the discrimination performance between the healthy group and the
depression group.

4. Discussion

In this study, we developed a method to measure mood disorders using emotional
components contained in voice. Two indicators were proposed: vitality based on short-
term voice data and mental activity calculated from long-term voice data. As shown in
Figure 3, there was a significant negative correlation between vitality and HAM-D score
(i.e., depression severity assessed by a physician). In addition, as shown in Figures 4 and 5,
we could discriminate the voice data of healthy individuals and patients with depression
with a high accuracy using the vitality indicator. On the other hand, there was no signifi-
cant difference between the healthy group and the no depression group with almost no
depressive symptoms, even if they were outpatients with depression. This suggests the
possibility of measuring treatment effects by vitality (i.e., voice).

In our previous study, we verified vitality with Romanian and Russian native speak-
ers [37]. In this verification, BDI tests were conducted simultaneously with voice recordings.
There was a significant difference between the mean vitality of the high-risk depression
group (BDI scores ≥ 17) and the mean vitality of the low-risk depression group (BDI
scores < 17; p < 0.05). Specifically, the scores for question 9—concerning suicidal ideation—
took a value that ranged 0–3. There was a significant difference between the mean vitality
of the low-risk suicide group (0 or 1 points) and the mean vitality of the high-risk suicide
group (2 or 3 points; p < 0.01). In the future, we will examine the vitality of native speakers
of other languages, such as English.

As a limitation of this research, only the fixed-phrase read-out speech was used for
verification. To apply vitality to free speech such as a call, further verification is required.
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Furthermore, in the verification data, the number of voices collected for each participant,
sex ratio, and age were not unified between the groups. These differences may be reflected
in the features of voice.

Furthermore, mental activity was not validated because continuous data could not be
collected sufficiently for the same participants in both the healthy group and the patient
group. However, comparing Figures 1 and 2 showing data for algorithm preparation, there
is a possibility that mental activity can more accurately identify the data as compared to
vitality, which will be addressed in the future.

Vitality and mental activity can be measured only by voice, and their advantages
are that they are non-invasive and less expensive than self-administered tests such as the
GHQ-30 and BDI and stress-check methods using saliva and blood. Moreover, it is also
possible to record day-to-day state changes easily by implementing them on smartphones
or other similar devices.

We developed a smartphone application that implements the algorithm for vitality
and mental activity—called the Mind Monitoring System (MIMOSYS). We are currently
conducting worldwide demonstration experiments using the MIMOSYS [38,39]. In the
future, we plan to verify the effectiveness of vitality and mental activity with such large-
scale data.

5. Conclusions

In this study, we developed a method to measure mood disorders from voice. The
MIMOSYS implemented an algorithm for vitality and mental activity, which is a cost-
effective and convenient measurement device. If the correlation between HAM-D score
and vitality can be further enhanced, it may be used to aid doctors’ diagnoses in the
future. By daily monitoring of vitality and mental activity using the MIMOSYS, we can
encourage hospital visits for people before they become depressed or during the early
stages of depression. This may lead to reduced economic loss caused by treatment costs
and interference with work.
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