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Abstract

Endocrine system plays a vital role in controlling human homeostasis. Understanding 
the possible effects of COVID-19 on endocrine glands is crucial to prevent and manage 
endocrine disorders before and during hospitalization in COVID-19-infected patients 
as well as to follow them up properly upon recovery. Many endocrine glands such as 
pancreas, hypothalamus and pituitary, thyroid, adrenal glands, testes, and ovaries 
have been found to express angiotensin-converting enzyme 2 receptors, the main 
binding site of the virus. Since the pandemic outbreak, various publications focus on 
the aggravation of preexisting endocrine diseases by COVID-19 infection or the adverse 
prognosis of the disease in endocrine patients. However, data on endocrine disorders 
both during the phase of the infection (early complications) and upon recovery (late 
complications) are scarce. The aim of this review is to identify and discuss early and late 
endocrine complications of COVID-19. The majority of the available data refer to glucose 
dysregulation and its reciprocal effect on COVID-19 infection with the main interest 
focusing on the presentation of new onset of diabetes mellitus. Thyroid dysfunction with 
low triiodothyronine, low thyroid stimulating hormone, or subacute thyroiditis has been 
reported. Adrenal dysregulation and impaired spermatogenesis in affected men have been 
also reported. Complications of other endocrine glands are still not clear. Considering the 
recent onset of COVID-19 infection, the available follow-up data are limited, and therefore, 
long-term studies are required to evaluate certain effects of COVID-19 on the  
endocrine glands.

Introduction

Most patients affected by the novel coronavirus disease 19 
(COVID-19) are asymptomatic or present with mild flu-
like symptoms. Around 14% of cases are severe and 5% are 
life-threatening (1). SARS-CoV-2 enters the lung, deposits 

in the lung parenchyma, and afterward enters into the 
host cells. Angiotensin-converting enzyme 2 (ACE2) and 
transmembrane serine protease 2 (TMPRSS2) on host cells 
act as receptors for the virus (2). Viral mRNA has been 
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detected in blood, stool, and urine samples of patients 
with COVID-19 suggesting that SARS-CoV-2 can interact 
with ACE2 and TMPRSS2 expressed in other organs as well 
(3, 4). This interaction leads to multi-organ involvement, 
including cardiovascular, gastrointestinal, nervous, and 
endocrine system (4, 5).

Endocrine glands such as pancreas, hypothalamus, 
pituitary, thyroid, adrenal glands, testes, and ovaries have 
been found to express ACE2 and TMPRSS2, with the highest 
concentration in the testes, followed by thyroid, and the 
lowest in the hypothalamus (6, 7). Since the pandemic 
outbreak, the aggravation of original endocrine diseases 
caused by COVID-19 or the adverse prognosis of the disease 
in patients with endocrine history, such as those with 
obesity and diabetes mellitus (DM), is under investigation. 
However, data on new early and late onset manifestations 
are limited (8, 9, 10, 11).

The aim of this article is to review the early and late 
endocrine complications of COVID-19 and specifically for 
(1) glucose metabolism, (2) hypothalamus and pituitary, 
(3) thyroid gland, (4) adrenal glands, (5) reproductive 
system, and (6) calcium and vitamin D metabolism.

Methods

Authors collected, analyzed, and present information 
on early and late endocrine complications of COVID-19.  
English language literature was searched in PubMed 
until July 2021 using combinations of relevant terms, 
such as COVID-19, endocrine, hormones, thyroid, 
adrenals, reproductive, testes, ovaries, vitamin D, calcium, 
parathormone, diabetes, pancreas, and glucose. These 
words were used as MeSH terms, in order to cover other 
relevant possible words missing. Alike works found in the 
references of the studies identified were also reviewed.

The early and late endocrine complications of  
COVID-19 are summarized in Table 1.

Glucose metabolism

Diabetes mellitus (DM) has been in the highest rank of 
comorbidities in hospitalized patients with COVID-19 (1, 
12). Available evidence indicates that older adults with 
DM are at greater risk to develop severe COVID-19 disease, 
subsequent complications, and have increased mortality 
(13, 14, 15). Diabetic microvascular and macrovascular 
complications may be responsible for these outcomes (16, 
17, 18). Moreover, chronic inflammation and increased 

thromboembolic risk that exist mainly in diabetic people 
with obesity may negatively affect the immune response 
(19, 20, 21). Growing data indicate also that hyperglycaemia 
on admission and during hospitalization in people with or 
without diabetes is a predictor of worse prognosis, severity, 
and mortality of COVID-19 (22, 23, 24, 25, 26). On top of 
the above, early and late effects of COVID-19 on glucose 
metabolism are of great interest.

Importantly, COVID-19 may worsen glucose 
homeostasis. COVID-19 infection is characterized by 
severe inflammation (27, 28, 29) that may aggravate insulin 
resistance and subsequent hyperglycaemia through the 
cytokine storm in conjunction with counterregulatory 
hormones' dysregulation (30). It has been already 
documented that viral respiratory infections, even in 
healthy individuals, can cause acute transient skeletal 
muscle insulin resistance by increasing interferon-γ 
production (31). Previous studies suggest that inflammatory 
cells in severe acute respiratory syndrome and Middle East 
respiratory syndrome apart from infiltrating the lungs 
and causing lung injury and acute respiratory distress 
syndrome (ARDS) can also affect skeletal muscle and 
liver functions (32). These two organs are responsible for 
insulin-mediated glucose uptake and gluconeogenesis, 
and their induced malfunction by inflammation probably 
results in hyperinsulinaemia and hyperglycaemia (33). 
Glycemic control seems to play a vital role in regulating 
the inflammatory response and preserving tissue 
integrity and physiological function during the critical 
stages of infection. Interestingly, drugs often used in 
the treatment of COVID-19, such as corticosteroids or 
antiviral agents, might further aggravate hyperglycaemia 
by inducing insulin resistance or even lipodystrophy (11, 
34). Furthermore, decreased exercise capacity, cachexia, 
and muscle weakness in patients during severe infection 
and long-term hospitalization may diminish insulin 
sensitivity, especially in survivors of ARDS and sepsis (35, 
36). Moreover, rhabdomyolysis has been reported during 
the infection, which might contribute further to glucose 
dysregulation (37).

COVID-19 infection may trigger the presentation 
of new DM cases. Indeed, recent clinical evidence has 
suggested such an effect of SARS-CoV-2 with presentation 
of diabetic ketoacidosis (DKA) and hyperosmolarity, 
usually requiring higher doses of insulin to be controlled 
(38, 39, 40, 41, 42). German and Italian studies have 
described higher frequency of DKA and severe DKA in 
children and youth with new-onset type 1 diabetes mellitus 
(T1DM) in COVID-19 time, while the incidence of new-
onset T1DM in the general population has not changed 
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(43, 44, 45). DKA diagnosis may be attributed to delayed 
hospital attendance and diagnosis of T1DM because of the 
overall public health impact (46). On the other hand, the 
postulation that COVID-19 could precipitate or accelerate 
T1DM onset is a possibility.

A potential link has been reported in a North West 
London Study where an apparent increase in DKA was 
noticed compared with usual admissions at two of the 
five units. Five out of 30 children with DKA had a positive 
COVID swab as evidence of SARS-CoV-2 infection or 
exposure. The authors raised awareness that there may be a 
link, but the increase in DKA may reflect pandemic-related 

delayed presentations of new cases of T1DM, resulting 
in an increased number of presentations with DKA (47). 
Furthermore, a recent case report presented a 19-year-
old German male who was hospitalized with DKA and 
insulin-dependent DM with the absence of typical diabetic 
autoantibodies, 5–7 weeks after asymptomatic COVID-19 
infection. Authors suggested that SARS-CoV-2 infection 
might damage β cells in pancreas through a direct cytolytic 
effect of the virus (48). Increased psychological stress during 
lockdown could also contribute especially in genetically 
susceptible individuals. Past coronavirus outbreak studies 
have also reported higher rates of hyperglycaemia on 

Table 1 Early and late endocrine complications of COVID-19.

Endocrine gland Early complications Late complications Possible pathophysiological mechanisms

Glucose metabolism Hyperglycemia on admission/
during hospitalization  
(22, 23, 24, 25)

New presentation of DM with 
DKA or hyperosmolarity  
(38, 39, 40, 41, 42)

Insulin-dependent
DM or precipitation of T1DM 

(47, 48)
Aggravation of glycemic 

control in preexisting DM 
(26, 42)

Permanent dysregulation 
of glucose  
homeostasis (38)

T1DM or T2DM  
(38, 47, 48)

Alteration of 
pathophysiology  
of DM (38)

Pancreatic β-cell loss or malfunction: cytolytic 
effect of the virus on β-cells (48, 59) 
Morphological, transcriptional, and functional 
changes of β-cells by SARS-CoV-2 infection  
(60, 61, 62)

Effect of the virus on exocrine pancreas 
(pancreatitis) (57, 58)

Hyperinflammation/cytokine storm (28, 30)
Hypokalemia through reduction of ACE2 

expression may decrease insulin secretion  
(11, 69)

Drugs (corticosteroids, antivirals) (11, 34)
Cahexia, muscle weakness, rhabdomyolysis lead 

to decreased insulin sensitivity (35, 36, 37)
DPP4 potential SARS-CoV-2 receptor  

(70, 71, 72, 73)
Hypothalamus and 

pituitary
Possible hyponatremia (75) No data so far Possible inappropriate antidiuretic hormone 

secretion syndrome (75)
Thyroid Low T3 concentrations  

(77, 78, 79, 80)
Thyrotoxicosis (78, 81)
Subacute thyroiditis (78, 82, 

83, 84, 85, 86)

Low T3 concentrations 
(77, 78, 79, 80)

Low TSH concentrations 
(77, 78, 79, 80)

Hypothyroidism (78)

Direct virus effect on follicular cells (89)
Immune mechanisms (76)
Euthyroid sick syndrome (76, 93)
Hypothalamic-pituitary dysfunction due to 

edema and neuronal degeneration (76)
Drugs (glucocorticoids, heparin) (76, 95, 97, 98)

Adrenals Possible adrenal insufficiency 
(99, 100, 101, 102)

Possible adrenal 
insufficiency (99, 100, 
101, 102)

Adrenal hemorrhage (99, 100)
Adrenal micro-infarction (100)
Ischemic necrosis (101)
Adrenalitis (101)

Testes Semen virus detection (115) Impaired 
spermatogenesis (106)

Direct virus effect (89, 106)
Seminiferous injuries (106)
Reduction in Leydig cells number (106)
Inflammation (106)

Ovaries Vaginal fluid positive (118)
Increased risk for premature 

delivery (107, 122)
Vertical transmission not 

confirmed (107, 121)

Adverse pregnancy 
outcomes (107, 122)

Adverse perinatal 
outcomes (107, 122)

Inflammation (107, 122)

Calcium and  
vitamin D

Complicated recovery in 
patients with vitamin D 
deficiency and hypocalcemia 
(124, 125, 126, 127, 128)

Vertebral fractures (126)

Vitamin D deficiency (123)
Increased PTH (123)

Home isolation and low sun exposure during 
lockdowns (123)

ACE, angiotensin-converting enzyme; DKA, diabetic ketoacidosis; DM, diabetes mellitus; DPP4, dipeptylpeptidase 4; PTH, parathormone; T1DM, type 1 
diabetes mellitus; T2DM, type 2 diabetes mellitus; TSH, thyroid stimulating hormone; T3, triiodothyronine.
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admission, irrespective of preexisting glycemic status, 
disease severity, or glucocorticoid use (49, 50).

Of note, several case series of euglycaemic DKA in 
patients with T2DM and COVID-19 while on sodium-
glucose cotransporter-2 inhibitors (SGLT2is) have been 
reported (51, 52). SGLTis act on glucose and sodium 
excretion inducing osmotic diuresis and potential 
dehydration in critically ill patients, especially in a setting 
of anorexia and vomiting (53). The risk for euglycaemic 
DKA seems even more enhanced during COVID-19. Specific 
precipitating factors apart volume depletion by vomiting 
and anorexia may include a direct cytolytic effect of the 
virus on β-cells with consequent decreased endogenous 
insulin secretion and an increased inflammatory response 
with elevated interleukin-6 contributing to ketoacidosis 
(54). Furthermore, an international randomized control 
trial (dapagliflozin in respiratory failure in patients with 
COVID-19) is ongoing with dapagliflozin in patients 
with COVID-19 (55) in order to evaluate its safety and 
efficacy in conjunction with its implications in adults with 
cardiovascular, metabolic, or renal risk factors. However, 
early data from this phase 3 trial show that dapagliflozin 
failed to prevent organ dysfunction and all-cause mortality 
among hospitalized patients with COVID-19 at risk for 
developing serious complications, while its safety profile 
proved to be consistent.

There are several possible underlying 
pathophysiological mechanisms that would explain 
the damage of the pancreatic islets by SARS-CoV-2 and 
the subsequent loss of insulin secretory capacity. The 
immune response mediated by the virus with release of 
chemokines and cytokines might affect pancreatic cells 
and impair their ability to sense glucose concentrations 
and release appropriate amounts of insulin. Immune 
response may further impair the ability of liver, muscles, 
and other peripheral organs to uptake glucose (6, 38). 
Pancreatic islets express ACE2, facilitating damage during 
the infection, as indicated by elevated levels of circulating 
pancreatic enzymes (56, 57, 58). In a recent experimental 
study with derivatives from human pluripotent stem cells, 
it was demonstrated that the high expression of ACE2 in 
β cells and consequently the high β cells' permissiveness 
to SARS-CoV-2 can induce inflammatory cytokine release, 
β-cell apoptosis, and decreased insulin secretion (59). These 
findings were confirmed by a study that presented data 
from both human pancreatic islet cultures and COVID-19  
full-body postmortem examinations. It was shown 
that SARS-CoV-2 infects and replicates in human islets, 
inducing morphological, transcriptional, and functional 
changes with subsequent reduction of insulin-secretory 

granules and impairment of glucose-dependent insulin 
secretion of β cells (60).

Two further studies also confirmed infection of β-cells 
in autopsy samples from people who died of COVID-19 
and showed that COVID-19 infection leads to reduced 
production and release of insulin from pancreatic islet 
tissue. In particular, they showed that SARS-CoV-2 
infection leads to the death of some of those all-important 
β-cells and causes transdifferentiation of the surviving cells 
(61, 62). In addition, several studies in mice support the 
hypothesis that ACE2 is important in β cell homeostasis. 
High fat diet may lead to reduction of ACE2, while deletion 
of ACE2 in diabetic mice induces hyperglycaemia, increases 
β cell oxidative stress, and decreases insulin secretion (63, 
64, 65, 66).

In turn, acute hyperglycaemia seems to upregulate 
ACE2 expression and increase urinary ACE2 activity, which 
may consequently lead to increase of viral load. It has been 
shown that urinary ACE2 activity is elevated in patients 
with T1DM and T2DM, while urinary ACE2/creatinine is 
positively correlated with fasting blood glucose levels and 
glycated hemoglobin (HbA1C) (67, 68). In patients with 
DM, SARS-CoV-2, through reduction of ACE2 expression, 
results in decreased degradation of angiotensin II, 
increased secretion of aldosterone, and renal potassium 
loss. Hypokalemia can lead to further decrease of insulin 
secretion (69). Dipeptylpeptidase 4 (DPP4) is another 
possible coronavirus receptor that it is well known to have 
an important role in glucose homeostasis. Although it is 
not yet confirmed, DPP4 could also bind to SARS-CoV-2, 
affecting glucose homeostasis (70, 71, 72, 73).

Given the recent onset of COVID-19 pandemic, it is 
unclear whether the dysregulation of glucose metabolism 
induced by this type of coronavirus is permanent and can 
contribute to the development of overt DM in survivors. 
Moreover, whether SARS-CoV-2 can induce T1DM or T2DM 
or a new form of DM is a matter of scientific discussion. 
Long-term studies are required to evaluate whether the 
virus has a diabetogenic impact on individuals with higher 
risk for DM or whether it can totally change the picture of 
DM pathophysiology.

Hypothalamus and pituitary

There are no sound data indicating specific early or late 
hypothalamic or pituitary complications from COVID-19.  
Hypothalamic and pituitary tissues express ACE2 and 
could be potential SARS-CoV-2 targets either directly or 
via an immune-mediated process, as already demonstrated 
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with other coronaviruses (2, 8, 9, 11, 74). Survivors of the 
SARS outbreak after recovery presented mild secondary 
hypocortisolism (40%) or central hypothyroidism (5%). 
The potential underlying mechanisms may include 
edema and neuronal degeneration (74). Hyponatremia is 
prevalent in around 20–50% of hospitalized patients with 
COVID-19, associated often with negative outcomes. It has 
been hypothesized that it could be related to inappropriate 
antidiuretic hormone secretion syndrome potentially 
caused by excess levels of interleukins that can induce the 
non-osmotic release of vasopressin (75). Therefore, even 
in lack of sound evidence, targeted endocrine work-up 
especially in patients with unexplained fatigue and mental 
impairment post COVID-19 should be considered (9).

Thyroid gland

Interesting data have been published recently on the 
possible thyroid complications of COVID-19 (76). When 
thyroid function was investigated in 50 patients with 
COVID-19 for a follow-up period of 3 months post diagnosis, 
64% was found to have abnormal thyroid function. Of 
those, 56% presented lower thyroid stimulating hormone 
(TSH) levels, while many of them had also decreased 
triiodothyronine (T3) concentrations compared with 
a healthy control group. No significant differences in 
thyroxine (T4) levels were found. Additionally, the degree 
of the decrease in TSH and T3 was positively correlated 
with the severity of the disease, as reported in other 
studies, the more severe the infection, the lower the TSH 
and T3 levels (77, 78, 79). When the clinical characteristics 
of deceased and recovered patients with COVID-19 were 
retrospectively compared, it was found that TSH and free 
T3 concentrations were significantly lower in the deceased 
ones (80). Muller  et  al. (78) found a higher prevalence of 
thyrotoxicosis (15.3%) in COVID-19 patients compared 
with only 1.3% in the control group that returned to 
normal after pneumonia recovery. It should be noted that 
the definition of thyrotoxicosis is not strict in this study 
(78). A retrospective study investigated thyroid function in 
287 non-critical patients hospitalized for COVID-19 (81), 
20.2% of whom had thyrotoxicosis and 5.2% presented 
with hypothyroidism. Interestingly, it was found that the 
presence of thyrotoxicosis was significantly associated 
with increased IL-6 levels (81).

Up to date, eight studies have reported subacute 
thyroiditis associated with COVID-19 (78, 82, 83, 84, 85, 
86, 87, 88). Patients included had an age range from 18 
to 68 years, most of them were women of Italian origin.  

These patients had no serious COVID-19 infection 
symptoms but only mild fever and mild upper respiratory 
symptoms, and no one needed treatment in ICU. The 
symptoms of subacute thyroiditis were the expected 
and included fever, anterior neck pain, fatigue, tremors, 
sweating, and palpitations, while the time from COVID-19  
diagnosis to typical thyroiditis symptoms ranged from 5 
to 42 days. Many of these patients with classic subacute 
thyroiditis presented specific classic ultrasound patterns 
(82, 83, 84, 85, 86, 87, 88). Interestingly, diffuse mild 
hypoechoic or focal markedly hypoechoic areas at thyroid 
ultrasound or reduced radioisotope thyroid uptake have 
been also described for atypical thyroiditis (78). Most of 
these patients received corticosteroids, and the symptoms 
improved within few days (78, 82, 83, 84, 85, 86, 87, 88). 
Subacute thyroiditis is thought to follow a viral infection 
or a post-viral inflammatory response, especially in 
genetically predisposed individuals (9, 76).

The pathogenesis of thyroid dysfunction post  
COVID-19 is not completely understood. One hypothesis 
is the direct influence of SARS-CoV-2 on thyroid gland. 
In a recently published autopsy study, the SARS-CoV-2  
genome was detected in 9 of 25 (36%) thyroid samples. 
Moreover, strong cytoplasmic staining for SARS-CoV-2  
nucleocapsid antigen in thyroid follicular cells 
was observed (89). Ultrasound findings of thyroid 
inflammation have been observed in patients with 
classic subacute or atypical thyroiditis after COVID-19 
(76, 78). Of course, there are other recent postmortem 
reports that did not detect SARS-CoV-2 in thyroid tissues 
either by immunohistochemistry or PCR analysis (90, 
91, 92). Taken all these together and as ACE2 is highly 
expressed in thyroid tissue, a role of a direct damage by  
SARS-CoV2 on the thyroid gland is possible. Eventually, 
the thyroid damage can also be indirect, caused by immune 
mechanisms, such as the cytokines’ storm (76, 89).

Another potential explanation could be an 
underlying non-thyroidal illness syndrome or euthyroid 
sick syndrome, which is often caused by critical illness 
(93). This is characterized by normal or low serum TSH 
and T3 levels, with normal or low T4 concentrations. 
This is a homeostatic mechanism to recover from 
severe illness (76, 93). An observational study from UK 
included 334 patients with confirmed COVID-19 without 
history of thyroid disease. Most of them presented with 
euthyroidism and mild reductions in TSH and free T4 
(FT4) compatible with a non-thyroidal illness syndrome 
(94). The dysfunction of the hypothalamic-pituitary-
thyroid axis might be an additive cause leading to decrease 
in TSH levels (76). Finally, indirect effects on thyroid 
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or pituitary cells due to systemic immune-mediated 
post-viral inflammatory response could affect thyroid  
function (88, 95).

Additionally, drugs used for the management of 
COVID-19 can potentially affect thyroid function (76). 
Glucocorticoids could affect serum TSH levels, mainly 
by inhibiting thyrotropin-releasing hormone secretion 
in the hypothalamus or by suppressing TSH release in 
pituitary thyrotroph cells (96, 97). Heparin is indicated 
for hospitalized COVID-19 patients for thromboembolic 
event prevention, and it is known that it interferes with 
the measurement of serum free thyroid hormone due 
to significant increase of serum non-esterified fatty 
acid. Heparin causes a displacement of total T4 (TT4) 
from thyroid binding globulin (TBG), thus resulting in a 
measurement error increase of FT4. Therefore, in patients 
treated with heparin, measurement of total thyroid 
hormone levels, TSH, and TBG could help confirm patient’s 
thyroid status (76, 98).

Overall, thyroid dysfunction is common in patients 
with COVID-19 infection. Physicians should be alert 
and screen COVID-19 patients for early and late thyroid 
disfunction (8, 9, 10, 11, 76).

Adrenal glands

Adrenal glands play a crucial role in the immune response, 
as they secrete cortisol and catecholamines. Patients with 
known adrenal insufficiency and Cushing’s syndrome 
present higher susceptibility to infections, and special 
attention is required during the pandemic (8, 9, 10).

Few clinical cases of adrenal hemorrhage as a 
complication of confirmed COVID-19 infection have 
been described so far (99, 100). The first one is a 53-year-
old Caucasian man from UK who had bilateral pulmonary 
emboli and a unilateral adrenal haemorrhage during 
the course of COVID-19 infection. He was treated with 
intravenous heparin for 5 days and was then converted to 
oral anticoagulation. He had no clinical or biochemical 
evidence of adrenal insufficiency (99). Another case is a 
66-year-old woman from Israel who presented with acute 
COVID-19 infection. The patient was already known to 
have antiphospholipid syndrome and presented with 
primary adrenal insufficiency due to bilateral adrenal 
hemorrhage (100).

There are also interesting data from autopsy studies 
regarding the effect of COVID-19 on adrenal glands (101, 
102). In case series of nine full postmortem examinations 
of patients who died from confirmed COVID-19 in UK 

between March 1 and April 30, 2020, adrenal micro-
infarction was found in three of them (33%) (102). Another 
autopsy study was performed on 28 deceased patients with 
confirmed SARS-CoV-2 infection in Western Brazilian 
Amazon. Adrenal lesions were found in 12 of 28 (42.9%) 
patients. Ischemic necrosis, cortical lipid degeneration, 
hemorrhage, or unspecific focal adrenalitis were idenitified, 
possibly directly linked to the viral infection (101).

To conclude, autopsy and limited clinical data indicate 
that the adrenal glands may be affected by COVID-19. 
Hypoadrenalism is life-threatening and therefore adrenal 
axis testing for COVID-19 patients with clinical suspicion 
of adrenal insufficiency may be considered.

Testes and ovaries

ACE2 receptors are highly expressed in testes and 
specifically on the seminiferous duct cells, spermatogonia, 
Leydig cells, and Sertoli cells (103, 104, 105). In a study 
with 12 deceased patients, SARS-CoV-2 was detected by 
PCR in the testes of one patient. However, the testes of 
most patients displayed seminiferous injuries, reduction 
in Leydig cells number, and mild inflammation, implying 
not only direct but also indirect effects due to immune 
mechanisms (106). In a recently published autopsy study, 
the SARS-CoV-2 genome was detected in six of nine (67%) 
of testes (89). Spermatogenesis is impaired in infected 
men, and delay in sperm maturation might be present. 
It is well known that spermatogenesis is a temperature-
sensitive process; therefore, it may be also affected by high 
temperature. This can occur even in mild infections (107, 
108). In most studies published so far, SARS-CoV- 2 was not 
detected in the semen of males recovered from COVID-19 
(109, 110, 111, 112, 113, 114). There is only one study that 
reports virus detection within the semen of 6 of 38 patients 
(115). Most available data do not support a direct effect of 
SARS-CoV-2 on the testicular tissue or semen. However, 
the high expression of ACE2 receptors in testes and some 
recent – autopsy mainly – data maintain such a hypothesis 
as possible (89, 107, 108).

ACE2 receptors have been detected in the ovaries 
of both reproductive and postmenopausal women, 
including oocytes (116, 117). Data on possible effects of 
SARS-CoV-2 on ovaries are currently lacking, and the exact 
effect on female fertility still remains unknown. Positive 
vaginal fluid after infection has been reported in few cases 
only (118), while other ones failed to detect the virus in 
the vaginal fluid (119, 120). Larger studies indicate that 
intrapartum vaginal or orofecal SARS-CoV-2 transmission 
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seems to be unlikely (107, 121). Regarding COVID-19 
complications on pregnancy, there is confirmed increased 
risk for adverse pregnancy and perinatal outcomes, 
especially among women with certain demographic and 
health profiles (107, 122).

Calcium and vitamin D metabolism

Vitamin D receptor is expressed in most human tissues, 
and vitamin D has been implicated in both innate and 
adaptive immune response (9, 10, 11). Home isolation 
and low sun exposure during lockdowns might decrease 
vitamin D levels and impair immunity indirectly. 
Pizzini  et  al. reported data on post COVID-19 patients 
with low vitamin D and increased parathormone levels 
8 weeks post symptom onset (123). According to large 
series of patients with COVID-19, hypocalcemia is highly 
prevalent and is associated with worse clinical outcomes 
and the need of hospitalization (124, 125). Various studies 
from different countries have reported poor vitamin D 
status, which is associated with disease severity, mortality 
risk, as well as the development of other endocrine 
complications of COVID-19 (126, 127, 128). In a Spanish 
pilot clinical trial, 537 hospitalized patients with COVID-19  
pneumonia were randomized to calcifediol or not. 
Treatment with calcifediol was significantly associated 
with lower in-hospital mortality during the first 30 days 
(129). Considering the strong association of vitamin 
D with immune regulation as well as the above data, 
supplementation with cholecalciferol could be of some 
importance according to current recommendations (8, 9).

Recently, a cross-sectional study including patients 
from a single center reported high prevalence (36%) of 
morphometric vertebral fractures on lateral chest X-rays 
of patients with COVID-10 that could negatively influence 
respiratory function too (126). Physicians may offer 
therapeutic alternatives in patients with osteoporosis 
to avoid long-term complications during this era. 
Subcutaneous use of denosumab could be of some benefit 
to avoid intravenous administration of bisphosphonates 
(8, 9, 10).

Conclusions

Data so far have provided evidence for dysregulation of 
glucose metabolism in patients with or without previous 
DM. Thyroid dysfunction has been also reported with 
low T3, low TSH concentrations, or cases of subacute 

thyroiditis. There are also indications of possible adrenal 
complications and impaired spermatogenesis in affected 
men, while early or late complications of other endocrine 
glands are not clear. Given the very short history of 
COVID-19 infection, sound conclusions cannot be drawn. 
Long-term studies are required to evaluate certain effects of 
COVID-19 on the endocrine glands.
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