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Classifications of acute myeloid leukemia (AML) patients rely on morphologic, cytogenetic, and molecular features. Here we have
established a novel flow cytometry-based immunophenotypic stratification showing that AML blasts are blocked at specific stages
of differentiation where features of normal myelopoiesis are preserved. Six stages of leukemia differentiation-arrest categories
based on CD34, CD117, CD13, CD33, MPO, and HLA-DR expression were identified in two independent cohorts of 2087 and 1209
AML patients. Hematopoietic stem cell/multipotent progenitor-like AMLs display low proliferation rate, inv(3) or RUNX1 mutations,
and high leukemic stem cell frequency as well as poor outcome, whereas granulocyte–monocyte progenitor-like AMLs have CEBPA
mutations, RUNX1-RUNX1T1 or CBFB-MYH11 translocations, lower leukemic stem cell frequency, higher chemosensitivity, and better
outcome. NPM1mutations correlate with most mature stages of leukemia arrest together with TET2 or IDHmutations in granulocyte
progenitors-like AML or with DNMT3Amutations in monocyte progenitors-like AML. Overall, we demonstrate that AML is arrested at
specific stages of myeloid differentiation (SLA classification) that significantly correlate with AML genetic lesions, clinical
presentation, stem cell properties, chemosensitivity, response to therapy, and outcome.
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INTRODUCTION
Normal blood cell maturation is organized according to a
functional hierarchy at the top of which are multipotent
hematopoietic stem cells (HSC). Immunophenotypically, human
HSCs are enriched in a population of Lin−, CD34+, CD38−, CD90+,
and CD45RA− cells [1–4]. Upon differentiation, HSC gives rise to
multipotent progenitors (MPP), which retain the ability to produce
all blood lineages but have lost their self-renewal capacity [4]. The
classical model of hematopoiesis [5, 6] postulates that MPPs are
then orientated toward either the lymphoid or myeloid lineage,
developing into common myeloid progenitors (CMP) or lymphoid-
primed multipotent progenitors (LMPP) which can still produce
defined myeloid cell types. Along the myeloid pathway, CMP can
differentiate into either granulocyte–monocyte progenitors (GMP)
or megakaryocyte–erythroid progenitors (MEP). GMPs finally
differentiate into granulocyte progenitors (GP) or monocyte
progenitors (MP).
Acute myeloid leukemia (AML), the neoplastic counterpart of

early hematopoiesis, is caused by the excessive proliferation of

transformed hematopoietic progenitors which show great
heterogeneity at the morphological, immunophenotypic, cytoge-
netic, and molecular levels [7]. Recent studies have shown that
leukemic clones might develop from pre-leukemic hematopoietic
cells carrying mutations in genes such as DNMT3A, TET2, or ASXL1,
which then accumulate a series of secondary mutations some of
which will block differentiation while others induce uncontrolled
proliferation [8, 9]. Importantly, AML is initiated and maintained
by rare and immunophenotypically diverse leukemic stem cells
(LSC), phenocopying the hierarchical organization of normal
hematopoiesis [10–12].
Despite a better characterization of AML and higher efficacy of

new AML therapies, biomarkers for response prediction are
currently lacking, in part because genomic aberrations have
shown only limited predictive value [13]. More accurate response
predictions, which go beyond genomics, are needed for some of
the newest approaches to AML treatment.
The proteome and the surfaceome have been considered a

promising and complementary fields to the genome for
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elucidating cancer biology and identifying diagnostic and
predictive biomarkers [14, 15]. However, there are still very few
clinically relevant biomarkers and disease subtypes that have been
identified by these approaches [16–18].
Here, we did a phenotypic, cytogenetic, and molecular

correlative analysis of a very large cohort of AML patients to
capture the AML surfaceome that appears to be caused by the
stage of leukemia arrest (SLA) and by specific genomic features.
We hypothesized that our approach may add to current AML
classifications by identifying relevant phenotypic AML subtypes
with specific clinical and molecular features as well as information
on outcomes after standard treatment. Overall, we anticipated that
phenotypic classification associated with the morphological
analysis, available within 24 h on the day of diagnosis, could be
very useful to begin planning therapeutic strategy in daily practice.

PATIENTS AND METHODS
Patients and samples
Between January 1, 2000 and December 31, 2019, 2448 AML patients (>15
years) were included in the AML database of Toulouse University Hospital
(TUH) and 1700 AML patients in the AML database of Bordeaux University
Hospital (BUH). Immunophenotyping at diagnosis was available for 2087
TUH patients (median age: 63 years) of which 1266 received intensive
chemotherapy [19, 20] (Table 1) and 1209 BUH patients (Table S1). AML
patient samples were stored after informed consent at the HIMIP collection
(BB-0033-00060). According to French law, HIMIP collections have been
declared to the Ministry of Higher Education and Research (DC 2008-307
collection 1) and obtained a transfer agreement (AC 2008-129) after
approbation by the “Comité de Protection des Personnes Sud-Ouest et
Outremer II” (Ethical Committee). BUH and TUH cohorts are both registered
in the Toulouse-Bordeaux DATAML registry [21, 22].

Immunophenotyping
Multi-parameter flow cytometry (MFC) was performed on whole bone
marrow (BM) or blood specimens using a standard stain-lyse-wash
procedure with ammonium chloride lysis. 1 × 105 cells were stained per
analysis tube, and data were acquired on at least 1 × 104 blasts when
specimen quality permitted. Data on standardized 8- to 10-color staining
combinations were acquired on FACSCanto II cytometers using FACSDiva
software (BD Biosciences) or Navios instruments analyzed using Kaluza
(Beckman-Coulter). Several different tube configurations were used
through the course of the study, all with staining for CD13, CD33, CD34,
CD45, CD117, HLA-DR, and cytoplasmic MPO. A blast gate including CD45
dim mononuclear cells was analyzed according to cytomorphologic data.

Next-generation sequencing
DNA samples from 409 AML patients have been obtained after informed
consent and stored at the HIMIP collection (BB-0033-00060). Briefly,
genomic DNA was extracted from the baseline bone marrow sample using
a Qiagen DNA extraction kit (Qiagen). The presence of FLT3-ITD was tested
as described [19]. Electrophoregram peaks were quantified using
GeneMarker 2.2 (SoftGenetics, State College, PA, USA). CEBPA screening
was performed by classical Sanger sequencing [23]. An extended DNA
resequencing was performed using a Illumina NextSeq500 and Sureselect
(Agilent, Santa Clara, CA, USA) targeted on the complete coding regions of
46 genes commonly mutated in myeloid malignancies: ASXL1
(NM_015338.6), ASXL2 (NM_018263.6), BCOR (NM_001123383.1), BCORL1
(NM_021946.5), CBL (NM_005188.4), CCND2 (NM_001759.4), CEBPA
(NM_004364.5), CSF3R (NM_156039.3), DHX15 (NM_001358.3), DNMT3A
(NM_022552.5), EP300 (NM_001429.4), ETV6 (NM_001987.5), EZH2
(NM_004456.5), FLT3 (NM_004119.3), GATA1 (NM_002049.4), GATA2
(NM_032638.5), IDH1 (NM_005896.4), IDH2 (NM_002168.4), JAK2
(NM_004972.4), KDM5A (NM_001042603.3), KDM6A (NM_021140.4), KIT
(NM_000222.3), KMT2D (NM_003482.4), KRAS (NM_004985.5), MGA
(NM_001164273.2), MYC (NM_002467.6), NF1 (NM_000267.3), NPM1
(NM_002520.7), NRAS (NM_002524.5), PHF6 (NM_032458.3), PIGA
(NM_002641.4), PTPN11 (NM_002834.5), RAD21 (NM_006265.3), RUNX1
(NM_001754.5), SETBP1 (NM_015559.3), SF3B1 (NM_012433.4), SMC1A
(NM_006306.4), SMC3 (NM_005445.4), SRSF2 (NM_003016.4), STAG2
(NM_001042749.2), TET2 (NM_001127208.3), TP53 (NM_000546.6), U2AF1
(NM_006758.3), WT1 (NM_024426.6), ZBTB7A (NM_015898.4), ZRSR2

(NM_005089.4). Data were processed through two algorithms from GATK
(https://software.broadinstitute.org/gatk), HaplotypeCaller, and Mutect2,
and also through Agilent Surecall software, with a sensitivity of 1% [24, 25].
All variants called by two variant callers were checked using IGV software.
Identified variants were curated manually and named according to the
rules of the Human Genome Variation Society (hgvs.org).

Bioinformatics analyses
Freely available gene expression datasets for normal hematopoietic stem
and progenitor cells GEO:GSE42414 [26], Array Express:E-TABM-978 [12],
GEO:GSE74246 [27], GEO:GSE63270 [28] were used for this study.

Statistical analysis
Complete response and relapse rates were defined according to the
Cheson criteria [29]. Comparisons were performed using a Mann–Whitney
test or Kruskal–Wallis test for continuous variables and Fisher’s exact test
for categorical variables with GraphPad Prism. Statistical test results are
graphically expressed: *p < 0.05, **p < 0.01, ***p < 0.001.
Disease-free survival was measured from the date of complete remission

until the date of relapse or death. The cumulative incidence of relapse was
measured from the date of complete remission until the date of relapse,
with death regarded as a competitive event. Overall survival was measured
from the date of diagnosis until death. Patients in complete remission were
censored at the time of the last contact. The risk groups for prognosis were
evaluated for overall and disease-free survival by univariate analysis (log-
rank test) using a multivariate model of Cox regression and for the
cumulative incidence of relapse by the Fine and Gray test. All calculations
were performed using STATA version 13 software (STATA Corp., College
Station, TX, USA), all graphs were done using Graph Pad Prism.
More details are provided in Supplemental Information.

RESULTS
Hematopoietic stem and progenitor cells (HSPC)
immunophenotypes define AML specimens at different stages
of the human hematopoietic hierarchy
To define a surrogate phenotype for each stage of normal myeloid
maturation, we need to assess by flow cytometry, the expression of
markers used to characterize AML routinely on HSPCs. HSC, MPP,
CMP, GMP, and GP/MP can be characterized by gating in the
lineage negative cell population according to their expression of
CD34, CD38, CD90, and CD45RA (Supplemental Fig. 1A, B).
Unfortunately, the expression of those markers is not classically
evaluated in AML. To overcome this issue, we evaluated the
expression levels of four myeloid antigens (CD13, CD33, CD117,
and myeloperoxidase [MPO]) as well as CD34 and HLA-DR in 10
normal human bone marrow samples. HSC and MPP were
characterized by the absence of MPO expression (Fig. 1A and
Supplemental Fig. 1C). The expression of specific myeloid markers
such as CD13 or CD33 was detectable from the MPP stage onward.
GMP displayed the highest MPO expression (>70% of cells). HLA-
DR expression discriminated MP (HLA-DR positive) and GP (HLA-DR
negative). These data show that six markers (i.e, CD34, CD117,
CD13, CD33, MPO, and HLA-DR) used to diagnose AML in routine
clinical practice are differentially expressed in six immunopheno-
typically defined stages of normal myelopoiesis.
To correlate each stage of normal hematopoiesis with that of

individual AML, we transformed HSPC immunophenotypes into
immunophenotypic AML signatures (Fig. 1A). Thus, the SLA was
assigned to each sample, based on leukemic bulk phenotype,
because in the hierarchy of leukemic cells, the majority are
stopped in their differentiation pathway. We tested our six-marker
immunophenotypic signature by looking at the principal compo-
nent analysis distribution of 945 AML, extensively characterized by
the expression of 16 antigens (Fig. 1B and Supplemental Fig. 2A
and B). Our six-marker signature was sufficient to discriminate
between different hematopoietic/leukemic groups (Supplemental
Fig. 2C, D). Overall, we defined, by flow cytometry, the stage at
which the leukemic cell population accumulated as the stage of
leukemia differentiation arrest.
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Our data show that AML with an immunophenotypic signature
similar to that of HSC (henceforth termed HSC-L) represented 0.9%
(Fig. 1C). TUH cohort comprised 21.9% of MPP-L, 30.2% of CMP-L,
17.2% of GMP-L, 24.1% of MP-L, and 5.7% of GP-L. HSC-L and MPP-L
were enriched in AML classified as FAB M0, while MP-L was enriched
in acute monoblastic leukemia (FAB M5) and GP-L in AML classified
as FAB M1 (Fig. 1D). The FAB M6 and M7 represented 2.9% and 1.4%
of the TUH cohort, respectively. Classified by phenotype, their SLA
were heterogeneous (Fig. 1D). Nevertheless, the SLA of 63.3% of the
FAB M6 and M7 was identified as MPP-L or CMP-L, stages prior to
the MEP branch (Supplementary Fig. 1A), whereas the remainder

(1.5% of the total cohort) may have been misclassified because of
the absence of erythroid and megakaryocytic markers in our panel.
Thus, flow-based analysis of SLA correlates with the morphologic
phenotype used to assign the FAB sub-group although the
correlation is not completely consistent.

SLA retain functional and genetic imprints of their normal
counterparts
Following induction of the differentiation process, HSPCs lose their
capacity to self-renew, in favor of proliferation and migration. We,
therefore, investigated the functional characteristics of the six SLA

Table 1. Characteristics of patients from the TUH cohort.

2087 patients TUH cohort HSC-L MPP-L CMP-L GMP-L GP-L MP-L

Patients

Age (median and
IQR, years)

65 (54–75) 61 (40–78) 69 (60–78) 69 (58–77) 62 (44–73) 69 (58–75) 63 (51–72)

<60 yr (%) 692 (33.2) 7 (38.9) 112 (24.5) 174 (27.6) 162 (45.0) 34 (28.6) 203 (40.4)

≥60 yr (%) 1395 (66.8) 11 (61.1) 346 (75.5) 456 (72.4) 198 (55.0) 85 (71.4) 299 (59.6)

AML status

De novo 1423 (70.2) 13 (72.2) 243 (53.1) 400 (63.5) 276 (76.7) 96 (80.7) 395 (78.7)

Secondary to MDS 247 (12.2) 4 (22.2) 75 (16.4) 103 (16.3) 24 (6.7) 5 (4.2) 36 (7.2)

Secondary to MPN 142 (7.0) 1 (5.6) 70 (15.3) 51 (8.1) 12 (3.3) 3 (2.5) 5 (1.0)

Therapy-related 245 (12.1) 0 (0.0) 62 (13.5) 73 (11.6) 43 (11.9) 12 (10.1) 55 (11.0)

Unknown 30 (1.5) 0 (0.0) 8 (1.7) 3 (0.5) 5 (1.4) 3 (2.5) 11 (2.2)

Extramedullary disease

Liver 100/1603 4/10 22/326 18/484 19/295 5/93 32/395

Spleen 161/1603 3/10 45/326 44/484 23/295 6/93 40/395

Lymph nodes 174/1603 4/10 26/326 37/484 32/295 10/93 65/395

Gingiva 148/1603 0/10 11/326 30/484 23/295 10/93 74/395

Skin 56/1603 3/10 3/326 14/484 10/295 1/93 25/395

Complete Blood Count (median and IQR)

Hemoglobin (g/L) 9.3 (8.2–10.7) 8.9 (8.3–11.1) 9.0 (8.0–10.2) 9.3 (8.2–10.8) 9.4 (8.3–10.9) 9.4 (8.2–11.1) 9.6 (8.3–10.9)

Platelet count (g/L) 62 (33–112) 75 (37–163) 62 (29–120) 64 (31–115) 56 (32–101) 62 (34–98) 63 (39–110)

WBC count (g/L) 8.01
(2.40–36.79)

3.90
(1.40–12.76)

5.08
(2.05–20.20)

3.60
(1.80–15.53)

8.68
(2.88–44.98)

15.34
(6.9–80.10)

24.72
(4.30–71.36)

Bone marrow evaluation

Blasts (median and
IQR, %)

52 (30–77) 63 (39–90) 44 (29–69) 36 (24–61) 59 (37–76) 86 (62–93) 69 (44–86)

Cytological
dysmyelopoiesis

912/1898 5/16 219/401 369/583 131/337 23/99 165/462

Cytogenetic risk

Favorable (%) 139 (6.9) 0 (0.0) 0 (0.0) 15 (2.4) 119 (33.7) 1 (0.9) 4 (0.8)

Intermediate (%) 1258 (62.0) 9 (50.0) 221 (50.7) 343 (55.7) 165 (46.7) 103 (91.1) 417 (84.8)

Adverse (%) 631 (31.1) 9 (50.0) 215 (49.3) 258 (41.9) 69 (19.5) 9 (8.0) 71 (14.4)

Mutation status (mutated/tested)

CEBPA mono or bi-allelic 69/865 0/6 1/163 9/248 41/125 4/59 14/264

DNMT3A (exon 23) 130/884 0/8 13/163 32/250 8/155 6/58 71/250

FLT3-ITD 295/1456 5/13 40/264 61/399 28/258 35/94 126/428

FLT3-TKD 57/818 1/6 8/159 15/234 8/152 4/55 21/212

IDH1 101/1120 0/8 10/231 29/325 12/193 13/72 37/291

IDH2 134/1120 1/8 25/231 45/325 23/193 17/72 23/291

NPM1 427/1421 0/9 16/271 49/394 18/232 75/94 269/421

Treatment

Intensive
chemotherapy (%)

1266 (60.7) 12 (66.7) 192 (41.9) 325 (51.6) 269 (74.7) 88 (73.9) 380 (75.7)

Allo-SCT (%) 299 (14.3) 3 (16.7) 69 (15.1) 88 (14.0) 50 (13.9) 11 (9.2) 78 (15.5)

Hypomethylating
agents (%)

340 (16.3) 1 (5.6) 109 (23.8) 149 (23.7) 40 (11.1) 4 (3.4) 37 (7.4)

Best supportive care (%) 298 (14.3) 2 (11.1) 102 (22.3) 96 (15.2) 30 (8.3) 12 (10.1) 56 (11.2)

Other (%) 183 (8.7) 3 (16.7) 55 (12.0) 60 (9.5) 21 (5.8) 15 (12.6) 29 (5.8)
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using clinical data and clonogenic properties as surrogate markers
of migration (extramedullary involvement) and proliferation
(leucocytosis) capacities. Cell migration capacities and emigration
from the bone marrow are known to be features acquired during
differentiation [30]. As a result, the extramedullary disease was
significantly more frequently observed in the MP-L group and
surprisingly in the low HSC-L group (Fig. 1E). In detail, patients
with GMP-L, GP-L, and MP-L displayed a higher rate of lymph
node enlargement and leukemic gingival infiltration (Table 1).

However, spleen enlargement was mostly seen in MPP-L.
Interestingly, leucocytosis increased as SLA was further advanced
in the differentiation process (Fig. 1F and Table 1). Moreover, the
clonogenic capacities of the HSC-L, similar to normal HSC [31],
were significantly lower than those of other SLA (Fig. 1G).
Since the SLA is defined by HSPCs phenotypes, we hypothe-

sized that the expression of genes known to be expressed in
AML could be related to the SLA. To test our hypothesis, we
focus on well-described AML prognostic genes BAALC, ERG, and

Fig. 1 Phenotypic and clinical identification of AML subgroups. A Model of the relative percentage of myeloid marker expression over the
course of normal HSPC differentiation. The SLA is defined by the combination of expressions of five myeloid markers plus HLA-DR to
differentiate GP-L (HLA-DR+) and MP-L (HLA-DR−); +≥20% of blasts; −<20% of blasts; +/− marker can be positive or negative. B Principal
component analyses of 945 AML using the percentage of AML blasts expression of 16 markers by flow cytometry (CD4, CD7, CD13, CD33,
CD117, MPOc, CD34, HLA-DR, CD56, CD64, CD38, CD65, CD16, CD14, CD11b, CD123). AML patients were classified according to their SLA as
detailed in (A). C Pie chart of 2087 AML from TUH cohort segregated according to their SLA. D FAB classification according to SLA in the TUH
cohort. Fisher’s exact test compared FAB classification in one SLA to all others. E Extramedullary involvement in SLA (see Table 1 for details).
F Boxplots of leukocytosis at diagnosis in TUH cohort. G CFU-L in TUH cohort. Statistical analysis was performed comparing one SLA to all
others (Mann–Whitney test).
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MN1 [32, 33] and analyzed the publicly available transcriptomic
HSPCs database. Those three genes were overexpressed in HSC
and their expression level decreased as hematopoietic differ-
entiation progressed (Fig. 2A). Similarly, BAALC, ERG, and MN1
were overexpressed in HSC-L and MPP-L and repressed in GP-L
and MP-L (Fig. 2B).
Therefore, we showed in the TUH cohort that the different SLAs

retained specific biological characteristics of normal hematopoiesis.

SLA correlates with leukemic stem cell profiles of AML
We have previously shown that the level of CD34+CD38−CD123+

LSCs is an independent prognostic factor in AML treated with
intensive chemotherapy [16, 34]. To study the relationship
between SLA and LSC, we measured LSC levels in the TUH cohort
(Fig. 3A). HSC-L/MPP-L had the highest levels of
CD34+CD38−CD123+ LSCs (18.03% vs. 11.54% in CMP-L, 7.83%
in GMP-L, <1% in MP-L and GP-L, Kruskal–Wallis test p < 0.0001).
To evaluate the stem properties of SLA subsets, we injected

leukemic cells from 70 AML in 446 NGS mice (6.4 mice/sample,
range 4–20). Early SLA (i.e., MPP-L and CMP-L, 31 AML, 209 mice)
had higher number of engrafted mice (64.4% vs. 23.5%,
p= 0.0001, Fig. 3B), higher levels of engraftment (21.5% vs.
4.7%, p= 0.0027, Fig. 3C), and greater expansion of leukemic cells
(1.9 vs. 0.2-fold, p= 0.0002, Fig. 3D) than late SLA (GMP-L, MP-L,
and GP-L, 38 AML, 237 mice).
Together, those data show that stem properties are enriched in

early SLA (HSC-L, MPP-L, and CMP-L).

Oncogenic events are specific to SLA
To identify oncogenic events linked to specific SLA, we studied
point mutations and cytogenetic anomalies. We screened 46
genes commonly mutated in myeloid malignancies from 409
patients of the TUH cohort and identified 1363 mutations or
cytogenetic anomalies (Fig. 4A), with overall frequencies that were
consistent with those published in previous studies [35, 36]. We
identified at least one driver mutation in 399 patients (97.6%) and
two or more driver mutations in 89.7% of the samples.
Although co-mutation or mutual exclusivity profiles have been

previously described in AML [35, 36], our cohort allowed a more
comprehensive analysis of the driver mutations involved in the
maturation block of SLA. We calculated the relative risks (RR) of
cytogenetic abnormalities (n= 1967, Fig. 4B) and point mutations
(n= 409, Fig. 4C) for each SLA.

MPP-L and CMP-L show criteria of secondary AML
MPP-L and CMP-L are phenotypically defined as CD34+ AML,
positive for myeloid markers (CD13+CD33+CD117+); and differ
by their expression of cytoplasmic MPO (<10% for MPP-L and
within the range of 10–70% for CMP-L). MPP-L and CMP-L show
more often cytogenetic abnormalities of AML MRC (Fig. 4B) such
as del(7q) (RR:1.85, p < 0.0001; RR:1.61, p < 0.0001; for MPP-L and
CMP-L, respectively), del(17p) (RR:1.77, p= 0.0010; RR:1.53,
p= 0.0033, respectively) and del(12p) (RR:1.63, p= 0.015;
RR:1.46, p= 0.021, respectively). MPP-L and CMP-L are also
enriched in secondary AML (s-AML) mutations [37] in normal
karyotype (n= 200, Supplemental Fig. 3A, B): ASXL1 (MPP-L
RR:6.1; p= 0.0006), SRSF2 (MPP-L RR:5.0; p= 0.0021), EZH2 (MPP-
L RR:7.7; p= 0.024), ZRSR2 (MPP-L RR:5.8; p= 0.046), STAG2
(MPP-L RR:2.9; p= 0.092), and SF3B1 (CMP-L RR:3.3; p= 0.050),
BCOR (CMP-L RR:2.7; p= 0.089). In order to investigate the
relationship between secondary AML and SLA, we rigorously
classified 409 AML patients as clinical s-AML (post-MDS or MPN),
molecular s-AML (defined as AML with mutations in any of the
eight genes frequently altered in MDS [37]) or karyotypic s-AML
(Fig. 5). MPP-L and CMP-L were classified s-AML in 68% and 56%,
respectively (RR:3.0, p < 0.0001). In addition, inv(3) (RR:3.0,
p < 0.0001), t(9;22) (RR:2.4, p= 0.0011), CSF3R (normal karyotype
RR:12.3, p < 0.0001) and RUNX1 mutations (RR:3.3, p < 0.0001)
were enriched in MPP-L.
Gene mutations can be further functionally classified into eight

categories [35] (Fig. 4D and Supplemental Fig. 3C). MPP-L were
enriched in mutations in epigenetic modifiers (RR: 2.1, p= 0.001),
spliceosome (RR:1.9, p= 0.01) and myeloid transcription factors
(mainly RUNX1 and ETV6 mutations, RR:1.9, p= 0.008).

Bi-allelic CEBPA mutations and CBF abnormalities are specific
of GMP-L
GMP-L is defined with a classic phenotype CD34+CD13+CD33+

CD117+ and high expression of cytoplasmic MPO (>70%).
Astonishingly, it was very specific of three abnormalities (Fig. 4B,
C): inv(16) (RR:5.6, p < 0.0001), t(8;21) (RR:5.2, p < 0.0001) and
CEBPA mutations (RR:4.8, p < 0.0001). We further studied CEBPA
mutations in 871 AML from the TUH cohort and found the
mutation in 35.7% of GMP-L (46/129, RR:6.2, p < 0.0001, Supple-
mental Fig. 4A), the majority of which were bi-allelic mutations
(72%, 33/46). Overall, CBF abnormalities represented 33% of GMP-
L (119/360 patients).

Fig. 2 Genetic validation of SLA classification. A Expression of BAALC, ERG, and MN1 in four normal HSPCs datasets. Gene expressions were
normalized calculating Z-score in each dataset. B Expression of BAALC, ERG, and MN1 according to SLA subgroups in TUH cohort (fluidigm,
n= 171).
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MP-L and GP-L are the two sides of NPM1 mutated AML
MP-L and GP-L are phenotypically defined as CD34− AML, positive
for myeloid markers (CD13+CD33+CD117+/−); and differ by their
expression of HLA-DR (≥20% for MP-L and <20% for GP-L). Both
groups frequently expressed NPM1 mutation (MP-L RR:3.8,
p < 0.0001; GP-L RR:6.0, p < 0.0001, Fig. 4C). However, NPM1
mutations were associated with mutations of DNMT3A (RR:2.3,
p < 0.0001) and FLT3 (RR:2.1, p < 0.0001) in MP-L, and with TET2
mutations in GP-L, (RR:4.6, p < 0.0001). Mutations in TET2, IDH1,
and IDH2 are largely mutually exclusive and lead to similar
epigenetic changes [38]. Since the TET2 mutations were enriched
in GP-L, we looked at the distribution of IDH1 and IDH2 mutations
in the TUH cohort and found that these mutations were also
enriched in GP-L (Supplemental Fig. 4B). Indeed, the GP-L
subgroup was composed of NPM1/TET2 mutated and NPM1/IDH1
or NPM1/IDH2 mutated patients (52% and 20% of GP-L,
respectively). Of note, besides the NPM1-mutated MP-L subset
which accounts for 64% of all MP-L and 82% of normal karyotype
MP-L, MLL fusions were enriched in this SLA (RR:2.4, p < 0.0001;
Fig. 4B) although their frequency is modest (59 patients in TUH
cohort including 32 MP-L).

SLA correlates by chemoresistance and outcome of patients
treated by intensive chemotherapy
We investigated ex-vivo chemosensitivity and the response to
intensive chemotherapy of AML patients according to their SLA.
Ex-vivo apoptosis testing of 47 AML samples incubated with
cytarabine (AraC) showed that MPP-L and CMP-L had a
significantly higher IC50 than GMP-L and GP/MP-L (>1000 vs. 540
and 33 μM, respectively, Fig. 6A). Moreover, AML patients with
immature SLA had a higher percentage of residual blasts in bone
marrow at day 15 after intensive chemotherapy (Fig. 6B) and
consequently, a lower complete response rate than patients with
more mature SLA (HSC/MPP-L 72%; CMP-L 76%; GMP-L 87%; MP-L
85%; GP-L 79%; p < 0.0001). As a result, overall survival was
significantly worse in patients with immature compared to mature
SLA (p < 0.0001, Fig. 6C and Supplemental Fig. 5A) even though
the early death rate was higher in hyperleukocytic SLA (GP-L and
MP-L, Table S2). The cumulative incidence of relapse (CIR) was also
significantly higher in the immature SLA group (p < 0.0001, Fig. 6D
and Supplemental Fig. 6A). The correlation between SLA and
response to chemotherapy was confirmed in younger AML
patients (Supplemental Figs. 5B and 6B). Consistent with their
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Fig. 4 Distribution of AML mutations and genetic abnormalities according to the SLA. A Number of patients with specific mutations or
genetic abnormalities (n= 409). B Volcano plots of relative risk of the presence of specific genetic anomalies in each SLA (n= 1967). C Volcano
plots of relative risk of the presence of specific mutations in each SLA (n= 409). D Plots of relative risks of eight functional modules of
mutations [35] in SLA.
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chemoresistance status, allogeneic stem cell transplant in first
complete remission was of great survival benefit for MPP-L and
CMP-L and showed little or no survival improvement in the other
groups (Table S3). Interestingly, SLA of relapsed AML (n= 193) was
identical or more immature to diagnostic, in most of the cases
(57% and 27%, respectively, Table S4). When a more mature SLA
was identified at relapse (16%, 30/193), we observed, when
available, a modification of the mutational profile in half of the
cases (8/16).
In multivariate models, SLA classification retained independent

prognostic values for overall survival, event-free survival, and
cumulative incidence of relapse (Tables S5 and S6). Of note, GP-L
represented a good prognostic subgroup, with a plateau of CIR at
37% in the TUH cohort (Supplemental Fig. 6A) and 19% in those
under 60 (Supplemental Fig. 6B).
Altogether, these data indicate that the chemoresistance of

AML cells is, at least in part, a consequence of innate (SLA imprint)
and acquired (oncogenic events) mechanisms (see Table S7 for
the summary of characteristics of SLA).

Validation in an independent cohort of 1209 AML patients
To robustly validate our signatures, we took advantage of a
second AML cohort: 1209 patients diagnosed at Bordeaux
University Hospital (BUH cohort, see Table S1). Similarly, to the
TUH cohort, the BUH cohort comprised 0.7% of HSC-L, 11.7% of
MPP-L, 27.9% of CMP-L, 28.4% of GMP-L, 21.9% of MP-L, and
9.4% of GP-L (Supplemental Fig. 7A). HSC-L and MPP-L were
enriched in AML classified as FAB M0, while MP-L were enriched
in acute monoblastic leukemia (FAB M5) and GP-L in AML
classified as FAB M1 (Supplemental Fig. 7B). Leukocytosis
increased as SLA was further advanced in the differentiation
process (Supplemental Fig. 7C).
In the BUH cohort, we found that inv(3) (Supplemental Fig. 8A)

were enriched in MPP-L, whereas ASXL1 mutation and t(9;22) were
increased but not statistically specific to this SLA (Supplemental
Fig. 8B, C); inv(16), t(8;21) and bi-allelic CEBPA mutations were
enriched in GMP-L (Supplemental Fig. 8D, E); MLL fusions and
NPM1 and DNMT3A mutations were enriched in MP-L (Supple-
mental Fig. 8F–H) whereas NPM1 and TET2 and IDH mutations
were enriched in GP-L (Supplemental Fig. 8I–K).
In the BUH cohort, SLA retained their prognostic factor, with

increased D15 blasts (Supplemental Fig. 9A), and worse OS and
CIR (Supplemental Fig. 9B, C) in immature SLA.

DISCUSSION
It has long been possible to immunophenotypically classify acute
lymphoblastic leukemia [39–41]. These classifications are based on
the expression by normal lymphocytes of antigens that are
specific for different maturation stages. To date, such classifica-
tions do not apply to leukemia of the myeloid lineage likely
because human myelopoiesis is less strictly defined than
lymphopoiesis and is regularly reconsidered [3, 4, 12, 42–45].
Here, we presented a phenogenomic framework of AML that
provides insight into the pathogenesis of AML and that identifies
molecular features influencing therapy response. We discovered
five distinct phenotypic subgroups that differ by specific surface
protein expression patterns and hence provide a phenotypic
classification of AML. Our study builds on previous work that
cataloged genetic aberrations in AML and linked them to clinical
outcomes, resulting in a genomic classification of the disease
[36, 46]. We showed an exclusive association between a few
genomic alterations and hematopoietic maturation stages. Inter-
estingly, previous transcriptomic studies found at least 16 AML
subgroups that were also associated with specific cytogenetic
features and mutations [47]. Of these, only the GMP-L-associated
genomic aberrations (CEBPAm, t(8;21) and inv16) were directly
associated with transcriptomic clusters. Altogether, this suggests
that, in most cases, genomic, transcriptomic, and proteomic data
are independent and complementary.
The clinical relevance of our AML proteomic classification is

further supported by the fact that proteomic clusters significantly
differed in their outcomes in patients treated with intensive
chemotherapy. Moreover, complementary to morphological
analysis, we believe that this classification which can be available
on the day of diagnosis, whereas cytogenetic and molecular
abnormalities are available only a few days later or sometimes
missing, may inform physicians on the disease subtype and
contribute to patient management (Supplemental Fig. 10).
Although the SLA classification clearly segregated HSC-L/MPP-L

from GMP-L and GP-L/MP-L, the CMP-L subgroup was more
heterogeneous. This may suggest that this stage is insufficiently
characterized by its immunophenotypic signature and/or that its
normal counterpart is itself heterogeneous and should be
separated into several more homogeneous stages. Alternately,
complex mechanisms of differentiation arrest could apply to this
subtype in which no recurrent genetic events were identified at
variance with HSC-L, MPP-L, GMP-L, GP-L, and MP-L. More studies
are needed to identify new surface markers in order to refine the
SLA classification which may encompass more groups.
Our findings also suggest that few oncogenic events may be

responsible for the SLA. RUNX1 mutations and inv(3) are
associated with MPP-L, abnormalities of secondary AML with
MPP-L and CMP-L, CEBPA mutations, RUNX1-RUNX1T1 or CBFB-
MYH11 translocations with GMP-L, NPM1, and TET2 or IDH
mutations with GP-L and NPM1 and DNMT3A mutations and
t(11q23) with MP-L. As noted, future studies will need to further
clarify the genotype–phenotype correlations of AML as improved
myeloid maturation markers are developed.
The subclonal architecture of AML has been already described

[48]. Hypothetically, the presence of different leukemic clones,
blocked at different stages, could interfere with the SLA signature
determination. Although we cannot completely exclude this
possibility, some elements argue in favor of a weak impact of
subclonal architecture on SLA signatures: (i) most AML at the time
of diagnosis are composed of a major founding clone likely to be
detected by the SLA signature [35, 48]; (ii) oncogenic mutations
strongly linked to SLA are rarely found in pre-leukemic clones
(except DNMT3A or TET2 mutations) but are likely a later event in
leukemogenesis [49, 50]; and consequently (iii) these oncogenic
events are mutually exclusive and rarely found associated in AML
patients. Nevertheless, the molecular complexity of CMP-L raises
the question of the subclonal architecture of this subtype. Further
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genetic and immunophenotypic studies are needed to fully
explore the relationship between SLA and AML architecture as
some leukemic clones show functional heterogeneity [51].
In vitro studies of chemosensitivity and clinical data also

demonstrated that the SLA classification could predict response
to the main therapeutic strategy used in AML. Indeed, GMP-L/GP-
L/MP-L encompass the more chemosensitive genetic subgroups
(i.e, RUNX1-RUNX1T1, CBFB-MYH11, CEBPA, and NPM1 mutations)
do benefit from intensive chemotherapy as compared with HSC-
L/MPP-L/CMP-L. Obviously, it will be very interesting to describe
the impact of new therapeutic combinations such as azacitidine
and venetoclax in this context [52]. Furthermore, this SLA
classification is a useful tool in clinical practice because it may
predict on the day of diagnosis in which genetic subgroup
patients will be ultimately classified by chromosomal and

molecular analyses. This may have an impact on clinical
management. Furthermore, this correlation may suggest that
AMLs that are more closely related to HSPC are most likely to
retain the chemoresistance properties of HSCs. Studies of the
phenotype of residual leukemic cells after chemotherapy induc-
tion may help clarify the biology of chemoresistance.
In summary, AML immunophenotyping can establish a new SLA

classification that strongly correlates with cellular behavior of the
leukemic bulk, and predicts main genetic subgroups early at
diagnosis and outcome after intensive chemotherapy. Each SLA is
defined by specific oncogenic events whose penetrance may be
dependent on the differentiation stages of hematopoiesis and
their gene expression. Identifying disrupted gene pathways
specific for each SLA should therefore form the basis for targeted
therapies aimed at inducing AML differentiation.

Fig. 6 Response to chemotherapy according to the SLA. A In vitro testing of cytarabine (AraC) activity in 47 AML samples. B Early
chemosensitivity according to SLA was evaluated in patients by measuring the percentage of residual blasts in bone marrow at day 15 of
induction chemotherapy (n= 475). C Prognostic impact of SLA on overall survival for patients from TUH cohort treated with intensive
chemotherapy (n= 1266). See Table S2 for multivariate analysis results. D Prognostic impact of SLA on overall survival for younger patients
(<60 years) from TUH cohort treated with intensive chemotherapy (n= 638).
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