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ABSTRACT
Endoplasmic reticulum (ER) degradation by autophagy (ER-phagy) is a recently revealed selective
autophagy pathway that plays important roles in organelle turnover and protein degradation, but the
biological functions of ER-phagy are largely unknown. Here, we present an ER-targeting Re(I) tricarbonyl
complex (Re-ERLAD) that can accumulate in the ER, induce ER-to-lysosome-associated degradation
(ERLAD) upon visible light irradiation, and label ER buds and track their morphological alterations during
ER-phagy.The emission of Re-ERLAD is sensitive to viscosity, which is a key parameter reflecting the
amount of unfolded protein in the ER. Quantitative detection using two-photon fluorescence lifetime
imaging microscopy shows that ER viscosity initially increases and then decreases during ERLAD, which
reveals that ERLAD is a pathway for alleviating ER stress caused by unfolded proteins. In conclusion, our
work presents the first specific photoinducer and tracker of ERLAD, which can be used in studying the
regulatory mechanism and function of this process.
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INTRODUCTION
The endoplasmic reticulum (ER) plays important
roles in protein and lipid synthesis, ion homeostasis
and organelle communication [1]. To protect cells
from both endogenous and exogenous threats, e.g.
unfolded proteins [2] or reactive oxygen species
(ROS) [3], the ER has developed complicated self-
modulation mechanisms [4–6]. Depending on the
receptors involved and substrates degraded, at least
three subtypes of ER degradation by autophagy
(ER-phagy) have been reported in mammalian
cells: macro ER-phagy, ER-to-lysosome-associated
degradation (ERLAD) by micro ER-phagy and
ER-phagy-related ERLAD [7]. Compared with
ER-associated degradation (ERAD) [8], ERLAD
provides a proteasome-free degradation pathway
for protein quality control, which is crucial for ER
turnover and cellular homeostasis [9–11]. How-
ever, very limited tools, including specific inducers
and imaging agents, are currently available for the
investigation of the regulatory mechanisms and
functions of ER-phagy.

Viscosity is an important micro-environmental
factor reflecting the functionalities of organelles,
including mitochondria, lysosomes and the ER.
Viscosity is closely related to intracellular diffu-
sion, molecular interactions and membrane fluid-
ity, which are crucial for biological interactions and
biochemical reactions. Intracellular viscosity can be
reflected by molecular rotors, whose emission is
quenched by intramolecular rotation and recov-
ers upon an increase in environmental viscosity
[12–14]. The lifetime of a fluorophore does not de-
pend on its concentration; however, it is sensitive
to its environment [14]. Using fluorescence life-
time imaging microscopy (FLIM), environmental
parameters, e.g. viscosity and pH, can be measured
quantitatively with high accuracy [15–17]. Via ex-
ploitation of their intrinsic subcellular localization
properties or modification with targeting groups,
these molecular rotors can be used to measure the
viscosity of subcellular organelles, e.g. mitochondria
[16], lysosomes [15] and the ER [12].

Theranostic small molecules that can induce and
be used to monitor a specific biological process
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Figure 1. (A) Illustration of the mechanisms of induction and tracking of ERLAD by Re-ERLAD. (B) Chemical structure of
Re-ERLAD and mechanism of its response to viscosity. (C) Emission intensity and (D) lifetime spectra of Re-ERLAD (10μM)
in the methanol-glycerol system representing different viscosities. λex = 405 nm. (E) Lifetime of Re-ERLAD (10μM) in aque-
ous solutions of folded/unfolded β-lactoglobulin (1 mM). β-lactoglobulin is unfolded with urea (6 M) for 24 h. λex = 405 nm.
Centipoise (cP) is a common unit for dynamic viscosity; 1 cP = 10–3 Pa·s.

have many advantages, including simplified opera-
tional procedures and minimized cross-interference
of reagents [18–29]. Light-triggered theranostic
reagents that can reveal biological phenomena in a
controllable manner are particularly attractive [30].
Transition metal complexes are widely investigated
as antitumor agents [31–34] or biological probes
[35–37]. Among these complexes, rhenium tricar-
bonyl complexes show significant anticancer activ-
ity and fluorescent properties [38–45], whichmakes
them appropriate candidates as theranostic agents.

To date, there have been few reports on themon-
itoring of dynamic turnover behavior at the subcel-
lular level, which is particularly important for the
maintenance of cell homeostasis. In this work, we at-
tached the molecular rotor BODIPY [46,47] to the
organometallic rhenium tricarbonyl moiety to pro-
duce an ER-targeting phototheranostic agent (Re-
ERLAD) with a viscosity-sensitive emission prop-
erty and lifetime (Fig. 1A). The attachment of the
rhenium moiety to BODIPY alters its cellular lo-
calization and significantly increases its capability
to generate singlet oxygen (1O2) upon irradiation
due to the heavy atom effect. Re-ERLAD can induce
ERLAD upon photoinitiation, specifically imaging
ER buds (a special microstructure formed during
ERLAD) and quantitatively tracking the viscosity
parameters in ER buds during ER-phagy via two-
photon fluorescence lifetime imaging microscopy
(TPFLIM). The light-activated property makes Re-
ERLAD more controllable and widely applicable

than previously reported theranostic agents [18,19],
since it can be used as a simple probe to measure
the changes in ER viscosity initiated by other stim-
uli. Overall, we present here the first report on a
specific photoinducer and viscosity tracker of ER-
LAD, which shows the dynamic changes in micro-
environments during ER turnover.

RESULTS AND DISCUSSION
Synthesis and characterization of the
Re-ERLAD
The ligand py-BODIPY was synthesized by a
coupling reaction of 2,4-dimethylpyrrole with
4-pyridinecarboxaldehyde in CH2Cl2 (Scheme
S1). Re-ERLAD was synthesized by reacting the
precursor [Re(CO)3(phen)Cl] (phen = 1,10-
phenanthroline) with py-BODIPY, and purified
by silica chromatography. Py-BODIPY and Re-
ERLAD were characterized by ESI-MS, 1H NMR
spectroscopy and HPLC (Figs S1–S6).

In CH2Cl2, CH3CN and PBS, py-BODIPY
shows an absorption band at 425–525 nm,
while Re-ERLAD shows an intense absorption
band at 440–550 nm assigned to the BODIPY
group and less intense absorption bands at 350–
425 nm assigned to a mixture of spin-allowed and
spin-forbidden metal-to-ligand charge transfer
transitions (1MLCT/3MLCT; Fig. S7). Upon
excitation at 405 nm, py-BODIPY exhibits strong
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Figure 2. (A) ER fragments budding from reticular structures. A549 cells were incubated with Re-ERLAD (1μM, 1 h) and ER-Tracker Red (1μM, 30 min)
before irradiation with a 450 nm laser for 15 min. Re-ERLAD: λex = 405 nm; λem = 570± 20 nm. ER-Tracker Red: λex = 561 nm; λem = 610± 20 nm.
Scale bar: 5μm. (B) TEM observation of A549 cells incubated withRe-ERLAD (1μM, 1 h) and irradiated with a 450 nm laser for 0 (top), 10 (middle) or 20
(bottom) min and further incubated for 4 h. ER buds and fragments are labeled with arrowheads. Scale bars: 5μm. (C) Western blot of FAM134B. A549
cells were incubated with Re-ERLAD (1 μM, 1 h) before irradiation with a 450 nm laser for 15 min and further incubation for 1–4 h. (D) Interaction
of FAM134B with LC3B captured by confocal microscopy. A549 cells were incubated with Re-ERLAD (1 μM, 1 h) before irradiation at 450 nm for
15 min and further incubation for 1 h. FAM134B and LC3B were stained by immunofluorescence. FAM134B: λex = 561 nm; λem = 610 ± 20 nm. LC3B:
λex = 633 nm; λem = 660 ± 20 nm. Scale bars: 5 μm. (E) Super-resolution images of FAM134B interacting with LC3B. A549 cells were incubated with
Re-ERLAD (1 μM, 1 h) before irradiation at 450 nm for 15 min and further incubation for 1 h. G = green; R = red. Scale bar: 5 μm.

luminescence with a maximum at ca. 520 nm,
and Re-ERLAD shows a broader emission band
centered at ca. 530 nm (Fig. S8).The quantum yield
of Re-ERLAD is lower than that of py-BODIPY,
which may be attributed to the energy transfer from
the BODIPY ligand to the metal center [48]. The
photostability of Re-ERLAD under physiological
conditions was also verified by HPLC (Fig. S9).
Re-ERLAD remains stable after light irradiation,
which indicates that Re-ERLAD is suitable for
long-term imaging in living cells.

Viscosity response of Re-ERLAD
The fluorescence response of Re-ERLAD to en-
vironmental viscosity was measured in a mixed
methanol-glycerol system representing different
viscosities. Re-ERLAD exhibits ca. 8-fold emission
enhancement in high-viscosity media compared
with low-viscosity media (Fig. 1C). The emission
recovery that can be recognized by the naked eye is
ascribed to the restricted rotation of py-BODIPY.
In addition, the fluorescence lifetime of Re-ERLAD
increases from 1.5 ns to 7.9 ns and shows a linear
correlation with the viscosity parameters (Fig. 1D).
Moreover, the emission intensity and lifetime of
Re-ERLAD show negligible responses to polarity,
common cations, glutathione and human serum
albumin, which indicates the specificity of the

fluorescence response of Re-ERLAD to viscosity
(Figs S10 and S11).

Disrupted protein folding and accumulation of
unfolded proteins can cause oxidative damage and
ER stress [49,50]. The impact of unfolded proteins
on the solution viscosity was investigated by using
β-lactoglobulin as a model protein and urea as
the unfolding agent. As expected, the mobility of
the protein solution significantly decreased after
treatment with urea for 24 h, and the lifetime of
Re-ERLAD was obviously enhanced in the solution
containing unfolded proteins (Fig. 1E). The results
indicate that the changes in environmental viscosity
are correlated with the degree of protein unfolding,
which can be reflected by the emission intensity and
lifetime of Re-ERLAD.

Cytotoxicity and cellular localization of
Re-ERLAD
The in vitro cytotoxicities of py-BODIPY and Re-
ERLADwere evaluated inA549 (human lung adeno-
carcinoma) cells after 48 h of incubation (Fig. S12).
Re-ERLAD shows low cytotoxicity in the dark, while
it exhibits obviously increased cytotoxicity after ir-
radiation with a 450 nm laser for 15 min. In con-
trast, py-BODIPY is non-cytotoxic both in the dark
and under irradiation. Under 450 nm light irradia-
tion, the quantum yields of 1O2 photosensitization
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for py-BODIPY and Re-ERLAD are 0.07 and 0.28,
respectively. The higher photosensitization capabil-
ity of Re-ERLAD can be ascribed to the heavy atom
effect of themetal center [51].Compared to the con-
trol group, the emission of the ROS probe signifi-
cantly increased by ∼17-fold in A549 cells treated
with Re-ERLAD and irradiated with a 450 nm laser
for 15 min (Fig. S13).

Many organometallic rhenium tricarbonyl com-
plexes have been reported to accumulate in mito-
chondria [33]; however, colocalization studies have
revealed that the positively charged Re-ERLAD lo-
calizes in the ER. The colocalization coefficient
of Re-ERLAD with the ER (0.97; Fig. S14A) was
much higher than that of Re-ERLAD with mito-
chondria (0.37; Fig. S14B). The neutral hydropho-
bic molecule py-BODIPY shows a high colocaliza-
tion coefficient (0.89) with the lipid droplet-specific
fluorescent dye (Fig. S14C). These results suggest
that the increased photocytotoxicity of Re-ERLAD
compared with py-BODIPY is attributed to its abil-
ity to produce large amounts of cellular ROS and
may also be associated with its subcellular localiza-
tion properties.

Re-ERLAD initiates ERLAD
Re-ERLAD colocalizes with ER-Tracker and shows
a weaker emission intensity in the dark. After irra-
diation with a 450 nm laser for 15 min, however,
highly emissive punctate areas that colocalized with
ER-Tracker were observed (Fig. 2A). These struc-
tures show minimal colocalization with fluorescent
probes that stain punctate subcellular organelles, in-
cluding lipid droplets and lysosomes (Fig. S15). We
speculate that these punctate areas are likely to be
ER buds grown from the reticular structure of the
ER [11], and the strong emission may be attributed
to the accumulation of unfolded proteins caused by
light-induced oxidative damage.

To confirmwhat these highly emissive structures
are, transmission electron microscopy (TEM) was
used to observe the morphological alterations in the
ultrastructure ofA549 cells.Comparedwith the con-
trol group, ER fragments and vesicles with mono-
layer structures and contents inside were found in
cells treated with Re-ERLAD in the presence of
light (Fig. 2B). In addition, ER buds with a mono-
layer membrane budding from reticular structures
were also observed. These structural changes are
consistent with the phenomenon described for ER-
LAD,which formsmonolayer vesicles rather thanbi-
layer autophagosomes to fuse with lysosomes [7].
Time-dependent upregulation of the key ER-phagy
receptor FAM134B, which is involved in ERLAD
by generating high membrane curvature [52], was
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Figure 3. Tracking of key events of ER buds during ER-
LAD by Re-ERLAD. (A) Colocalization of ER buds with
LC3B. Cells transfected with RFP-LC3B were incubated with
Re-ERLAD (1 μM, 1 h) before irradiation at 450 nm for
15 min and further incubation for 1 h. Scale bars: 5 μm.
(B) Fusion of ER buds with lysosomes. Cells were incu-
bated with Re-ERLAD (1 μM, 1 h) and ER-Tracker Red
(1 μM, 30 min) before irradiation at 450 nm for 15 min.
λex = 405 nm; λem = 570 ± 20 nm. LC3B: λex = 561 nm;
λem = 610 ± 20 nm. LTDR: 633 nm; λem = 660 ± 20 nm
(LC3B). Rr: Pearson correlation coefficient. Scale bars: 5μm.

further confirmed by western blotting (Fig. 2C).
Similar results were also obtained for the positive
controls rapamycin and tunicamycin, which are re-
ported to induce ER stress and ER-phagy in the
literature (Fig. S16) [9]. In addition, the interac-
tion between FAM134B and LC3B, two key pro-
teins regulating the process of ERLAD, was con-
firmed with immunofluorescence double staining
(Fig. 2D), and the overlap coefficient increased
from 0.01 (dark) to 0.31 (light). The interactions of
FAM134BandLC3Bwere alsodetectedbyAiryscan
super-resolution imaging techniques (Fig. 2E). Col-
lectively, these results indicate that Re-ERLAD
can specifically initiate the ERLAD process upon
irradiation.

Then, we usedRe-ERLAD to track ER-associated
morphological events during ERLAD. Before irra-
diation, the emission of Re-ERLAD was very weak,
and there was no obvious colocalization between
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Figure 4. Real-time tracking of ER bud viscosity in (A) A549 cells and (B) 3-MA (5 mM)-pretreated A549 cells via TPFLIM. Cells were treated with
Re-ERLAD for 1 h and irradiated with 450 nm for 15 min. λex = 810 nm; λem = 550∼595 nm. (C) Time-gated TPFLIM image of ER buds separated
from the reticular structure. The image was magnified from the area in the red frame in (A). (D) Trend chart showing the calculated viscosity during the
process. Cells were irradiated at 450 nm for 15 min and were then visualized by TPFLIM. Scale bar: 5 μm. The lifetime value was given by Becker &
Hickl’s SPCImage software.

Re-ERLAD and LC3B. After irradiation, the punc-
tate emission of Re-ERLAD was greatly enhanced,
and colocalization of Re-ERLAD with punctate
LC3B was detected, which showed that ER buds
were formed and began to recruit LC3B (Fig. 3A).
At the same time, with prolonged incubation time,

the punctate emission of Re-ERLAD gradually
fuses with Lyso-Tracker Deep Red (LTDR) and
disappears, indicating that ER buds are gradually
engulfed by lysosomes (Fig. 3B). The Pearson cor-
relation coefficients increase gradually from 60 min
to 120 min but decrease at 150 min. The reason
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might be that the signal intensity of Re-ERLAD is
weakened along with the degradation of ER buds
in lysosomes at 150 min. These results show that
Re-ERLAD can track the morphological alterations
in ER buds during ERLAD [53].

Real-time tracking of ERLAD with TPFLIM
AsRe-ERLAD can induce ERLAD in the presence of
light, specifically labelERbuds andpossess viscosity-
dependent emission properties, we then used it as
a theranostic probe to monitor the changes in the
viscosity of ER buds during light-initiated ERLAD
via TPFLIM. The lifetimes acquired from TPFLIM
were plugged into the correlation curve in Fig. 1D
to give the viscosity values. Considering the compli-
cated cellular environment, the viscosity values may
not be very accurate.Therefore, the trend of changes
in viscosity is moremeaningful andwill give usmore
information than the specific values.

To study the dynamic change in the viscosity of
ER buds during ERLAD, a long period of real-time
monitoring was carried out. Interestingly, we found
that the changes in viscosity reflecting the degree of
unfolded protein aggregation during ERLAD can be
divided into two distinct stages. At the earlier stage,
a time-dependent increase in viscosity is observed in
A549 cells treated withRe-ERLAD upon light irradi-
ation (Fig. 4A), during which ER buds with higher
viscosity are separated from the reticular structure
(Fig. 4C). The growth is sustained for 2.5 h until
the viscosity increases to ca. 240 cP from ca. 190 cP.
The increase in viscosity indicates the gradual ag-
gregation of unfolded proteins in ER buds, which
may serve as a signal to activate ERLAD [10,53].
At the later stage (2.5∼4 h), the exorbitant viscos-
ity gradually decreases to ca. 180 cP. According to
the results from the colocalization experiment, the
decrease in viscosity implies the lysosome-mediated
degradation of ER buds, which serves as a cellular
turnover process to relieve ER stress.

However, when 3-methyladenine (3-MA; a spe-
cific inhibitor of autophagy that blocks blocking au-
tophagosome formation) is introduced to the pro-
cess, the turnover process reflected by the viscosity is
reversed (Fig. 4B andD). Instead, the increase in ER
viscosity is prolonged, increasing to ca. 260 cP at 4 h,
accompanied by obvious cell shrinkage and cellular
vacuolation.Because 3-MAreverses theER turnover
process by inhibiting ER-phagy, the survival rates
of Re-ERLAD-treated cells decrease in the presence
of light (Fig. S17), which indicates that ERLAD
is a cytoprotective mechanism against Re-ERLAD-
inducedcell death.Calreticulin is correlatedwith im-
munogenic cell death, which could be induced by
ER damage [54,55]. Consistent with the enhancing

effects of 3-MA on the photocytotoxic effects of Re-
ERLAD, a higher rate of calreticulin expression is ob-
served in 3-MA-treated cells (Fig. S18). These re-
sults show that Re-ERLAD can induce and be used
to monitor the dynamic changes in the viscosity of
ER buds during photoinitiated ERLAD.

CONCLUSION
Overall, we developed the first small molecule-
based specific ERLAD inducer, Re-ERLAD, which
has viscosity-sensitive emission properties and can
specifically image ER buds. Re-ERLAD can pho-
toinitiate ERLAD, a specific form of ER-phagy. Re-
ERLAD can also be used to monitor morpholog-
ical alterations in the ER during ERLAD, includ-
ing accumulation of unfolded proteins in ER buds,
recruitment of LC3B proteins and subsequent fu-
sion with lysosomes for degradation. Moreover, Re-
ERLAD can be used to quantitatively monitor the
dynamic changes in the viscosity of ER buds dur-
ing ERLAD via TPFLIM, revealing that the micro-
environmental turnover of ER is cytoprotective. In
summary, we present the first example of the dy-
namic turnover process of subcellular organelles by
quantitativelymeasuring their micro-environmental
parameters, an approach that may be used in ER
monitoring or screening of compounds/methods
for intervention with ERLAD.
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