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Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC showing
a significant percentage of mortality. One of the priorities of kidney cancer research is to identify
RCC-specific biomarkers for early detection and screening of the disease. With the development
of high-throughput technology, it is now possible to measure the expression levels of thousands of
genes in parallel and assess the molecular profile of individual tumors. Studying the relationship
between gene expression and survival outcome has been widely used to find genes associated with
cancer survival, providing new information for clinical decision-making. One of the challenges of
using transcriptomics data is their high dimensionality which can lead to instability in the selection of
gene signatures. Here we identify potential prognostic biomarkers correlated to the survival outcome
of ccRCC patients using two network-based regularizers (EN and TCox) applied to Cox models. Some
genes always selected by each method were found (COPS7B, DONSON, GTF2E2, HAUS8, PRH2,
and ZNF18) with known roles in cancer formation and progression. Afterward, different lists of
genes ranked based on distinct metrics (logFC of DEGs or β coefficients of regression) were analyzed
using GSEA to try to find over- or under-represented mechanisms and pathways. Some ontologies
were found in common between the gene sets tested, such as nuclear division, microtubule and
tubulin binding, and plasma membrane and chromosome regions. Additionally, genes that were
more involved in these ontologies and genes selected by the regularizers were used to create a new
gene set where we applied the Cox regression model. With this smaller gene set, we were able to
significantly split patients into high/low risk groups showing the importance of studying these genes
as potential prognostic factors to help clinicians better identify and monitor patients with ccRCC.

Keywords: kidney cancer; regularization; Cox regression; biomarker selection; gene ontology

1. Introduction

Renal cell carcinoma (RCC) is the most common type of kidney cancer [1]. In 2020,
it was the 14th most common type of cancer (431,288 new cases), with a significantly
higher incidence in developed countries, and the 15th most deadly one (179,368 deaths)
worldwide [2]. These numbers of incidence and mortality are expected to increase to
666,000 and 301,000, respectively, by 2040 [3]. Among the different pathological subtypes
of RCC, clear cell renal cell carcinoma (ccRCC) is the most common. ccRCC is known to
have a significant percentage of mortality due to the high rate of metastasis and resistance
to both radiotherapy and chemotherapy [4]. These, coupled with the fact that ccRCC early
stage diagnosis is highly correlated to improved survival rate (83% at stage I vs. 6% at
stage IV), make one of the priorities of kidney cancer research to identify RCC-specific
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biomarkers for early detection and screening of the disease [5]. This may help reduce both
patient and healthcare systems’ burden due to kidney cancer.

Nowadays, there are no effective biomarkers for early diagnosis of RCC in clinical
treatment, and the molecular mechanism of RCC metastasis remains unclear [6]. With the
development of high-throughput techniques such as RNA-sequencing (RNA-seq), it is now
possible to measure the expression levels of thousands of genes in parallel. This has been
widely used for the discovery of new biomarkers in oncology [7], where the molecular
profiling of individual tumors may help us find putative genes that will likely improve
diagnosis and treatment outcome and guide patient selection for targeted therapies [8].
In particular, the relationship between gene expression and survival outcomes, such as
the time to death, has been widely studied. Identifying genes associated with cancer
survival may provide new information for clinical decision-making, diagnosis, prognosis,
and treatment options of patients [7,9,10].

Survival analysis studies the time until an event of interest occurs, such as death.
The Cox proportional hazards models have been used to discover attributes that are related
to survival and predict the outcome [11]. These survival regression models describe the
relationship between the survival times and a set of covariates [12] such as genes. Some
studies show that molecular biomarkers may be more effective in predicting survival
outcomes than clinical parameters such as tumor stage and grade [13]. Nonetheless,
one of the main challenges of using gene expression data is their high dimensionality,
since the number of covariates is much larger than that of observations. This can lead to
instability in the selection of gene signatures, making the selection of novel biomarkers
a difficult task [14]. Dealing with the high dimensionality of patients’ data represents a
largely unsolved problem and several regularization methods have been proposed to tackle
this challenge.

The Lasso penalty in the Cox model was proposed in 1997 [15], providing a solution
with few variables selected. However, one of the problems of using this regularization is
that when there are several correlated variables, Lasso randomly selects only one. More
recently, to overcome this limitation, the elastic net that combines both Lasso and ridge
penalties applied to Cox regression model was proposed [16,17]. The Lasso penalty chooses
only a few nonzero coefficients, while a ridge regression scales all the coefficients towards
zero [18]. Besides these methods, network-based regularizers have also been suggested.
Since gene expression features may be connected through a graph structure where vertices
are genes and edges a weighted relation between them, incorporating network information
as a constraint in the loss function can be used to improve models’ performance and inter-
pretability. Such network information can be either obtained by functional knowledge (e.g.,
protein–protein interaction network) available in public databases or a weight attributed to
each gene based on data itself [9]. Other methods include using network information from
gene coexpression [19] and also applying a network constraint based on gene correlation
patterns between two groups of interest (e.g., normal and tumor) [20], moving towards
more meaningful biological solutions.

Altogether, the application of Cox regularized models to survival data with RNA-seq
covariates allows the identification of gene expression signatures and may enable the
identification of targeted therapeutics and genes that can serve as predictive or prognostic
biomarkers in kidney cancer [21].

Here we try to identify potential prognostic biomarkers correlated to the survival out-
come of ccRCC patients. Several putative genes were found using network-based regulariz-
ers applied to Cox models and these were analyzed using gene ontology (GO) classification
to try to find potential enriched mechanisms and pathways. GO (http://geneontology.org,
accessed on 1 June 2022) is the most comprehensive and widely used knowledge base
concerning the functions of genes, describing the biological role of genomic products
(e.g., genes) by classifying them according to their molecular functions (MF), biological
processes (BP) and cellular components (CC) [22]. These may be used to perform a gene
set enrichment analysis (GSEA), which allows identifying over- and under-represented
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functional biological groups within a list of genes. We believe that these genes could serve
as prognostic factors to help clinicians better identify and monitor patients with ccRCC.

2. Materials and Methods
2.1. Datasets

The data used in this study was retrieved from The Cancer Genome Atlas (TCGA)
Research Network: https://www.cancer.gov/tcga (accessed on 1 May 2022) Both gene
expression profile (RNA-seq) and clinical data from kidney renal clear cell carcinoma (KIRC)
patients were used. Regarding RNA-seq, the initial size of the dataset was 20,501 genes for
606 samples, containing both tumor (n = 529) and normal (n = 77) tissue. After filtering
genes with a null standard deviation, a total of 19,819 genes remained. Regarding clinical
data, 537 samples had information on age, status (dead = 1 or alive = 0), days to death, days
to the last follow-up, stage, T-stage, N-stage, M-stage, sex, and race (summarized in Table 1).
The staging system used here was the American Joint Committee on Cancer (AJCC) TNM
Classification of Malignant Tumors (TNM) system, which is based on the size of the tumor
(T), the spread to nearby lymph nodes (N), and the spread to distant sites (M).

Table 1. Data distribution regarding each clinical variable of interest: age (mean ± standard devia-
tion), status (dead = 1 and alive = 0), stage (I, II, III and IV), T-stage (I, II, III and IV), N-stage (0 = not
yet spread to nearby lymph nodes, 1 = spread to nearby lymph nodes), M-stage (metastasis = 1 and
no metastasis = 0), sex (female and male) and race (Caucasian, African American, Asian).

KIRC (n = 537)

Age 60.57 ± 12.15

Status 0 360 (67%)
1 177 (33%)

Stage I 269 (50%)
II 57 (11%)
III 125 (23%)
IV 84 (16%)

T-stage I 275 (51%)
II 69 (13%)
III 182 (34%)
IV 11 (2%)

N-stage 0 240 (45%)
1 17 (3%)
x 280 (52%)

M-stage 0 426 (79%)
1 79 (15%)
x 30 (6%)

Sex Female 191 (36%)
Male 346 (64%)

Race Caucasian 466 (87%)
African American 56 (10%)

Asian 8 (2%)
NA 7 (1%)

Data were downloaded from TCGA using the package RTCGAToolbox [23], which
in turn processes RNA-seq with RSEM [24] that estimates gene and isoform expression
levels. Data were then log transformed using the function log2(x + 1), which is a stan-
dard procedure when working with RNA-seq data to stabilize the variance across mean
values [25].

https://www.cancer.gov/tcga
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2.2. Differential Gene Expression

A differential gene expression analysis was performed to assess which genes were
differentially expressed between tumor vs. normal tissue and early stage (I, II, and III) vs.
advanced stage (IV) of the disease, using the edgeR R package [26–28]. This package offers
many variants of analysis. Here, we used the quasi-likelihood F-tests method, which is
highly recommended for differential expression analysis of bulk RNA-seq data. The top
ten most significant genes were examined and a multiplicity correction was performed by
applying the Benjamini–Hochberg method on the p-values, to control the false discovery
rate (FDR) [29].

2.3. Survival Analysis

A survival analysis studies the time until a certain event occurs (e.g., death). When
analyzing survival data, two functions that are dependent on time are of particular interest:
the survival function (S(t), the probability of surviving at least until time t), and the
hazard function (h(t), the conditional probability rate of dying at time t having survived
until that time). The Kaplan–Meier (KM, [30]) estimator is used to estimate the survival
curve (S(t) against t) from a set of observed follow-up times and a variable indicating if
the event took place or not [31]. The log-rank is a nonparametric statistical test used to
compare the survival curves between two groups; it tests the null hypothesis that there
is no difference between the population survival curves [32,33]. However, this test does
not allow other variables to be taken into account. A Cox proportional hazards model [34]
is a multiple regression model that allows the study of the relationship between several
predictor variables and survival times.

Cox Regression

The Cox proportional hazards model is the most commonly used multivariate ap-
proach for analyzing survival time data in medical research. It describes the relationship
between the event incidence (death) expressed by the hazard function and a set of covariates
(genes) [12]. The Cox model can be expressed as:

hi(t) = h0(t) exp(xT
i β), (1)

where hi(t) represents the hazard function of individual i = 1, . . . , n, dependent on a set of
p covariates xi = (xi1, xi2, . . . , xip)

T , and β = (β1, β2, . . . , βp) are the regression coefficients.
The h0(t) term represents the baseline hazard, the value of hazard if all xi are equal to
zero. The inference of the β parameters is made by maximizing Cox’s partial log-likelihood
function, given by:

l(β) =
n

∑
i=1

δi

(
xT

i β− log ∑
j∈Ri

exp(xT
j β)

)
, (2)

where Ri = R(ti) = {j : tj ≥ ti} denotes the set of all individuals that are at risk at ti,
i.e., with a follow-up time greater than or equal to ti, and δi indicates if the event was
observed (δi = 1) or not (δi = 0) for patient i.

To address the high-dimensionality problem (n� p), sparse penalized Cox’s models
have been considered, by adding a penalty term, F(β), to the partial log-likelihood, l(β).
One example is an elastic net (EN), which uses the `1-norm (Lasso) and the `2-norm
(ridge) to restrict the solution space by imposing sparsity and small coefficients to the
parameters [16]. The EN penalty is defined as:

F(β) = λ
{

α‖β‖1 + (1− α)‖β‖2
2

}
, (3)

where λ controls the penalizing weight and α the balance between the two norms (α = 0
for ridge regression and α = 1 for Lasso regression).
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Network-based regularizers have also been proposed in the context of cancer genomics.
The TCox method [20], a correlation-based regularizer, promotes the selection of features
(genes) that have distinct correlation patterns in two different groups, such as tumor and
normal tissue, highlighting potential differences in the corresponding subnetworks. Given
two distinct datasets (tumor—T and normal—N), TCox builds the correlation matrices,
∑T = [σT

1 , σT
2 , . . . , σT

p ], and ∑N = [σN
1 , σN

2 , . . . , σN
p ], respectively. Each column σ j cor-

responds to the correlation of gene j with the remaining ones. The measure of gene j
dissimilarity between T and N can be defined as:

dj(T, N) = arccos
< σT

j , σN
j >

‖σT
j ‖ · ‖σN

j ‖
, j = 1, . . . , p. (4)

This dissimilarity term is then normalized by their maximum value:

wj =
dj(T, N)

maxk dk(T, N)
, j, k = 1, . . . , p. (5)

In the context of the present study, we were interested in finding genes that exhibited
different correlation patterns between tumor and normal tissues, i.e., genes that showed a
larger dissimilarity between the two correlation matrices. Therefore, the penalty term used
here is given by:

F(β) = λ
{

α‖q ◦ β‖1 + (1− α)‖q ◦ β‖2
2

}
. (6)

where vector q = (w−1
1 , . . . , w−1

j , . . . , w−1
p ) represents the inverse of the normalized distances.

These models were built using the R package glmnet [35].

2.4. Model Evaluation

A survival analysis was performed using two different regularizations: EN and TCox.
For both models, the α parameter was set between α = 0.3 and α = 0.05, which provided a
feasible number of features to be further analyzed. All models were generated 100 times to
ensure the robustness and stability of the results.

Samples were randomly divided into a training set (70%) for model construction and
all data were used for the model evaluation. Both subsets had the same proportion of
censored samples (≈67%). The training sets were used to find the best λ value (controls
the penalizing weight) using a 10-fold cross-validation. This fixed λ was then used in
the survival model applied to the whole dataset. To evaluate the accuracy of the models,
the observations were split into two groups defined by the median of the fitted relative
risks (high vs. low risk of dying). This allowed us to perform the log-rank test via the
Kaplan–Meier estimator, and to assess if we could separate the survival curves of the two
groups by evaluating the p-value.

After assessing the mean results obtained by each model for the 100 runs (Table 2), we
observed that the best results were obtained when the parameter that controlled sparsity
was set to α = 0.1 for both the EN model and TCox. However, to select a similar and
adequate number of variables to be further analyzed and interpreted in both regularization
methods, gene sets obtained using TCox α = 0.1 (≈51 genes) and EN α = 0.2 (≈48 genes)
were used to perform a further analysis. Notwithstanding, different α parameters may be
tested to select different gene set sizes, using the code made available.

To perform the analysis described above, the glmnet [35] package was used in R
statistical software. The q vector used in the TCox method was introduced as a penalty
factor in the glmnet function.
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Table 2. Summary of the results obtained from Cox models using the two regularizations, EN and
TCox. α controls the sparsity of the model (0.05 < α < 0.3). # genes—number of genes selected. All
results are presented as mean values of the 100 runs tested.

α 0.3 0.2 0.1 0.05

p-Value # Genes p-Value # Genes p-Value # Genes p-Value # Genes

EN 1.11× 10−18 30 1.22× 10−17 48 0 90 1.43× 10−16 162
TCox 1.02× 10−15 18 1.77× 10−15 28 8.98× 10−16 51 1.86× 10−15 87

2.5. Gene Set Enrichment Analysis

To highlight the enriched functions of biomarkers selected by the models tested, a gene
set enrichment analysis (GSEA) was performed using the R package clusterProfiler [36].
The Gene Ontology (GO) [37] knowledge base is the world’s largest source of information
on the functions of genes and defines classes used to describe gene function regarding
three aspects: molecular activities of gene products (molecular function—MF), where gene
products are active (cellular component—CC) and pathways made up of multiple gene
products (biological process—BP). Given a ranked set of genes, GSEA determines whether
the members of the gene set are randomly distributed or if they are primarily found at
the top/bottom of the ranked list. There are three key elements of the GSEA method: the
enrichment score (ES), which is the degree to which a gene set is over- or under-represented
at the top or bottom of the ranked list, the significance level of ES, and the adjustment for
multiple hypothesis testing.

GSEA was applied to four different gene sets to test how different metrics used
to rank genes affected the selection of enriched ontologies. Firstly, we used as ranking
measure the log fold change of DEGs found between tumor vs. normal tissue (GS1) and
early vs. advanced stage of the disease (GS2). Afterward, genes were ranked based on
β coefficients obtained from Cox’s regression model using an elastic net regularization
(GS3) or TCox regularization (GS4). Then, the over-/under-represented GOs found were
compared between groups, and genes that were more involved in enriched processes were
further analyzed.

Lastly, KEGG (Kyoto Encyclopedia of Genes and Genomes) was used to perform
a genes’ functional analysis [38–40]. KEGG is a collection of manually drawn pathway
maps representing molecular interaction and reaction networks, covering a wide range
of biochemical processes regarding metabolism, genetic information processing, environ-
mental information processing, cellular processes, organism systems, human diseases,
and drug development.

3. Results

Since molecular biomarkers may be a way of predicting the survival outcome of
patients, studying the relationship between gene expression and survival phenotype may
help us identify prognostic genes related to ccRCC survival, providing new information to
help clinical decision making.

3.1. Exploratory Analysis

To identify putative biomarkers associated with survival outcomes in ccRCC patients,
gene expression and clinical data (described in Table 1) from TCGA were used.

Firstly, a survival analysis using Cox proportional hazards model was performed to
investigate the association between the time to death and the explanatory variables selected
(stage, T-stage, N-stage, M-stage, sex, and race). In the multivariate Cox analysis, the only
statistically significant covariates were the stages. In particular, the higher hazard ratio
found was for stage IV, HR ≈ 22 (p-value = 9.17× 10−5), indicating a strong relationship
between the patients’ stage and an increased risk of death.

Afterward, to find genes of interest associated with tumor formation and development
in ccRCC patients, genes differentially expressed were found between tumor vs. normal
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tissues and also between the early (I, II and III) and advanced stages (IV) of the disease,
using the edgeR package.

Comparing normal and tumor tissues, 13,906 differential expressed genes (DEGs)
were found, 7076 up- and 6830 downregulated in tumor tissue. Table 3 shows the top 10
DEGs (ranked by FDR) found.

Table 3. List of the ten most significant DEGs found between tumor and normal tissues from KIRC
patients. LogFC—log fold change; FDR—false discovery rate.

Genes LogFC FDR

MFSD4 −5.34 1.96× 10−235

UNCX −6.42 2.46× 10−225

SEMG2 −7.10 1.40× 10−195

RBP2 −6.08 1.79× 10−183

GADL1 −6.83 9.19× 10−179

LOC340094 −5.68 1.23× 10−173

ELF5 −8.18 6.98× 10−173

SIM2 −4.52 9.04× 10−171

LOC284578 −6.88 1.07× 10−170

HCRTR2 −5.41 4.48× 10−169

Furthermore, DEGs between the early and advanced stages of the disease were found.
A total of 6170 genes were DEGs, 3126 up- and 3044 downregulated in the early stages of
the disease. The top 10 genes with the lowest FDR values are listed in Table 4.

Table 4. List of the ten most significant DEGs found between early (stages I, II and III) and advanced
stages (stage IV) from KIRC patients. LogFC—log fold change; FDR—false discovery rate.

Genes LogFC FDR

SPANXB2 −5.70 2.27× 10−84

GABRA3 −4.68 4.58× 10−67

MAGEC2 −5.88 8.13× 10−57

SPATS1 −4.41 7.53× 10−50

EPYC −4.09 6.73× 10−49

RDH8 −4.20 6.43× 10−46

CSMD3 −3.78 9.30× 10−42

BAAT −4.42 4.79× 10−39

TMEM158 −2.46 3.31× 10−38

ANKFN1 −3.35 2.34× 10−33

3.2. Survival Models

To find possible prognostic markers in kidney cancer, two survival models with
different regularization metrics to handle high-dimensional data were used: EN and TCox.

3.2.1. Elastic Net

Table 2 shows the results obtained for the Cox survival model with an EN penalty
for the 100 runs tested with different α values, selecting a different number of variables.
As we can see, the lowest p-value was obtained when α = 0.1, selecting a mean of 90 genes
(p-value = 0). However, to have a similar gene set size between the two methods used (EN
and TCox), the genes that were selected as important in the Cox regression for at least 50% of
the 100 runs using α = 0.2 were listed (Table 5) and further analyzed, since those were the
ones more correlated with the survival outcome of patients. A total of 50 genes were found.
Some of these genes were upregulated and others downregulated (represented by ↑ and ↓,
respectively, in Table 5) in tumor tissue or the advanced stage of disease. Here are presented
only the top 20 genes selected. Three genes (COPS7B, DONSON, and LOC100272146) were
always selected by EN.
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Table 5. List of the top 20 genes selected by elastic net in at least 50% of the runs when α = 0.2.
Arrows represent if genes are upregulated (↑) or downregulated (↓) in tumor tissue or in the advanced
stage of the disease and % is the percentage of the runs where a certain gene appears in the solution.
– genes that are not differentially expressed in tumor tissue.

Genes % DEGs Tumor Tissue DEGs in
Advanced Stage

COPS7B 100 ↑ ↑
DONSON 100 ↑ ↑

LOC100272146 100 ↑ –
CCNF 99 ↑ ↑
CKAP4 99 ↑ ↑

NCKAP5L 99 ↑ ↑
SEC61A2 99 – ↑
SNRPA1 99 ↑ ↑
STAT2 99 ↑ ↑

STRADA 99 ↓ ↑
NUMBL 98 ↑ ↑
SORBS2 98 ↑ ↓

CHFR 97 ↑ ↑
GIPC2 96 ↑ ↓

MBOAT7 96 – ↑
AR 95 – ↓

GTPBP2 95 ↑ ↑
KIF20A 95 ↑ ↑
NARF 95 ↑ ↑

FAM72B 94 ↑ ↑

3.2.2. TCox

The second approach used to try to identify biomarkers associated with the survival
outcome of patients was a penalization based on correlation—textttTCox. This regularizer
promotes the selection of genes with distinct correlation patterns between the healthy and
tumor tissues.

Table 2 presents the results obtained for this method for the 100 runs tested. The curves
split with the lowest mean p-value was obtained for α = 0.1, with a mean set comprising
47 genes. To assess which genes were more interesting to study, the ones selected at least
50% of the times were found (n = 49). In Table 6 are listed the top 20 most selected genes
and how often they are selected (represented by the percentage within the 100 runs tested).
Five genes (GTF2E2, HAUS8, PRH2, SEC61A2, and ZNF18) were always selected by the
model. Furthermore, comparing the two gene lists obtained for the methods used, four
genes were found in common, DONSON, SEC61A2, SNRPA1, and SORBS2.

Table 6. List of the 20 most selected genes by TCox when α = 0.1. Arrows represent if genes are
upregulated (↑) or downregulated (↓) in tumor tissue or the advanced stage of the disease and %
is the percentage of the runs where a certain gene appears in the solution. – genes that are not
differentially expressed in tumor tissue.

Genes % DEGs Tumor Tissue DEGs in
Advanced Stage

GTF2E2 100 ↑ ↑
HAUS8 100 ↑ ↑
PRH2 100 ↑ ↑

SEC61A2 100 – ↑
ZNF18 100 ↑ ↓

C20orf72 99 ↑ ↑
DONSON 99 ↑ ↑

LOC286467 99 ↑ ↑
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Table 6. Cont.

Genes % DEGs Tumor Tissue DEGs in
Advanced Stage

PRH1 99 ↑ –
TFAP2E 99 ↑ ↑

TMEM86B 99 ↑ –
TRAIP 99 ↑ ↑

DNAJC2 96 ↑ ↑
SLC26A6 96 ↓ ↑
SNRPA1 96 ↑ ↑
SORBS2 96 ↑ ↓
TCTE3 96 ↑ ↑

TMEM150C 96 ↓ ↓
C12orf32 94 ↑ ↑
C8orf44 94 – –

3.3. Gene Ontology

To describe a gene function along with the biological process, molecular function,
and cellular component, a GSEA was performed. Gene sets were ranked based on their
phenotypes using two different measures, the commonly used log fold change of DEGs and
the β coefficient parameter of the regression. A total of four gene sets were tested: GS1—
logFC of DEGs found in tumor vs. normal tissues, GS2—logFC of DEGs found between
early vs. advanced stages, GS3—genes selected by EN method ranked by β parameter of
regression, and GS4—genes selected by the TCox method ranked by the β parameter of
the regression.

3.3.1. DEGS Tumor vs. Normal

Firstly, the list of ranked genes based on the logFC between tumor and normal tis-
sues was used (GS1). Enriched ontologies regarding biological processes (BP), molecular
function (MF), and cellular component (CC) are presented in Figures 1–3, respectively. For
each analysis, enriched terms are listed on the left panel, and genes that belong to the top
three enriched categories are shown on the right panel.

Looking closely at the BP characterization, we observed that the most significant
ontologies were: urogenital system development (GO:0001655), kidney development
(GO:0001822), and positive regulation of cytokine production (GO:0001819). Some of the
DEGs associated with these ontologies showing a higher absolute logFC value were PAEP,
ORM1, SAA1, and LBP (upregulated) and AQP2, CALB1, and NPHS1/2 (downregulated).

Regarding the MF characterization, the top three ontologies found were immune
receptor activity (GO:0140375), cation transmembrane transporter activity (GO:0008324),
and inorganic molecular entity transmembrane transporter activity (GO:0015318), and the
top DEGs found regarding the logFC were AQP2, SLC12A1, and ATP12A, all downregulated.

Concerning the CC classification, the top enriched ontologies were GO:0009897—
external side of plasma membrane, GO:0045177—apical part of the cell, and GO:0016324—
apical plasma membrane. MUC17 was found to be one of the highest upregulated genes
and SLC14A1/2, ATP12A, UMOD, and AQP2 were downregulated.

Finally, regarding the KEGG enrichment pathways, the top three enriched terms were
cytokine–cytokine receptor interaction (hsa04060), Human T-cell leukemia virus 1 infection
(hsa05166), and chemokine signaling pathway (hsa04062).
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GS1 Biological Process

Figure 1. Gene ontology enrichment analysis regarding biological processes terms for a list of DEGs
ranked by the log fold change between tumor and normal tissues. The left panel shows a dot chart
with the most significant BP terms. The right panel shows a gene-concept network plot of the three
most enriched terms that depicts the linkages of genes and biological concepts as a network.

GS1 Molecular Function

Figure 2. Gene ontology enrichment analysis regarding molecular function terms for a list of DEGs
ranked by the log fold change between tumor and normal tissues. The left panel shows a dot chart
with the most significant MF terms. The right panel shows a gene-concept network plot of the three
most enriched terms that depicts the linkages of genes and biological concepts as a network.
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GS1 Cellular Component

Figure 3. Gene ontology enrichment analysis regarding cellular components terms for a list of DEGs
ranked by the log fold change between tumor and normal tissues. The left panel shows a dot chart
with the most significant CC terms. The right panel shows a gene-concept network plot of the three
most enriched terms that depicts the linkages of genes and biological concepts as a network.

3.3.2. DEGs Early vs. Advanced Stage

Afterward, the same methods were applied to a gene set ranked by logFC between
the early and advanced stage of disease (GS2) to see if different enriched functions and
pathways with different gene sets were obtained.

Results for the BP classification are presented in Figure 4. The three most enriched
ontologies found were mitotic cell cycle (GO:0000278), nuclear division (GO:0000280),
and organic acid metabolic process (GO:0006082). Within these gene sets, TAT, CRABP1,
APOA1/5, APOC3, UGT2B4, SULT2A1, and ADH4 were upregulated in the early stages of
the disease and gene ANKFN1 was downregulated.

Regarding the MF classification (Figure 5), the main three ontologies were related
to transporter activity (inorganic molecular entity transmembrane transporter activity—
GO:0015318, transporter activity—GO:0005215, and transmembrane transporter activity—
GO:0022857) and the genes found with the highest logFC between the early and advanced
stage were APOA1/2, SLC12A3, and AQP6, all upregulated in the early stages of the disease.

Figure 6 presents the most significant ontologies regarding the CC characterization
(plasma membrane region—GO:0098590, chromosomal region—GO:0098687, and secretory
granule lumen—GO:0034774), and the genes involved in these terms. The genes with the
highest logFC were AHSG, TTR, HRG, ALB, AQP6, and LRRTM2, all upregulated.

Finally, regarding the KEGG enrichment pathways, only one enriched term was found,
the metabolic pathways—hsa01100.
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GS2 Biological Process

Figure 4. Gene ontology enrichment analysis regarding biological processes terms for a list of DEGs
ranked by the log fold change between early and advanced stages of the disease. The left panel shows
a dot chart with the most significant BP terms. The right panel shows a gene-concept network plot of
the three most enriched terms that depicts the linkages of genes and biological concepts as a network.

GS2 Molecular Function

Figure 5. Gene ontology enrichment analysis regarding molecular functions terms for a list of DEGs
ranked by the log fold change between early and advanced stages of the disease. The left panel shows
a dot chart with the most significant MF terms. The right panel shows a gene-concept network plot of
the three most enriched terms that depicts the linkages of genes and biological concepts as a network.
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GS2 Cellular Component

Figure 6. Gene ontology enrichment analysis regarding cellular components terms for a list of DEGs
ranked by the log fold change between early and advanced stages of the disease. The left panel shows
a dot chart with the most significant CC terms. The right panel shows a gene-concept network plot of
the three most enriched terms that depicts the linkages of genes and biological concepts as a network.

3.3.3. Genes Based on EN Regularization

To see how different metrics to rank genes affected the enriched gene ontologies and
pathways found, we also used the β coefficient parameter of the regression to order genes.

Firstly, we used the β coefficients obtained from EN regularization (GS3). The three
most enriched ontologies found using this ranked list of genes regarding BP characterization
(Figure 7) were mitotic sister chromatid segregation (GO:0000070), nuclear division (GO:0000280),
and sister chromatid segregation (GO:0000819). The genes with the highest correlation to the
terms were SMC4, KIF, NEK2, PLK1, TTK, and NUF2, all with positive coefficients.

Regarding MF (Figure 8), the main three ontologies found were microtubule binding
(GO:0008017), Ras guanyl-nucleotide exchange factor activity (GO:0005088), and tubulin
binding (GO:0015631), and the highest correlated genes KIF, PLK1, PRC1, MX2, GTSE1, and
TPX2 were upregulated and RGP1 was downregulated.

Figure 9 presents the most significant ontologies regarding cellular components,
GO:0000775—chromosome, centromeric region, GO:0000776—kinetochore, and GO:0000793
—condensed chromosome. With NEK2, NUF2, TTK, PLK1, CENPF, and KIF being some
of the genes with the greatest absolute value of the β coefficient, i.e., they have a higher
impact on survival regression.

Lastly, regarding the KEGG enrichment pathways, the top three enriched terms found
were Epstein–Barr virus infection (hsa05169), amyotrophic lateral sclerosis (hsa05014),
and olfactory transduction (hsa04740).
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GS3 Biological Process

Figure 7. Gene ontology enrichment analysis regarding biological processes terms for a list of genes
selected by EN ranked by the β coefficients of the regression. The left panel shows a dot chart with
the most significant BP terms and on the right a gene-concept network plot of the three most enriched
terms depicts the linkages of genes and biological concepts as a network.

GS3 Molecular Function

Figure 8. Gene ontology enrichment analysis regarding molecular function terms for a list of genes
selected by EN ranked by the β coefficients of the regression. The left panel shows a dot chart with the
most significant MF terms and on the right a gene-concept network plot of the three most enriched
terms depicts the linkages of genes and biological concepts as a network.
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GS3 Cellular Component

Figure 9. Gene ontology enrichment analysis regarding cellular components terms for a list of genes
selected by EN ranked by the β coefficients of the regression. The left panel shows a dot chart with
the most significant CC terms and on the right a gene-concept network plot of the three most enriched
terms depicts the linkages of genes and biological concepts as a network.

3.3.4. Genes Based on TCox Regularization

The last gene set analyzed (GS4) was ranked based on the β coefficients obtained for
the survival regression using a TCox regularization.

Figure 10 shows the most enriched terms and genes found regarding the BP classi-
fication. The top three enriched terms found were mitotic sister chromatid segregation
(GO:0000070), nuclear division (GO:0000280), and sister chromatid segregation (GO:0000819),
the same as the ones found in GS3 (gene set ranked based on the β coefficients using EN
regularization). Some of the genes with the highest β coefficient found were NUF2, TRIP13,
TTK, PRC1, KIF, NDC80, NEK2, PSRC1, AURKA, and FBX.

Regarding the MF characterization (Figure 11), the top three enriched terms were
microtubule binding (GO:0008017), tubulin binding (GO:0015631), and receptor regulator
activity (GO:0030545), and the most important genes found were NAV3, HAUS8, IFNB1,
CCL8, GTSE1, and PSRC1, all with positive β coefficients values. The FNTA gene was the
only gene found in common between these three ontologies.

The top enriched terms regarding CC (Figure 12) were found to be GO:0000775—
chromosome, centromeric region, GO:0000776—kinetochore, and GO:0000779—condensed
chromosome, centromeric region. Furthermore, the genes with the greatest coefficient
absolute value were identified as NCAPG, NEK2, TTK, OIP5, NUF2, PLK1, and NDC80.

Finally, the top three enriched terms regarding the KEGG enrichment pathways were
found to be olfactory transduction (hsa04740), tight junction (hsa04530), and oocyte meiosis
(hsa04114).
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GS4 Biological Process

Figure 10. Gene ontology enrichment analysis regarding biological processes terms for a list of genes
selected by TCox ranked by the β coefficients of the regression. The left panel shows a dot chart with
the most significant BP terms. Right panel shows a gene-concept network plot of the three most
enriched terms that depicts the linkages of genes and biological concepts as a network.

GS4 Molecular Function

Figure 11. Gene ontology enrichment analysis regarding molecular function terms for a list of genes
selected by TCox ranked by the β coefficients of the regression. The left panel shows a dot chart with
the most significant MF terms. The right panel shows a gene-concept network plot of the three most
enriched terms that depicts the linkages of genes and biological concepts as a network.
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GS4 Cellular Component

Figure 12. Gene ontology enrichment analysis regarding cellular components terms for a list of genes
selected by TCox ranked by the β coefficients of the regression. The left panel shows a dot chart with
the most significant CC terms. The right panel shows a gene-concept network plot of the three most
enriched terms that depicts the linkages of genes and biological concepts as a network.

4. Discussion

To identify potential biomarkers correlated to the survival outcome of ccRCC patients,
different approaches were tested, namely a differential gene expression analysis, network-
based regularization applied to Cox models, and gene ontology classification. One of the
limitations of using RCC TCGA data is that the information regarding cancer therapies
is very sparse. Therefore, this confounder variable could not be considered, and we
did not analyze how patients’ therapy may be associated with gene expression profiles
and survival.

It has been shown that studying the relationship between gene expression and survival
outcome is very important to identify genes associated with cancer survival, providing
new information for the prognosis and treatment of cancer diseases. Here, we tested two
regularization functions applied to the Cox regression: EN and TCox.

Regarding EN, a regularization method that combines penalties from both Lasso and
ridge regression, we could see that some genes were always selected by the model in all
of the runs tested (Table 5). One of those genes selected was COPS7B (COP9 Signalosome
Subunit 7B). The upregulation of this gene has been associated with an advanced stage
of the disease and metastasis in RCC, indicating that it may serve as a prognostic marker
and therapeutic target [41]. Another gene always selected was DONSON (DNA replication
fork stabilization factor). Previous studies have shown that the upregulation of this gene
is associated with an advanced TNM stage and unfavorable prognosis in gastric cancer
tissue [42]. Of note, this biomarker was previously associated with unfavorable overall
survival in KIRC, and its prognostic potential was validated using quantitative real-time
PCR and IHC, showing that this gene may be a robust biomarker for risk stratification
with upregulation being associated with worst survival [43]. Here, both genes were found
upregulated in the advanced stages and tumor tissue of ccRCC patients.

Afterwards, a penalization based on correlation—TCox was used. Within the genes
found using this method (Table 6), some were also selected by the EN regularization (DON-
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SON, SEC61A2, SNRPA1, and SORBS2). All of these genes were already described to have a
role in tumor formation or metastization. For example, several studies identified new roles
of SNRPA1 in the progression of CRC, classifying it as a potential therapeutic target in the
treatment of CRC [44] and showing that the upregulation of this gene was associated with
a worst prognostic [45]. SEC61A2 may be important for metastasis to the brain in humans
when upregulated [46] and finally SORBS2 has been reported to be a tumor suppressor
gene in ccRCC [47,48]. It is worth mentioning that in this paper, although upregulated in
tumor tissue, this tumor suppressor gene was found downregulated in metastatic patients
(stage IV).

Regarding the TCox regularization, five genes were always selected by the model:
GTF2E2, HAUS8, PRH2, and ZNF18. Interestingly, some genes were already associated
with cancer disease. GTF2E2 (general transcription factor IIE subunit 2) was found upregu-
lated in lung adenocarcinoma tissue and was negatively associated with patients’ overall
survival [49] and the genetic mutations of PRH2 (proline-rich protein HaeIII subfamily
2) were also identified in lung cancer tissue [50]. Lastly, ZNF18 is a zinc finger protein
involved in transcriptional regulation [51] and HAUS8 (augmin-like complex subunit 8) a
microtubule-binding complex involved in the mitotic spindle assembly and maintenance
of centrosome integrity [51], both processes related to enriched GO terms found here when
we performed the GSEA (mitotic cell cycle, microtubule binding and chromosomal region).

As explained above, to better understand the enriched functions of genes selected,
a GSEA was used to identify over- and under-represented functional biological groups
(regarding BP, MF, and CC terms) within distinct list of genes. Four lists of genes were
used: (1) DEGs tumor vs. normal ranked by logFC (GS1); (2) DEGs early vs. advanced
stage ranked by logFC (GS2); (3) EN ranked by β coefficient (GS3); and (4) TCox ranked by
β coefficient (GS4).

In Table 7 are listed some of the genes present on the top three enriched gene ontology
terms found for each group tested (BP, MF, and CC).

Table 7. Genes most involved in the top three terms of each ontology (BP, MF and CC) for each
gene set studied. GS1—logFC tumor vs. normal; GS2—logFC early vs. advanced stage; GS3—EN β

coefficients; GS4—TCox β coefficients;

GO GS1 GS2 GS3 GS4

BP
PAEP, ORM1, SAA1, LBP,
AQP2, CALB1, NPHS1/2

TAT, CRABP1, APOA1/5, APOC3,
UGT2B4, SULT2A1, ADH4, ANKFN1

SMC4, KIF, NEK2, PLK1,
TTK, NUF2

NUF2, TRIP13, TTK, PRC1, KIF,
NDC80, NEK2, PSRC1, AURKA, FBX

MF AQP2, SLC12A1, ATP12A APOA1/2, SLC12A3, AQP6
KIF, PLK1, PRC1, MX2,
GTSE1, RGP1, TPX2

NAV3, HAUS8, IFNB1, CCL8,
GTSE1, PSRC1, FNTA

CC
MUC17, SLC14A1/2, ATP12A,
UMOD, AQP2

AHSG, TTR, HRG, ALB,
AQP6, LRRTM2

NEK2, NUF2, TTK, PLK1,
CENPF KIF

NCAPG, NEK2, TTK, OIP5,
NUF2, PLK1, NDC80

When comparing gene ontology concerning the biological process (BP) terms between
all gene sets tested, genes present in pathways involving nuclear division (GO:0000280)
and sister chromatid segregation (GO:0000819) were found in common. Regarding the top
genes present in these terms, we found genes involved in carcinogenesis with potential
prognostic and therapeutic roles in cancer (FBXO5 [52] and SMC4 [53]) and also PRC1,
whose deregulation is related to chromosomal instability and tumor heterogeneity [54].

The second gene ontology classification studied was the molecular function (MF),
which describe activities that occur at the molecular level. Several enriched GO terms
were found in common between the gene sets studied: various transmembrane transporter
activities (GO:0008324, GO:0015318, and GO:0022857) and also microtubule and tubulin
binding (GO:0008017 and GO:0015631). In Table 7 are listed the genes that contribute
the most to these GOs. SLC34A1 and SLC12A3 that were found to be more involved in
the transmembrane transporter activities terms have been studied as potential targets
for the clinical diagnosis, prognosis, and treatment of ccRCC patients [55]. Regarding
microtubule and tubulin binding, the KIF gene family was highly present in these terms.
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This superfamily contains microtubule-dependent molecular motor proteins, which, upon
alteration of their expression, lead to cancer development and progression [56]. Likewise,
TPX2 has been studied as a factor critical for mitosis and spindle assembly and as a marker
for diagnosis and prognosis when overexpressed in cancer [57]; GTSE1 can also act as
an oncogene and a high expression was positively correlated with histological grade and
poor survival [58]. In this study, both genes were found upregulated in tumor tissue of
ccRCC patients.

The last GO considered describes the locations relative to cellular structures in which
a gene product performs a certain function—cellular component (CC). The most enriched
terms found between the gene sets were related to plasma membrane regions (GO:0098590,
GO:0045177) and chromosomal region (GO:0098687, GO:0000776, GO:0000779). Regarding
plasma membrane regions, genes belonging to the urea transporter family (SLC14) were
highly present and alterations in those genes may increase the risk of bladder cancer [59].
Further, the aquaporins (AQPs) family responsible for the transport of small solutes were
also highly present, with known functions in tumor biology such as cell proliferation and
migration [60]. Finally, the most significant genes belonging to chromosomal regions were
found (TTK, NEK2, and NUF2). The TTK gene is associated with cell proliferation and
proteins encoded by this gene are essential for chromosome alignment and duplication.
Furthermore, it was found strongly overexpressed in human pancreatic ductal adenocarci-
noma [61], which is consistent with the results obtained in this study, where we found TTK
gene upregulated in the tumor tissue of ccRCC patients. NEK2 and NUF2 have also well
established roles in cell cycle regulation and cell proliferation and their overexpression was
associated with a variety of cancer types including renal cell carcinoma [62,63].

Altogether, we were able to find a set of putative genes that are correlated with survival
outcomes in Renal Cell Cancer (COPS7B, DONSON, SEC61A2, SNRPA1, SORBS2, GTF2E2,
HAUS8, PRH2, and ZNF18) and also a set of genes with some enriched ontology associated
(FBXO5, SMC4, PRC1, SLC34A1, SLC12A3, KIF, TPX2, GTSE1, SLC14, AQP, TTK, NEK2,
and NUF2).

To see if this smaller gene set may split ccRCC patients into two groups regarding
their risk of dying, we created a new model where we applied a Cox regression using the
ridge penalization (no feature selection was performed) to three different datasets, namely
the full dataset (n = 527), the early stage patients (n = 441), and the metastatic/stage IV
patients (n = 84).

We were still able to split the curves with a mean significance p-value in the three
groups of patients tested (Figure 13) and Table 8 shows the mean β coefficients obtained
for each gene after we tested the model 100 times. Genes showing positive β coefficients
(e.g., COPS7B), have HR > 1, so patients with an increased expression of these genes are
expected to have a higher risk of dying. Likewise, genes showing negative β coefficients
(e.g., SORBS2), have HR < 1, so patients with a downregulation of these genes are expected
to have a higher risk of dying. Interestingly, as described before, SORBS2 has been reported
to be a tumor suppressor gene in ccRCC and here, we found that it was downregulated in
metastatic tissue.

We observed that even though this gene set was able to split the two survival curves
(high/low risk of dying) significantly, the hazard ratios obtained for each gene were close
to one (HR = 1, no effect). Therefore, the Cox regression with ridge penalization was
applied only to the genes selected earlier by both EN and TCox regularizers (DONSON,
SEC61A2, SNRPA1, and SORBS2). This was performed 100 times and Table 9 shows the
mean β coefficients and HR obtained for each gene.

These results show that the biomarkers previously selected using the full dataset are
also significant for risk stratification in early stage patients and also metastatic patients.
This gene set comprises potential prognostic biomarkers with putative roles in cancer
therapy that may help clinicians in the clinical decision-making of ccRCC patients.
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Figure 13. Kaplan–Meier curves obtained when applying a multivariate Cox model to a gene set
comprising genes correlated with survival outcome in ccRCC and genes with some enriched ontology
associated (p = 24). (a) Full dataset (n = 527); (b) early stage patients (n = 441); (c) metastatic
patients (n = 84).

Table 8. List of genes and corresponding β coefficients obtained in a multivariate Cox survival model
using ridge regression. HR (hazard ratio) gives the effect size of covariates and it is calculated by
exp(β). HR = 1, no effect; HR < 1, reduction in the hazard; HR > 1, increase in the hazard.

Genes
Full Dataset Early Stage Advanced Stage

β̂ HR β̂ HR β̂ HR

COPS7B 0.0930 1.10 0.0686 1.07 0.0539 1.06
DONSON 0.0840 1.09 0.0753 1.08 0.0557 1.06
SEC61A2 0.0731 1.09 0.0728 1.08 0.0552 1.06
SNRPA1 0.0481 1.08 0.0316 1.03 0.0226 1.02
SORBS2 −0.0977 0.91 −0.0688 0.93 −0.0616 0.94
GTF2E2 0.0687 1.07 0.0428 1.04 0.0271 1.03
HAUS8 0.0313 1.03 0.0240 1.02 0.0228 1.02
PRH2 0.0647 1.07 0.0734 1.08 0.0363 1.04
ZNF18 0.0427 1.04 0.0552 1.06 0.0251 1.03
FBXO5 0.0227 1.02 −0.0151 0.99 0.0258 1.03
SMC4 0.0544 1.06 0.0097 1.01 0.0491 1.05
PRC1 0.0053 1.01 0.0101 1.01 0.0210 1.02

SLC34A1 −0.0335 0.97 −0.0213 0.98 −0.0335 0.97
SLC12A3 −0.0166 0.98 −0.0111 0.99 −0.0115 0.99

KIFC1 −0.0045 1.00 −0.0082 0.99 0.0276 1.03
KIF18A 0.0187 1.02 0.0080 1.01 0.0445 1.05
KIF23 0.0121 1.01 0.0101 1.01 0.0315 1.03
TPX2 −0.0029 1.00 −0.0045 1.00 0.0415 1.04

GTSE1 0.0208 1.02 0.0063 1.01 0.0278 1.03
SLC14A2 0.0135 1.01 −0.0173 0.98 0.0381 1.04

AQP2 −0.0058 0.99 −0.0015 1.00 0.0090 1.01
TTK 0.0213 1.02 0.0046 1.00 0.0302 1.03

NEK2 0.0356 1.04 0.0392 1.04 0.0334 1.03
NUF2 0.0345 1.04 0.0263 1.03 0.0346 1.04
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Table 9. List of genes previously selected by both EN and TCox regularizers and corresponding β

coefficients obtained when we applied a multivariate Cox survival model with ridge penalization.
HR (hazard ratio) gives the effect size of covariates and it is calculated by exp(β). HR = 1, no effect;
HR < 1, reduction in the hazard; HR > 1, increase in the hazard.

Genes
Full Dataset Early Stage Advanced Stage

β̂ HR β̂ HR β̂ HR

DONSON 0.1946 1.21 0.1920 1.21 0.2365 1.27
SEC61A2 0.1728 1.19 0.1857 1.20 0.2226 1.25
SNRPA1 0.1371 1.15 0.0857 1.09 0.0421 1.04
SORBS2 −0.2417 0.79 −0.1781 0.84 −0.2341 0.79

5. Conclusions

One of the priorities of kidney cancer research is to identify RCC-specific biomarkers
for the early detection and screening of the disease to reduce patient and healthcare systems’
burden due to kidney cancer. Nowadays, there are no effective biomarkers for early
diagnosis of RCC in clinical treatment, and the molecular mechanism of RCC metastasis
remains unclear.

Here, we identified a gene set of potential prognostic biomarkers correlated to survival
outcome (using two different regularizers, EN and TCox) and enriched gene ontologies of
ccRCC patients (COPS7B, DONSON, SEC61A2, SNRPA1, SORBS2, GTF2E2, HAUS8, PRH2,
ZNF18, FBXO5, SMC4, PRC1, SLC34A1, SLC12A3, KIF, TPX2, GTSE1, SLC14, AQP, TTK,
NEK2, and NUF2). Most of these genes were already described in the literature to be related
to cancer formation and progression and a small set to kidney cancer, specifically.

Altogether, these genes should be further investigated as potential prognostic factors
to help clinicians better identify and monitor patients with ccRCC.
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KEGG Kyoto Encyclopedia of Genes and Genomes
RNA-seq RNA-sequencing
TCGA The Cancer Genome Atlas
KIRC Kidney renal clear cell carcinoma
RSEM RNA-seq by expectation–maximization
TNM TNM Classification of Malignant Tumors
KM Kaplan–Meier
HR Hazard ratio
EN Elastic net
DEGs Differential expressed genes
LogFC Log fold change
FDR False discovery rate
MF Molecular function
CC Cellular component
BP Biological process
ES Enrichment score
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21. Nagy, Á.; Munkácsy, G.; Győrffy, B. Pancancer survival analysis of cancer hallmark genes. Sci. Rep. 2021, 11, 1–10. [CrossRef]
22. Consortium, G.O. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330–D338.
23. Samur, M.K. RTCGAToolbox: A new tool for exporting TCGA Firehose data. PLoS ONE 2014, 9, e106397. [CrossRef]
24. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC

Bioinform. 2011, 12, 1–16. [CrossRef] [PubMed]
25. Johnson, K.A.; Krishnan, A. Robust normalization and transformation techniques for constructing gene coexpression networks

from RNA-seq data. Genome Biol. 2022, 23, 1–26.
26. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 2010, 26, 139–140. [CrossRef] [PubMed]
27. McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to

biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [CrossRef]
28. Chen, Y.; Lun, A.T.; Smyth, G.K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments

using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 2016, 5, 1438. [PubMed]
29. Haynes, W.; Benjamini–Hochberg Method. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota,

H., Eds.; Springer: New York, NY, USA, 2013; p. 78. [CrossRef]
30. Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [CrossRef]
31. Bewick, V.; Cheek, L.; Ball, J. Statistics review 12: Survival analysis. Crit. Care 2004, 8, 1–6.
32. Peto, R.; Pike, M.; Armitage, P.; Breslow, N.E.; Cox, D.; Howard, S.; Mantel, N.; McPherson, K.; Peto, J.; Smith, P. Design and

analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br. J. Cancer
1977, 35, 1–39. [CrossRef]

33. Walters, S.J. What is a Cox Model? Hayward Medical Communications: Newmarket, UK, 1999.
34. Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–202. [CrossRef]
35. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.

2010, 33, 1–22. [CrossRef]
36. Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal

enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [CrossRef]
37. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.

Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [CrossRef] [PubMed]
38. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef] [PubMed]
39. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [CrossRef]

[PubMed]
40. Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms.

Nucleic Acids Res. 2021, 49, D545–D551. [CrossRef]
41. Chen, B.; Jiao, Z.; Yin, X.; Qian, Z.; Gu, J.; Sun, H. Novel insights into biomarkers associated with renal cell carcinoma. Oncol. Lett.

2018, 16, 83–90. [CrossRef]
42. Ding, L.; Zhao, Y.; Dang, S.; Wang, Y.; Li, X.; Yu, X.; Li, Z.; Wei, J.; Liu, M.; Li, G. Circular RNA circ-DONSON facilitates gastric

cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol. Cancer 2019, 18, 1–11.
[CrossRef]

43. Klümper, N.; Blajan, I.; Schmidt, D.; Kristiansen, G.; Toma, M.; Hölzel, M.; Ritter, M.; Ellinger, J. Downstream neighbor of
SON (DONSON) is associated with unfavorable survival across diverse cancers with oncogenic properties in clear cell renal cell
carcinoma. Transl. Oncol. 2020, 13, 100844. [CrossRef]

44. Zeng, Q.; Lei, F.; Chang, Y.; Gao, Z.; Wang, Y.; Gao, Q.; Niu, P.; Li, Q. An oncogenic gene, SNRPA1, regulates PIK3R1, VEGFC,
MKI67, CDK1 and other genes in colorectal cancer. Biomed. Pharmacother. 2019, 117, 109076. [CrossRef]

45. Jiang, A.; Meng, J.; Gong, W.; Zhang, Z.; Gan, X.; Wang, J.; Wu, Z.; Liu, B.; Qu, L.; Wang, L. Elevated SNRPA1, as a promising
predictor reflecting severe clinical outcome via effecting tumor immunity for ccRCC, is related to cell invasion, metastasis, and
sunitinib sensitivity. Front. Immunol. 2022, 13, 842069. [CrossRef] [PubMed]

46. Mamoor, S. SEC61A2 is differentially expressed in the brain metastases of patients with metastatic breast cancer. (OSF Preprints,
2020). Available online: http://dx.doi.org/10.31219/osf.io/tus7h (accessed on 12 July 2022).

47. Yan, B.; Peng, Z.; Xing, C. SORBS2, mediated by MEF2D, suppresses the metastasis of human hepatocellular carcinoma by
inhibitiing the c-Abl-ERK signaling pathway. Am. J. Cancer Res. 2019, 9, 2706. [PubMed]

48. Lv, Q.; Dong, F.; Zhou, Y.; Cai, Z.; Wang, G. RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by
enhancing MTUS1 mRNA stability. Cell Death Dis. 2020, 11, 1–12. [CrossRef]

49. Bi, G.; Zhu, D.; Bian, Y.; Huang, Y.; Zhan, C.; Yang, Y.; Wang, Q. Knockdown of GTF2E2 inhibits the growth and progression of
lung adenocarcinoma via RPS4X in vitro and in vivo. Cancer Cell Int. 2021, 21, 1–13. [CrossRef]

50. Kim, S.; Lee, S.; Chung, J.; Cho, S.; Lee, J.; Lee, C. P2. 03-30 Genetic Characteristics of Lung Cancer in Patients with Idiopathic
Pulmonary Fibrosis. J. Thorac. Oncol. 2019, 14, S694–S695. [CrossRef]

51. GeneCards—The Human Gene Database—[Cited 2022 06 01]. Available online: www.genecards.org (accessed on 1 June 2022).
52. Gao, J.; Yang, D.; Cao, R.; Huang, H.; Ma, J.; Wang, Z.; Xia, J.; Pan, X. The role of Fbxo5 in the development of human malignant

tumors. Am. J. Cancer Res. 2022, 12, 1456.

http://dx.doi.org/10.1038/s41598-021-84787-5
http://dx.doi.org/10.1371/journal.pone.0106397
http://dx.doi.org/10.1186/1471-2105-12-323
http://www.ncbi.nlm.nih.gov/pubmed/21816040
http://dx.doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
http://dx.doi.org/10.1093/nar/gks042
http://www.ncbi.nlm.nih.gov/pubmed/27508061
http://dx.doi.org/10.1007/978-1-4419-9863-7_1215
http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.1038/bjc.1977.1
http://dx.doi.org/10.1111/j.2517-6161.1972.tb00899.x
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1016/j.xinn.2021.100141
http://dx.doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://dx.doi.org/10.1002/pro.3715
http://www.ncbi.nlm.nih.gov/pubmed/31441146
http://dx.doi.org/10.1093/nar/gkaa970
http://dx.doi.org/10.3892/ol.2018.8665
http://dx.doi.org/10.1186/s12943-019-1006-2
http://dx.doi.org/10.1016/j.tranon.2020.100844
http://dx.doi.org/10.1016/j.biopha.2019.109076
http://dx.doi.org/10.3389/fimmu.2022.842069
http://www.ncbi.nlm.nih.gov/pubmed/35281041
http://dx.doi.org/10.31219/osf.io/tus7h
http://www.ncbi.nlm.nih.gov/pubmed/31911856
http://dx.doi.org/10.1038/s41419-020-03268-1
http://dx.doi.org/10.1186/s12935-021-01878-z
http://dx.doi.org/10.1016/j.jtho.2019.08.1477
www.genecards.org


Cells 2022, 11, 2311 24 of 24

53. Ma, R.m.; Yang, F.; Huang, D.p.; Zheng, M.; Wang, Y.l. The prognostic value of the expression of SMC4 mRNA in breast cancer.
Dis. Markers 2019, 2019, 2183057. [CrossRef]

54. Li, J.; Dallmayer, M.; Kirchner, T.; Musa, J.; Grünewald, T.G. PRC1: Linking cytokinesis, chromosomal instability, and cancer
evolution. Trends Cancer 2018, 4, 59–73. [CrossRef]

55. Kang, W.; Zhang, M.; Wang, Q.; Gu, D.; Huang, Z.; Wang, H.; Xiang, Y.; Xia, Q.; Cui, Z.; Jin, X. The SLC family are candidate
diagnostic and prognostic biomarkers in clear cell renal cell carcinoma. BioMed Res. Int. 2020, 2020, 1932948.

56. Yu, Y.; Feng, Y.M. The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular
targets for cancer therapy. Cancer 2010, 116, 5150–5160. [CrossRef] [PubMed]

57. Neumayer, G.; Belzil, C.; Gruss, O.J.; Nguyen, M.D. TPX2: Of spindle assembly, DNA damage response, and cancer. Cell. Mol.
Life Sci. 2014, 71, 3027–3047. [CrossRef]

58. Lin, F.; Xie, Y.J.; Zhang, X.K.; Huang, T.J.; Xu, H.F.; Mei, Y.; Liang, H.; Hu, H.; Lin, S.T.; Luo, F.F.; et al. GTSE1 is involved in breast
cancer progression in p53 mutation-dependent manner. J. Exp. Clin. Cancer Res. 2019, 38, 1–16. [CrossRef] [PubMed]

59. Shayakul, C.; Clémençon, B.; Hediger, M.A. The urea transporter family (SLC14): Physiological, pathological and structural
aspects. Mol. Asp. Med. 2013, 34, 313–322. [CrossRef] [PubMed]

60. Wang, J.; Feng, L.; Zhu, Z.; Zheng, M.; Wang, D.; Chen, Z.; Sun, H. Aquaporins as diagnostic and therapeutic targets in cancer:
How far we are? J. Transl. Med. 2015, 13, 1–11. [CrossRef] [PubMed]

61. Kaistha, B.; Honstein, T.; Müller, V.; Bielak, S.; Sauer, M.; Kreider, R.; Fassan, M.; Scarpa, A.; Schmees, C.; Volkmer, H.; et al. Key
role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells. Br. J. Cancer 2014, 111, 1780–1787.
[CrossRef]

62. Fang, Y.; Zhang, X. Targeting NEK2 as a promising therapeutic approach for cancer treatment. Cell Cycle 2016, 15, 895–907.
[CrossRef]

63. Xu, W.; Wang, Y.; Wang, Y.; Lv, S.; Xu, X.; Dong, X. Screening of differentially expressed genes and identification of NUF2 as a
prognostic marker in breast cancer. Int. J. Mol. Med. 2019, 44, 390–404. [CrossRef]

http://dx.doi.org/10.1155/2019/2183057
http://dx.doi.org/10.1016/j.trecan.2017.11.002
http://dx.doi.org/10.1002/cncr.25461
http://www.ncbi.nlm.nih.gov/pubmed/20661912
http://dx.doi.org/10.1007/s00018-014-1582-7
http://dx.doi.org/10.1186/s13046-019-1157-4
http://www.ncbi.nlm.nih.gov/pubmed/30961661
http://dx.doi.org/10.1016/j.mam.2012.12.003
http://www.ncbi.nlm.nih.gov/pubmed/23506873
http://dx.doi.org/10.1186/s12967-015-0439-7
http://www.ncbi.nlm.nih.gov/pubmed/25886458
http://dx.doi.org/10.1038/bjc.2014.460
http://dx.doi.org/10.1080/15384101.2016.1152430
http://dx.doi.org/10.3892/ijmm.2019.4239

	Introduction
	Materials and Methods
	Datasets
	Differential Gene Expression
	Survival Analysis
	Model Evaluation
	Gene Set Enrichment Analysis

	Results
	Exploratory Analysis
	Survival Models
	Elastic Net
	TCox

	Gene Ontology
	DEGS Tumor vs. Normal
	DEGs Early vs. Advanced Stage
	Genes Based on EN Regularization
	Genes Based on TCox Regularization


	Discussion
	Conclusions
	References

