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Subsurface environments host diverse microorganisms in fluid-filled fractures; however,
little is known about how geological and hydrological processes shape the subterranean
biosphere. Here, we sampled three flowing boreholes weekly for 10 mo in a 1478-m-deep
fractured rock aquifer to study the role of fracture activity (defined as seismically or
aseismically induced fracture aperture change) and advection on fluid-associated microbial
community composition. We found that despite a largely stable deep-subsurface fluid
microbiome, drastic community-level shifts occurred after events signifying physical
changes in the permeable fracture network. The community-level shifts include the emer-
gence of microbial families from undetected to over 50% relative abundance, as well as
the replacement of the community in one borehole by the earlier community from a dif-
ferent borehole. Null-model analysis indicates that the observed spatial and temporal
community turnover was primarily driven by stochastic processes (as opposed to deter-
ministic processes). We, therefore, conclude that the observed community-level shifts
resulted from the physical transport of distinct microbial communities from other frac-
ture(s) that outpaced environmental selection. Given that geological activity is a major
cause of fracture activity and that geological activity is ubiquitous across space and time
on Earth, our findings suggest that advection induced by geological activity is a general
mechanism shaping the microbial biogeography and diversity in deep-subsurface habitats
across the globe.

deep subsurface j microbial community j microbial biogeography j fractured aquifers j microbial
transport

The terrestrial subsurface holds immense amounts of Earth’s groundwater resource and
is where a significant fraction of global prokaryotic life resides (1–3). Adapted to the
relatively stable subsurface environmental conditions with continuous darkness and
limited nutrients (3, 4), subsurface prokaryotes have slow metabolic activity and associ-
ated turnover times from months to thousands of years (1) and tend to be resilient to
natural disturbance such as recharge from heavy rainfalls (3, 5, 6). Fractures are ubiqui-
tous in subsurface environments at multiple scales (7), providing conduits for fluid
flow and, thus, spaces and nutrients for microorganisms to thrive. Previous studies,
albeit scarce, suggested that the microbial communities in fractured aquifers are shaped
by local lithology and the resulting geochemical conditions and are, therefore, heteroge-
neous (4, 8–12). Besides the close interaction with mineral surfaces, however, fractured
aquifer habitats are also characterized by the restriction in space imposed by the discrete
narrow fracture conduits in hard-rock formations. The microbial communities in frac-
tured aquifers are, therefore, likely shaped additionally by a combination of geological
and hydrological processes, which are poorly understood due to the challenging nature
of performing in situ experiments in the inaccessible subsurface.
Deep-subsurface fracture networks are often dynamic. The aperture and geometry of

fractures can change due to deformation (13, 14), clogging, or unclogging (14–17)
induced by seismic (14–16) or aseismic (13, 17, 18) processes. Consequently, fracture
permeability changes, leading to variation of groundwater flow (14, 19, 20). Here, we
refer to the aforementioned mechanisms that cause changes in fracture networks collec-
tively as fracture activity, notably triggerable by both geological activity and anthropo-
genic processes (Table 1). Fracture activity may, by altering groundwater flow, facilitate
fast transport (or isolation) of microbes from distant locations with limited interaction
time with surrounding mineral surfaces. As a result, the microbial community at a cer-
tain location may resemble (or diverge from) the dispersed colonizers instead of reflect-
ing local environmental conditions.
Here, we show that advection induced by fracture activity allows replacement of the

microbial community at a given location by distinct communities originating elsewhere
in the subsurface. The effect of advection on microbial assemblages has recently
received increased attention (21), especially in subsurface environments (4, 22–26),
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where physical and hydrological processes across space and time
could play a larger role than environmental factors in driving
community composition dynamics (22). However, existing stud-
ies were mostly conducted in static settings where hydrological
processes shape the microbial communities indirectly by affecting
local geochemical conditions through prolonged water residence
times (23, 24), or under complex environmental gradients in shal-
low aquifers leading to convoluted effects from both hydrological
and environmental factors on the observed communities (4, 22).
In this study, we utilized an opportunity made possible by a
10-mo flow test at a deep-underground fractured rock formation
to sample three flowing boreholes weekly for 282 d. The continu-
ous water outflow from the boreholes, the fracture activity that
occurred in the course of the campaign, and the detailed

characterization of the reservoir fracture network allowed the effect
of advection, driven by fracture activity, on the subsurface micro-
biome to be observed directly.

Results

Dynamic Deep-Subsurface Permeable Fracture Network Anal-
ogous to Natural Geological Activity. The field site was located
1,478 m below ground surface at the Sanford Underground
Research Facility (SURF), the former Homestake Gold Mine,
in South Dakota (https://www.sanfordlab.org/). The study area
was along the west mine drift (Fig. 1A and SI Appendix, Fig. S1
and Table 1) in the phyllite region of the Poorman formation.
It is a naturally fractured aquifer with negligible matrix

Table 1. Definitions of the terminologies throughout this article

Terminology Definition

Advection A specific type of microbial cell dispersal mediated by fluid flow; a stochastic process as
opposed to deterministic process

Fractured aquifer A major type of groundwater aquifer (besides porous aquifers) on Earth; characterized by
discrete flow conduits through open fractures with negligible permeability in the rock
matrix (Fig. 1B)

Fracture activity The change in fracture aperture and/or geometry triggerable by both seismic and aseismic
processes; results in altered groundwater flow

Shaft (mining) A vertical or near-vertical tunnel excavated from the ground surface down a mine (the light
gray vertical lines in Fig. 1A), through which people travel to certain underground levels via
elevators

Drift (mining) A horizontal passageway within a mine where people enter and operate (Fig. 1C)
Packer interval A borehole segment hydraulically isolated from the rest of the borehole by a pair of straddle

packers; allows flow measurement and sampling from only the fracture(s) covered by the
packer interval

Deterministic process One of the two processes (besides stochastic process) broadly recognized in microbial ecology
to influence the assembly of species into communities (47, 50, 74); includes selection
imposed by the abiotic environment (i.e., “environmental filtering”), which results from
different organisms having different levels of fitness for a given set of environmental
conditions* (51)

Stochastic process One of the two processes (besides deterministic process) broadly recognized to influence the
assembly of species into communities; nonselective, includes probabilistic dispersal,
random birth-death events, and more (47)

βNTI βNTI metric, uses phylogenetic information to generate random microbial communities in
order to measure whether the observed communities are more or less different
(phylogenetically) than expected by chance; differentiates deterministic and stochastic
processes

RCbray Raup-Crick (Bray-Curtis) metric, probabilistically assembles null communities based on ASV
abundances in a given pair of communities in order to determine whether the observed
communities are more or less different (compositionally) than expected by chance;
differentiates stochastic processes

Homogenizing dispersal The scenario where high dispersal rate between a pair of communities (e.g., due to significant
hydrological connectivity) is the primary cause for low compositional turnover; stochastic
process

Dispersal limitation The scenario where low dispersal rate between a pair of communities (e.g., due to the
existence of a hydrological barrier) is the primary cause for high compositional turnover by
enabling community compositions to drift apart; stochastic process

Ecological drift Fluctuation in population sizes due to chance events, such as stochastic differences in birth
and death rates, or random mutations; stochastic process

Homogenizing selection The scenario where consistent environmental conditions (i.e., consistent selective pressure)
between a pair of communities is the primary cause for low compositional turnover;
deterministic process

Variable selection The scenario where different environmental conditions (i.e., different selective pressure)
between a pair of communities is the primary cause for high compositional turnover;
deterministic process

Undominated Indicates that no single ecological process could explain the observed community turnover

*Environmental condition (ecology) refers to the conditions with which a microorganism directly interacts (e.g., temperature, light, water content, salt content, acidity).
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permeability (Fig. 1B), representative of a major type of ground-
water aquifer (besides porous aquifers) ubiquitous on Earth (SI
Appendix, Supplementary Text). The site includes eight 60-m-long
subhorizontal boreholes with nonintersecting trajectories (Fig. 1C)
and one prominent fluid-filled natural fracture (8, 27). The rock
was hydraulically stimulated in 2018, creating a permeable hydrau-
lic fracture that intersected the permeable natural fracture (Fig. 1D
and SI Appendix, Supplementary Text). Thorough reservoir charac-
terization efforts at the testbed allowed the delineation of a concep-
tual model of the permeable fracture network in Fig. 1D, including
fracture location and orientation. Note that the actual flow path-
ways were likely more complicated than the model in Fig. 1D,
although the model does provide an easy layout of connected
groundwater flowpaths that could explain most of the field data
(e.g., flow, tracer, and geophysical data; see details in SI Appendix,
Supplementary Text). Unknowns about the fracture flow do exist
due to the inaccessible nature of interborehole flowpaths: for exam-
ple, how far each permeable fracture extends, whether any other
natural permeable fracture connects to the known fractures, and
how exactly each permeable fracture contributes to the outflow from
each sampling port (see details in SI Appendix, Supplementary Text).
During the 10-mo flow test, industrial water (sourced from a

shallow dolomitic limestone karst) was injected at a constant
400 mL/min (Fig. 2A) into the packer interval of borehole I at
a pressure up to 34.5 MPa. The injection pressurized the
formation and maintained outflow, the majority of which was

formation water displaced from deeper within the reservoir, as
suggested by chemical tracer (28, 29) analyses (see SI Appendix,
Supplementary Text and Fig. S2 for details), as well as the dis-
tinct composition of the injectate communities compared with
those of the produced fluids (Fig. 2 and SI Appendix, Fig. S4B).
Outflow was produced via borehole P within the packer inter-
val (referred to henceforth as PI) and below the packer interval
(referred to henceforth as PB), as well as boreholes PST and
PDT. A packer isolates different segments of a borehole in
order to monitor/sample fluid flow separately (i.e., segments PI
and PB in borehole P; see SI Appendix, Supplementary Text).
Boreholes P, PST, and PDT have different locations and trajec-
tories designed based on hydraulic stimulation purposes,
although for this study, they all serve the same purpose of being
simply separate ports producing outflow from different loca-
tions of the fractured aquifer. Respective flow rate history in
each outflow port is shown in Fig. 2B. The injected water was
ambient temperature (∼20 °C) before 8 May 2019 and cooled
to ∼12 °C thereafter, although the outflow remained around
30 °C in PB and PI with negligible temperature decrease
(<1 °C) observed (27) or predicted (30). Operational distur-
bance was minimized throughout the 10-mo flow test. Out-
flows from PDT, PST, PI, and PB, as well as the injectate,
were sampled and filtered (0.22 μm) roughly weekly to capture
the fluid-associated microbial cells. The filters were frozen on
site and later subjected to high-throughput 16S ribosomal

Fig. 1. Location, borehole configuration, and permeable fracture network at the deep-subsurface field site. (A) Field site located at the SURF along the west
drift 1478 m below ground surface. (B) Example of a core log photo illustrating the difference among rock matrix, a sealed fracture, and an open (natural)
fracture: The permeability of an open fracture is orders of magnitude larger than a sealed fracture/rock matrix. (C) Borehole configuration of the field site
showing all boreholes at view-1 (Top) and view-2 (Bottom). (D) Simplified conceptual model of the fracture network in the crystalline-rock formation, modified
from Wu et al. (72). Gray and red circles represent the packer intervals in boreholes I (“Inj”) and P (“PI”), whereas the brown circle represents the segment in
borehole P below the packer interval (“PB”). Realistic representations of the natural and hydraulic fractures can be found in Zhang et al. (8) and Schoenball
et al. (73), respectively.
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Fig. 2. Changes in microbial community composition in the outflow from boreholes PDT, PST, and P over the 282-d sampling, with the injectate community
composition included as a reference. (A) Industrial water injection into borehole I at a constant volumetric rate of 400 mL/min (except in the case of field opera-
tional problems, which paused the injection briefly). (B) Volumetric flow rate produced from each of the four sampling locations—PDT, PST, PI (borehole P within
packer interval), and PB (borehole P below packer interval)—along with the total production rate record. “A”, “B” and “C” refer to the spontaneous flow rate change
events on day 13, day 62, and day 154, as described in the Results. (C–F) Temporal dynamics of microbial community composition in produced fluids from PDT (C),
PST (D), PI (E), and PB (F). (G) The microbial community composition in the injectate taken every day that a set of produced-fluid samples were obtained. Bar plots
show the finest classification possible down to the family level. The major taxa (i.e., taxa that were within the top 10 most abundant in at least one sample) are
shown in color. Legend is simplified to annotate only a subset of taxa in the produced fluids. See full legend in SI Appendix, Fig. S3.
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RNA (rRNA) gene amplicon sequencing (8) to reveal the tem-
poral dynamics of the microbial community composition in the
produced fluids (see Materials and Methods for details).
Incidents occurred during the 10-mo flow test that are classi-

fiable into two categories: 1) spontaneous, significant changes
in production flow rate without known cause (e.g., events A–C
in Fig. 2B), indicative of an altered permeable fracture network
(in terms of aperture or geometry, i.e., fracture activity); and
2) operational issues such as pump restart or failure that halted
the injection (and, hence, the outflow as well) for several minutes
up to several days, likely resulting in an altered fracture network
(i.e., fracture activity) when injection was restarted and the frac-
tures repressurized. The occurrence of fracture activity at our
testbed was confirmed by data from four tracer tests performed
2 to 3 mo apart throughout the long-term fluid sampling, which
revealed significantly altered relative connectivities among sam-
pling ports over time (SI Appendix, Fig. S2 and Supplementary
Text). We consider such changed permeable fracture networks
analogous to natural scenarios where geological activity (e.g.,
earthquakes) (14–16, 19), heavy rainfall (31), anthropogenic
pumping (13, 32, 33), and so forth lead to subsurface fracture
activity that alter groundwater flow because they all involve the
same series of consequences regardless of the trigger: changes in
fracture aperture/geometry leading to changed relative connectiv-
ity among flowpaths, which then leads to altered mixing of
groundwater (and the microbial communities therein). Natural
groundwater velocities in fractured aquifers are typically fast,
ranging from several to hundreds of meters per day (34, 35),
and are similar to the estimated flow velocities in this study
(16.5 to 235.7 m/day). When it comes to variations in flow,
geological activity such as earthquakes can induce variations in
groundwater flow rate orders of magnitude larger than the varia-
tions occurred in this study, hence causing altered mixing of
groundwater even more significantly and rapidly. For example, a
spring in Italy disappeared completely after a 1979 earthquake
and was reactivated to reach a discharge value of 1.5 m3/s (i.e.,
1,500 L/s) after another earthquake in 2017 (36, 37). Changes

in river/spring flow on the order of several m3/s have been docu-
mented for other earthquake events as well (19, 37, 38).

Significant Shifts in Microbial Community Composition Coincided
with Apparent Changes in Fracture Network. Similar to observa-
tions in previous subsurface microbial studies, highly stable
microbial communities have been observed in borehole or fracture
fluids at SURF on a 1-to-4-y time scale (8, 39), as well as in the
PDT community of this study from June 2019 to January 2020
(Figs. 2C and 3A and SI Appendix, Fig. S4). A number of taxa
were present in multiple boreholes throughout this time-series
study, including Firmicutes families Peptococcaceae (up to 18.4%)
and Ruminococcaceae (up to 45.4%); Deltaproteobacterial families
Desulfobulbaceae (up to 24.6%) and Desulfarculaceae (up to
12.4%); Nitrospirae class Thermodesulfovibrionia (up to 13.6%);
Bacteroidetes family SR-FBR-L83 (up to 27.8%); and Gammap-
roteobacterial families Sulfuricellaceae (up to 12.6%), Rhodocycla-
ceae (up to 80.4%), Hydrogenophilaceae (up to 35.3%), and
Gallionellaceae (up to 20.7%), which have been reported previ-
ously in studies on oligotrophic groundwater environments (4, 8,
11, 26, 39, 40). Archaea were also present (e.g., Nitrosopumilaceae
belonging to Thaumarchaeota) with generally low relative abundance
(up to 12.4% in a sample), similar to what was observed in previ-
ously studied terrestrial groundwater sites as well (2, 22, 41, 42).

Despite a generally stable subsurface microbiome, prominent
but different temporal community dynamics were observed in
the sampling locations of this study at certain time points (Figs.
2 and 3 and SI Appendix, Figs. S4 and S5 and SI Appendix,
Supplementary Text), even though the injection rate was kept
constant (except during pump failure) and no further perturba-
tion was applied to the system throughout the course of the
time-series sampling. Specifically, three pronounced features in
the community dynamics are evident in this 282-d dataset,
showing signs of an advective driving force:

1) The PDT community was highly similar to the PI and PB
communities during the first 3 wk of sampling, dominated
by Gammaproteobacterial Rhodocyclaceae (up to 30.6%),
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Fig. 3. PCoA on the microbial community data in the producing boreholes from day 0 to day 148, based on weighted Unifrac distance. (A) PCoA plot of the
microbial community in produced fluids, with the PDT trajectory highlighted with black arrows. (B–D) The same PCoA plot as in (A) but highlighting the trajec-
tory of PST (B), PI (C), and PB (D) using black arrows. Day 0 and the sampling dates revealing abrupt changes in microbial community composition are indi-
cated next to the corresponding marker, highlighted with a black outline. Only data of the first 148 d and from the producing boreholes are included in this
PCoA for ease of visualization. PCoA of the entire 282-d sample set along with the injectate is shown in SI Appendix, Fig. S4. Visual proximities of points are
consistent with the optimal number of clusters defined using R function NbClust() (see Materials and Methods for details). PERMANOVA showed significant
differences among the three defined clusters (pseudo-F = 46.66, R2 = 0.42, P < 0.001), as shown in SI Appendix, Fig. S5.
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Hydrogenophilaceae (up to 23.5%), and Alphaproteobacterial
Caulobacteraceae (up to 14.5%). However, at around day 29,
the PDT community switched rapidly to a distinct commu-
nity and thereafter remained stable at what resembled the
day 43 to day 56 PST community, dominated by Deltapro-
teobacterial Desulfobulbaceae and Desulfarculaceae; Firmicutes
families Peptococcaceae and Ruminococcaceae; and members
of the Cand. Patescibacteria (43, 44) including Candidatus
Jorgensenbacteria, Candidatus Komeilibacteria, and Candida-
tus Woesebacteria (Figs. 2 and 3). This visually evident switch
in relative similarities is further confirmed by the combined
use of data clustering and silhouette analysis, as shown in SI
Appendix, Fig. S5 (see Materials and Methods). The abrupt
community shift in PDT coincided with “event A” in Fig.
2B (6 May 2019) when the flow rate of PDT spontaneously
started to decline from roughly 120 mL/min to below
50 mL/min. This could indicate that PDT was initially pro-
ducing primarily from the same flowpath(s) feeding PI/PB at
the time (likely the hydraulic fracture), but later produced
mainly from the flowpath(s) feeding PST in June 2019
(likely the natural fracture).

2) The “event B” in Fig. 2B coincided with the emergence of
an unclassified Deltaproteobacterial amplicon sequence vari-
ant (ASV) (45) (“ASV1-Delta” in Fig. 2 D–F), increasing in
relative abundance from undetected to up to 23.8% in PI,
followed by its similar emergence in PST (up to 18.2%) and
PB (up to 14.9%) about 1 wk later. Additionally, between
“event B” and “event C,” when multiple changes in outflow
rate occurred spontaneously in all boreholes/intervals despite
an invariant injection rate, an ASV belonging to Omnitro-
phaceae emerged in PST from undetected to up to 35.4%
(“ASV2-Omni” in Fig. 2D). One explanation for the appear-
ance of ASV1-Delta is that the 1-wk injection pause in early
June 2019 may have caused the hydraulic fracture to par-
tially close. When injection was restarted, the hydraulic frac-
ture reopened to a state different from its previous form,
leading to production from previously isolated fracture zones
carrying distinct microbes. Another possibility is that the
June 2019 injection halt depressurized the local fracture net-
work at the time, allowing regional groundwater carrying
distinct microbes to intrude and later be displaced when the
system was repressurized. The emergence of ASV2-Omni
occurred without an apparent preceding incident and could
signify the arrival of distant Omnitrophaceae-bearing ground-
water at borehole PST.

3) Principal coordinate analysis (PCoA) on the time-series sam-
ple set (Fig. 3 and Movie S1) shows that the PI and PB com-
munities were closely clustered during the initial 50 d, after
which notable changes in community structure occurred in
PI, followed by PB with similar changes 2 to 3 wk later. For
both PI and PB, the change in community structure was
characterized by the appearance of several previously nonex-
istent taxa, including Nitrosopumilaceae (Thaumarchaeota),
Acidiferrobacteraceae (Gammaproteobacteria), Candidatus Got-
tesmanbacteria (Patescibacteria), and ASV1-Delta (Fig. 2),
summing up to as much as 32.3 and 27.6% in PI and PB,
respectively, after their emergence. The two packer intervals
PI and PB, although isolated in the borehole, were produc-
ing from adjacent locations along the permeable fracture
network (Fig. 1D); therefore, it is not surprising that the
microbial community in PI and PB was overall relatively
similar. The temporal correlation between PI and PB com-
munity (i.e., PB community at a certain time resembling the
PI community at an earlier time point) implies that the local

flow direction near borehole P was from PI to PB (i.e., fluid-
associated community reaching PI first, then PB).

Evaluation at the finest taxonomic resolution (i.e., differentia-
tion between DNA sequences that vary by only a single nucleo-
tide) provides further evidence of advection-driven community
dynamics. The percentage of ASVs detected in PST during
period 2 (days 40 to 60, three samples per port) that also
appeared in PDT increased from 23.1 to 35.4% between periods
1 (days 0 to 20, three samples per port) and 2 and continued to
increase thereafter to 56.9% over time (into period 2+, days 40
to 282, 28 samples per port) (SI Appendix, Fig. S6A). Similarly,
the percentage of ASVs detected in PI during period 10 (days 60
to 70, two samples per port) that also appeared in PB increased
from 27.6 to 39.0% between periods 10 and 20 (days 70 to 85,
three samples per port) and continued to increase thereafter to
45.2% over time (into period 20+, days 70 to 130, six samples
per port) (SI Appendix, Fig. S6B). The increasing percentage of
shared ASVs over the defined time periods suggests that advec-
tion was the driving force in the converging community compo-
sitions rather than environmental selection (46) because similar
environments may select for genetically similar microorganisms
with similar functionality, but not necessarily the same exact
DNA sequences (8, 39).

Stochastic Ecological Processes Dominate >80% of the Observed
Spatial and Temporal Microbial Community Turnover. In order
to quantitatively infer the ecological factor that is primarily
responsible for the observed community turnover between each
sample pair, a sequential phylogenetic- and abundance-based
null-modeling analysis was performed (4, 12, 47, 48). This
method uses ecological patterns in microbial community 16S
rRNA gene sequencing data to identify which environmental and
spatial aspects of a system primarily impose the community
assembly processes. In our case, we were most interested in
differentiating between hydraulic advection, a stochastic process,
and environmental selection, a deterministic process, in shaping
community composition. β-nearest taxon index (βNTI) and
Raup-Crick (Bray-Curtis) (RCbray) metrics were used to quantify
whether the measured communities are more similar/dissimilar
than expected by chance. Pairwise community comparisons with
significantly greater phylogenetic turnover than the null expecta-
tion (βNTI > 2) occur due to variable selection, which can result
from distinct environmental conditions between sampling sites
(12) or fluctuating geochemical conditions such as the influx of
organic carbon (49). Communities more phylogenetically similar
than expected by chance (βNTI < �2) would result from
homogenizing selection, which occurs under identical/stable envi-
ronmental conditions (50). If the observed phylogenetic turnover is
not significantly different from the null expectation (jβNTIj < 2),
a stochastic process explains most of the observed community
difference. Stochastic processes include homogenizing dispersal
(less than expected compositional turnover, or RCbray < �0.95),
dispersal limitation (greater than expected compositional turn-
over, or RCbray > 0.95), or undominated (no single ecological
process could explain the observed community turnover, or
jRCbrayj < 0.95) (12, 47, 48). Specifically, homogenizing dis-
persal corresponds to the scenario where high dispersal rate
between a pair of communities (e.g., due to significant hydrolog-
ical connectivity) is the primary cause for low compositional
turnover. Dispersal limitation, on the other hand, corresponds to
the scenario where low dispersal rate between a pair of communi-
ties (e.g., due to the existence of a hydrological barrier) is the
major cause for high compositional turnover by enabling commu-
nity compositions to drift apart (47, 48, 51). Both homogenizing
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dispersal and dispersal limitation are subcategories of the advec-
tion mechanism proposed in this study (Table 1). At our testbed,
if advection was indeed the primary driver for the observed
patterns, the identified community assembly processes should
be mostly stochastic rather than deterministic. Specifically, one
would expect the community turnover within a single port or
between highly connected ports to be driven mostly by homoge-
nizing dispersal. In contrast, community turnover between ports
with low connectivity (more commonly encountered at our site
given the rock characteristics) should be driven primarily by dis-
persal limitation. Fracture activity changes the relative connectivi-
ties among sampling ports over time and, hence, may result in
the identified assembly mechanism to switch over time.
The null modeling reveals that overall, 82.7% of the 8,646

pairwise comparisons among all 132 produced-fluid samples
were primarily governed by stochastic processes (e.g., advection/
dispersal) rather than deterministic (e.g., environmental selec-
tion), direct support for an advection-driven community assem-
bly mechanism dominating the fractured aquifer (SI Appendix,
Fig. S14, lower triangle). Within those governed by stochastic
processes, 69.1% were dispersal limitation, 2.1% were homoge-
nizing dispersal, and 28.8% were undominated (SI Appendix,
Fig. S14, upper triangle). To further interpret the null-modeling
results, we classify the pairwise comparisons in this time-series
sample set into two categories—single port (i.e., temporal turn-
over) and cross port (i.e., spatial turnover)—and identify the
dominant assembly processes in each case.
For single-port comparisons in all four producing ports, and

within a relatively short time span, homogenizing dispersal and
homogenizing selection were the major drivers for the (low)
community turnover (Fig. 4A and SI Appendix, Fig. S14). This is
not surprising because a sampling port must be well connected to

itself, and the environmental conditions in the deep-subsurface
are typically stable. However, in all cases, when the time span
between sample comparisons is long enough (1 to 5 mo), dis-
persal limitation became the primary driver for the (high) com-
munity turnover (Fig. 4A and SI Appendix, Fig. S14). Since a
sampling location cannot be isolated from itself, one explana-
tion is most reasonable for dispersal limitation to dominate the
community turnover in the same port: fracture activity drove
distinct microbial communities from a previously isolated
hydrological compartment to arrive at the port at later times,
by advection.

For most of the cross-port comparisons, the high community
turnover was primarily driven by dispersal limitation (SI Appendix,
Fig. S14), consistent with the extremely limited hydraulic
conductivity among hydrological compartments in the rock for-
mation. A notable exception, though, lies in the cross-port com-
parisons between PI and PB, where a number of instances of
community turnover were identified to be driven by homogeniz-
ing dispersal (i.e., the pink boxes in Fig. 4B). In other words,
besides confirming the dominant role of stochastic processes (i.e.
, advection) in driving the spatial community turnover, the null
modeling further differentiated the stochastic processes: it identi-
fied the existence of a highly connected flowpath between PI
and PB among the vast majority of impermeable rock mass and
poorly connected flowpaths. The pink boxes being concentrated
on the lower triangle of the heatmap in Fig. 4B (where a PB
sample is always compared with an earlier PI sample) corroborate
the observation that PB community at a certain time resembled
the PI community at an earlier time point (Fig. 3) and confirm
that the driver was, indeed, a local groundwater flow direction
from PI to PB rather than convergence due to environmental
selection.
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Fig. 4. Heatmaps representing RCbray values for single-port (PDT) and cross-port (PI-PB) pairwise sample comparisons. (A) RCbray values for pairwise com-
parisons among PDT samples, revealing the switch in assembly mechanism from homogenizing dispersal (pink) to dispersal limitation (green) over time
(e.g., box 1 to box 2), consistent with advective mixing during the sampling period due to fracture activity. The yellow dashed line represents the rough time
point at which the assembly mechanism switches for a given row/reference sample. For sample comparisons in a single port, the RCbray heatmap is symmet-
rical with respect to the main diagonal; therefore, only the upper triangle is displayed. (B) RCbray values for cross-port sample comparisons between PI and
PB. In this context, homogenizing dispersal (pink) indicates strong hydraulic connectivity between ports, consistent with the close proximity between PI and
PB along the permeable fracture network. Boxes along the main diagonal (i.e., comparison between samples from different ports on the same day) have
black boundaries for clarity. RCbray values for the rest of the single-/cross-port pairwise comparisons not shown here are available in SI Appendix, Fig. S14.
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Discussion

Geological Activity Drives Rapid Advection of Fluid Microbial
Community Outpacing Environmental Selection. The para-
digm that “everything is everywhere but the environment selects”
(52) emphasizes the important role of environmental selection
on a global scale. In subsurface environments, particularly deep
crystalline-rock aquifers with discrete fractures, environmental
selection takes effect by selecting for certain microorganisms
along regional-scale flowpaths with geochemical gradients (24).
When geological activity occurs, however, rapid hydrological
changes are induced by the deformation or clearing/clogging
of fracture conduits that lead to a significantly altered state of
groundwater mixing/isolation (13–20). Under such nonselective
driving forces, fracture conduits allow the rapid transport (or iso-
lation) of distant and likely distinct fluid microbial communities
along the altered pressure gradient with limited time for interac-
tion with surrounding minerals. Regardless of the degree of envi-
ronmental filtering between the source and the new location, the
newly arrived (or residual) microbial community could play a
deterministic role on the composition and functions of the final
community (ref. 53 and references therein).
In this study, the environmental conditions of the fractured

reservoir remained largely unchanged throughout the 282-d sam-
pling campaign: 1,478 m away from surface effects (e.g., diel and
seasonal), constant volumetric injection rate, and minimal opera-
tional disturbance. Without any notable environmental stimuli,
the prominent community shifts in all sampling locations associ-
ated with the altered outflow rates are most likely attributed
primarily to the physical translocation of fluid-associated micro-
organisms from elsewhere in the formation driven by fracture
activity and are confirmed by the βNTI-RCbray results. This sug-
gests that besides transporting nutrients and some specific micro-
bial taxa (25), advection driven by fracture activity in hard-rock
aquifers may be able to drive the establishment of brand new
microbiomes. Data interpretation in previous (and future) ground-
water studies—especially those that observed surprisingly high
community turnover rates in deep, oligotrophic environments
(26)—could, therefore, consider advection (or variations of advec-
tion) as a possible explanation for the observed patterns. From a
practical standpoint, specifically in subsurface resource exploita-
tion and carbon sequestration, our findings imply that time-series
microbial community data in reservoir fluids could serve as an
indicator for fracture activities that are otherwise undetectable.
This potential application of deep-subsurface microbial commu-
nity data in long-term reservoir monitoring, together with its use
for identifying natural interwell connectivity as demonstrated in
our recent study (8), could reform the current reservoir character-
ization technologies and, hence, improve global energy efficiency.
Additionally, and with broader implications, our findings

identify advection driven by geological activity as a general
mechanism shaping the microbial biogeography and diversity
in deep-subsurface hard-rock aquifers. The limited hydraulic
communication between heterogeneous geological compartments
(e.g., isolated fractures in crystalline rocks) allows the formation of
distinct microbial communities (8); geological activity can then
induce rapid advection outpacing environmental selection, expos-
ing translocated microbial communities to new environmental
conditions and/or disparate biological communities, both of which
could promote community diversification (11, 54, 55). Given that
geological activity is a ubiquitous process across space and time not
only on Earth, but on other planets as well (56, 57), this mecha-
nism may have fundamental implications for understanding the
evolution and history of life.

Materials and Methods

Fluid Sampling, DNA Extraction, Library Preparation, and High-Throughput
16S rRNA Amplicon Sequencing. Fluid samples were filtered onto 0.22-μm
Sterivex Duropore filters (EMD Millipore, 0.5 ∼ 3.9 L per filter) using sterile or
sterilized supplies. The filters were frozen on site in dry ice and stored at�80 °C
until analysis. Genomic DNA extraction and 16S rRNA amplicon library prepara-
tion was conducted according to the protocols detailed in Zhang et al. (8) and
included in SI Appendix, Supplementary Text. Briefly, genomic DNA was
extracted from the filters using the Qiagen AllPrep DNA/RNA Mini Kit (cat#
80204) according to manufacturer’s recommendations. DNA yield was recorded
for quality assurance of subsequent steps (SI Appendix, Supplementary Text and
Fig. S7). PCR was performed on the extracted DNA using universal 16S primers
515F-Y and 926R (58). A second-round PCR was performed to add unique barco-
des to the first-round PCR amplicons of each sample for sequencing (dual index-
ing strategy). Then, 4 μL PCR product of each sample was loaded onto a 1%
agarose gel after each round of PCR to check amplification. No amplification was
found in PCR blanks or extraction blanks, confirming the absence of contami-
nants. PCR products were cleaned using magnetic beads. The cleaned-up
samples were pooled in equimolar concentrations, purified again, and sequenced
at the UC Davis Genome Center (Illumina MiSeq. 2 × 250 bp paired-end
sequencing).

High-Throughput Sequencing Data Processing. Primer sequences were
trimmed from the raw sequencing reads of each sample using cutadapt (59).
Bioinformatics packages in R, including Dada2 (60) and phyloseq (61), were
used to analyze the sequencing data. The sequences were quality filtered by
truncating all reads beyond 220 bases (to discard bases with quality scores<30)
and discarding sequences that did not exactly match proximal primers, had
more than two expected errors, or contained ambiguous bases (Ns). The Dada2
method (45) was used to infer ASVs from the quality-filtered reads, remove
sequencing errors, merge forward and reverse reads with no mismatches
allowed in the overlap region, remove chimeras, and generate a sequence table.
Evaluations of sequencing data quality and sampling adequacy are provided in
SI Appendix, Supplementary Text as well as SI Appendix, Figs. S8 and S9. The
ASVs were assigned taxonomy using the Silva v132 database implemented in
Dada2 (62). A phylogenetic tree of all the sequences was constructed using R
packages DECIPHER (63) and phangorn (64) in order to enable the calculation of
phylogeny-aware distances between communities among the samples obtained
in this study.

Diversity and Statistical Analyses. The diversity and statistical analyses were
performed using R packages phyloseq (61), microbiome (65), NbClust (66), and
vegan (67). Alpha diversity metrics (SI Appendix, Fig. S10) of the dataset were
calculated using the alpha() function (microbiome package). For beta diversity
analyses, community similarities were calculated using the weighted Unifrac dis-
tance metric on the 16S sequencing data down to the ASV level (function Uni-
frac() in phyloseq). The weighted Unifrac distance matrix was visualized using
PCoA (functions ordinate() and plot_ordination() in phyloseq). The visual proxim-
ities of datapoints on the PCoA plot as described in the main text were further
confirmed by using “ward.D2” (68) as the clustering method and using silhou-
ette analysis (69) to define the optimal number of clusters in the weighted Uni-
frac dissimilarity matrix (4), implemented using function NbClust() (min.nc = 2,
max.nc = 15, method = “ward.D2”, index =”silhouette”) from NbClust package.
Permutational multivariate analysis of variance (PERMANOVA) showed significant
differences among the three defined clusters (adonis() function in vegan, permu-
tations = 999), as shown in SI Appendix, Fig. S5.

Note that the 16S sequencing data were not rarefied in all analyses in this
study (unless stated otherwise for testing purposes) because rarefaction throws
away many rare taxa and could reduce detection power (4, 70). However, to con-
firm sampling adequacy and ensure our observations were not affected by
imbalanced sample sizes, we explored the effect of rarefaction by rarefying the
data down to the minimum number of ASVs (3,632) across all produced fluid
samples (function rarefy_even_depth() in phyloseq). Nearly identical alpha diver-
sities (SI Appendix, Fig. S10) and the same trends in beta diversity (SI Appendix,
Fig. S4 A and C) were recovered with both unrarefied and rarefied data, confirm-
ing the adequacy of sampling and the robustness of our observations.
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Ecological Modeling. The two-step null-model-based analyses were performed
according to the protocol detailed in Stegen et al. (47, 48). Per this protocol, sig-
nificant phylogenetic signal across relatively short phylogenetic distances was
first found in the produced fluid communities whereby habitat preferences of
closely related taxa are more similar to each other than to the habitat preferences
of distant relatives (see SI Appendix, Fig. S11). The existence of such phyloge-
netic signal allows the use of phylogenetic turnover to make ecological infer-
ences at our testbed. A phylogenetic-based null-model analysis was then
performed to determine whether the phylogenetic turnover between a given
pair of samples (quantified by the phylogeny-aware beta mean nearest taxon
distance [βMNTD]) is more or less than what would be expected by chance.
βMNTD was calculated using function “comdistnt()” in R package “picante”
(abundance.weighted = TRUE). Randomization of ASV position on the phyloge-
netic tree that includes all the ASVs across all the produced fluid samples was
repeated 999 times to generate the null distribution of βMNTD values. The devi-
ation of the observed βMNTD from the mean of the null distribution is quanti-
fied in units of SD of the null distribution (referred to as βNTI). jβNTIj > 2
means that the observed phylogenetic turnover is significantly greater or less
than the null expectation, indicating that environmental selection (variable selec-
tion or homogenizing selection) is the primary driver of community assembly. If
jβNTIj < 2, the observed phylogenetic turnover is not significantly different
from the null expectation, meaning that a stochastic process explains most of
the observed community difference.

In the following step, an abundance-based null-model analysis was per-
formed in order to examine which stochastic process primarily drives the compo-
sitional turnover of those sample pairs with nonsignificant βNTI. Sample pairs
with nonsignificant βNTI were further evaluated by comparing the observed
Bray-Curtis values (BCobs) to the Bray-Curtis expected under randomization
(BCnull, generated using 999 iterations per pairwise comparison). The value of
Bray-Curtis-based Raup-Crick (RCbray, ∈[-1,1]) characterizes the deviation
between BCobs and BCnull. jRCbrayj > 0.95 is considered significant, suggesting
the observed turnover is driven by dispersal limitation (RCbray> 0.95) or homog-
enizing dispersal (RCbray < -0.95). If jRCbrayj < 0.95, the comparison is inter-
preted to be the result of undominated processes.

For a summary of the definitions of relevant terminologies, see Table 1.

Water Chemistry Analysis. The pH of each fluid sample was measured on
site with pH strips, and all samples were within the range of 7 to 8. Prior to filter-
ing, each fluid sample was subsampled into a sterile 50-mL Falcon tube and fro-
zen on site for geochemistry analysis. Each geochemistry sample was analyzed
via inductively coupled plasma mass spectrometer (XSERIES 2, Thermo Scientific)
for cations after acidification with nitric acid and via ion chromatograph (Dionex
ICS 6000) for anions. Geochemistry data of each port are plotted against

sampling time as shown in SI Appendix, Fig. S12. Electrical conductivity values
of the samples are estimated from the total ionic concentrations (see details in SI
Appendix, Fig. S13) using the method described in McCleskey et al. (71).

Data Availability. Sequencing data have been deposited in the European
Nucleotide Archive at the European Bioinformatics Institute under accession no.
PRJEB44691. Raw flow rate data for Fig. 2 and raw tracer data for SI Appendix,
Fig. S2 are publicly available through the US Department of Energy’s Geother-
mal Data Repository at: https://gdr.openei.org/submissions/1254 (flow rate data)
and https://gdr.openei.org/submissions/1193 (tracer data).
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