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Abstract

Activation of gene expression in response to environmental cues results in substantial phe-

notypic heterogeneity between cells that can impact a wide range of outcomes including dif-

ferentiation, viral activation, and drug resistance. An important source of gene expression

noise is transcriptional bursting, or the process by which transcripts are produced during

infrequent bursts of promoter activity. Chromatin accessibility impacts transcriptional burst-

ing by regulating the assembly of transcription factor and polymerase complexes on promot-

ers, suggesting that the effect of an activating signal on transcriptional noise will depend on

the initial chromatin state at the promoter. To explore this possibility, we simulated transcrip-

tional activation using a transcriptional cycling model with three promoter states that repre-

sent chromatin remodeling, polymerase binding and pause release. We initiated this model

over a large parameter range representing target genes with different chromatin environ-

ments, and found that, upon increasing the polymerase pause release rate to activate tran-

scription, changes in gene expression noise varied significantly across initial promoter

states. This model captured phenotypic differences in activation of latent HIV viruses inte-

grated at different chromatin locations and mediated by the transcription factor NF-κB. Acti-

vating transcription in the model via increasing one or more of the transcript production

rates, as occurs following NF-κB activation, reproduced experimentally measured transcript

distributions for four different latent HIV viruses, as well as the bimodal pattern of HIV protein

expression that leads to a subset of reactivated virus. Importantly, the parameter ‘activation

path’ differentially affected gene expression noise, and ultimately viral activation, in line with

experimental observations. This work demonstrates how upstream signaling pathways can

be connected to biological processes that underlie transcriptional bursting, resulting in target

gene-specific noise profiles following stimulation of a single upstream pathway.
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Author summary

Many genes are transcribed in infrequent bursts of mRNA production through a process

called transcriptional bursting, which contributes to variability in responses between cells.

Heterogeneity in cell responses can have important biological impacts, such as whether a

cell supports viral replication or responds to a drug, and thus there is an effort to describe

this process with mathematical models to predict biological outcomes. Previous models

described bursting as a transition between an “OFF” state or an “ON” state, an elegant

and simple mathematical representation of complex molecular mechanisms, but one

which failed to capture how upstream activation signals affected bursting. To address this,

we added an additional promoter state to better reflect biological mechanisms underlying

bursting. By fitting this model to variable activation of quiescent HIV infections in T cells,

we showed that our model more accurately described viral expression variability across

cells in response to an upstream stimulus. Our work highlights how mathematical models

can be further developed to understand complex biological mechanisms and suggests

ways to connect transcriptional bursting to upstream activation pathways.

Introduction

Heterogeneity in gene expression between cells impacts a wide range of phenotypic outcomes,

including differentiation [1,2], viral expression [3–7], and drug resistance [8]. In eukaryotic

cells, a major source of gene expression heterogeneity is transcriptional bursting [9–11], in

which a gene promoter infrequently produces bursts of transcripts. Two metrics are often used

to describe a gene’s burstiness: burst size, quantifying how many transcripts are produced in

one burst, and burst frequency, describing how many bursts occur over time. Influencing tran-

scriptional bursting, either through altering burst size or burst frequency, can aid in clinically

relevant settings where transcriptional noise plays a role in disease progression [12].

Several possible points of control have been proposed for transcriptional bursting, includ-

ing transcription factor (TF) regulation [13,14], polymerase recycling [15], chromatin environ-

ment [11,16], nucleosome positioning [17,18], and polymerase pause regulation [4,19].

Despite this complexity, transcriptional bursting is most often modeled as a simple random

telegraph process, in which a promoter infrequently transitions from an “OFF” state to an

“ON” state [20]. Regardless of this simplicity, the two-state model accurately reflects transcrip-

tional bursting in many biological contexts [11,21]. To address situations in which the two-

state model does not capture all aspects of transcriptional noise, additional layers of complexity

have been added, including multiple “OFF” states [20,22,23], a continuum of states [24], and a

refractory state [11,25,26].

One biological context in which the two-state promoter model lacks descriptive detail is in

recapitulating the role of TF activation in inducible gene expression. While several studies

have assessed how TFs modulate inducible gene expression noise [27,28], they are limited by

an inability to directly connect molecular steps in transcription to changes in promoter state.

TFs often recruit molecular complexes that alter aspects of both transcriptional burst size and

burst frequency. For example, tumor necrosis factor (TNF) initiates a signaling cascade that

activates the canonical TF nuclear factor-κB (NF-κB) [29]. NF-κB mediates recruitment of his-

tone acetyltransferases (HATs), including CBP/p300 [30], to target promoters, destabilizing

DNA-histone interactions within nucleosomes and increasing promoter accessibility. NF-κB

also mediates recruitment of Mediator, RNA polymerase II (RNAPII) and other members of

the preinitiation complex to accessible promoters [31]. Finally, NF-κB interacts with
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bromodomain-containing protein 4 (Brd4) to recruit and activate the positive elongation fac-

tor b (P-TEFb), releasing paused RNAPII and allowing efficient transcriptional elongation to

proceed [32–34]. These processes are important for inducible transcription in many contexts

including inflammatory gene expression [35] and latent HIV activation [4,36].

A recent model of transcriptional bursting that includes an additional promoter state to

decouple RNAPII pausing from RNAPII recruitment more accurately describes steady-state

transcriptional bursting [7,19]. Here, we explored if this three-state promoter model of tran-

scription, which explicitly models the transcriptional steps of chromatin remodeling, polymer-

ase recruitment, and polymerase pause release, could also capture features of noisy inducible

transcription. Through deterministic and stochastic simulations, we explored parameter

ranges for a three-state promoter model that describe chromatin environments of quiescent-

but-inducible promoters in a range of biological contexts. We found that upon transcriptional

activation implemented by increasing the polymerase pause release rate, changes in gene

expression noise varied significantly across initial promoter states. We then fit our model sim-

ulations to time-resolved, single-cell experimental data of how NF-κB activation induces tran-

scription of latent HIV viruses integrated into different chromatin environments. We found

that the model accurately captured how exogenous stimulation of NF-κB differentially affected

transcriptional noise and viral reactivation initiated in a range of basal states. Furthermore, the

model allowed for exploration of the influence of multiple NF-κB-mediated steps in transcrip-

tional activation. We anticipate this model will offer a means to connect transcriptional burst-

ing to upstream signaling pathways, with applications that extend to other NF-κB-mediated

biological systems, and potentially other signaling pathways.

Results

Steady-state analysis of a transcriptional cycling model reveals that distinct

rate ratios control promoter accessibility versus transcriptional cycling

To explicitly consider the effect of promoter accessibility and RNAPII pausing on transcrip-

tional noise, we explored a previously published three-state promoter model [19]. In this

model, transcription of a target gene is regulated by its promoter which transitions between

three states, only one of which is productive for producing mRNA (Fig 1A). The rate at which

the unavailable promoter (UP) state transitions to the available promoter (AP) state is the

burst initiation rate (BIR) and the returning promoter transition rate is the burst termination

rate (BTR). These two rates could be assumed to describe the remodeling of the chromatin

environment surrounding the promoter that increases promoter availability [17,37], including

nucleosome repositioning in the case of HIV [38]. The rate at which RNAPII and the associ-

ated transcriptional machinery binds to the AP state and transitions to the bound promoter

(BP) state is the polymerase binding rate (PBR). In the BP state, which is assumed to describe

an initiated but paused promoter [39], the rate at which the promoter releases an elongated

transcript and returns to the AP state is the polymerase pause release rate (PPRR). Elongated

transcripts are translated into protein at a rate Kp, and degradation of mRNA and proteins is

modeled as a first-order process. We assume that only one polymerase can bind at a time, and

that the polymerase remains paused until released [39,40]. If the promoter continuously cycles

between the AP and BP states, then a burst of transcription occurs, and therefore we refer to

this model as a transcriptional cycling model. Alternatively, the BP state returns to the UP

state with the same BTR as the AP transitions to UP state, denoting a burst termination event.

As in previous applications of this model, we assumed that the rate of transition to the UP

state from either the AP or BP state is the same, because the biological processes regulating
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Fig 1. The BIR:BTR ratio controls promoter availability and the PPRR:PBR ratio controls transcriptional cycling. (A) Schematic of three-state

transcriptional cycling model, including five species: an unavailable promoter (UP, in blue), an available (but unbound) promoter (AP, in teal), a

bound promoter (BP, in yellow), RNA, and protein. A cycle of transcription occurs when the promoter transitions from BP to AP and back to BP.

(B-C) Deterministic solution of steady-state mRNA counts when varying BIR and BTR for fixed values of PBR and PPRR (B) or when varying PBR and

PPRR for fixed values of BIR and BTR (C). Parameter ranges are varied low to high via arrow directionality and correspond to the following sets: PBR =
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these transitions–namely, TF removal and chromatin remodeling–are similar to each other

and distinct from the biological processes governing the other transition rates [7,19].

This transcriptional cycling model was shown to accurately reflect the biological regulatory

mechanisms of burst initiation and pause release for steady-state gene expression [19]. At

higher PPRR or PBR values, the exact solution of this model reduces to the two-state model, as

the transition from unavailable promoter to available promoter would produce transcripts

constitutively [7]. However, it is unclear how variability in inducible transcription would be

affected when initiated under different steady-state conditions, which could reflect different

chromatin environments.

To explore this, we used HIV as a model system. As a retrovirus, HIV integrates into the

infected host cell’s genome [41]. Although most viral integrations lead to productive infec-

tions, a rare subset of integrated viruses transition to a latent state, in which little or no virus is

actively produced [42]. There is no cure for HIV infection due to this latent reservoir, but qui-

escent viruses can be reactivated upon stimulation with certain extracellular cues, offering a

clinically promising strategy to purge the latent viral reservoir via exploiting the molecular

mechanisms that cause activation. The HIV long terminal repeat (LTR) promoter is regulated

by NF-κB [43], and TNF stimulation leads to the accumulation of the NF-κB RelA:p50 hetero-

dimer in the nucleus, leading to transcriptional activation [44]. Notably, HIV exhibits bursty

transcription that is dependent on the chromatin environment at the location of viral integra-

tion [5,45], with more open chromatin environments leading to higher levels of activation

[46,47].

We first sought to understand the parameter space of the three-state transcriptional cycling

model (Fig 1A) by examining average steady-state solutions for HIV mRNA and promoter-

state distributions calculated from the five ordinary differential equations (ODEs) in the

model (see Materials and Methods). Degradation and translation rates were held constant at

previously experimentally determined values for HIV [18,48,49], while the remaining four

parameters were varied over a wide biological range (see Materials and Methods for explana-

tion of this range). Examination of the 4-D parameter space revealed regions of varying frac-

tional promoter state probabilities (S1A–S1C Fig). Higher BTR values increased the

probability of promoters residing in the UP state (S1A Fig), whereas increases in BIR resulted

in a higher probability of having promoters in the AP and BP states (S1B and S1C Fig).

Increases in PPRR were associated with a higher probability of being in the AP state and

increases in PBR increased the probability of being in the BP state given a certain UP probabil-

ity (BIR to BTR). The clear patterns along the diagonal within each BIR-BTR square strongly

suggested that the ratio of these parameters regulates the distribution of promoter states.

To support these qualitative observations, we derived quantitative relationships between

parameter ratios and the ratios of promoter states by examining the five ODEs at steady-state.

Overall, we found that

BIR
BTR

¼
½AP� þ ½BP�
½UP�

Eq 1

[0.1 0.5 1 5 10 50 100 500] hr-1, PPRR = [0.1 0.5 1 5 10 50 100] hr-1, BIR = [0.005 0.01 0.05 0.1 0.5 1 5 10 50] hr-1, and BTR = [0.005 0.01 0.05 0.1 0.5 1 5

10 50] hr-1. Heatmap indicates log of average mRNA levels. (D-E) Pie charts representing the fractional probability of UP (blue), AP (teal), and BP

(yellow) when varying the BIR:BTR ratio for fixed PBR and PPRR (D) or when varying PBR:PPRR ratio for fixed BIR and BTR (E). (F-G) Fano Factor

calculated for the same range of simulations presented in (D) and (E), respectively. Fractional promoter state probabilities and Fano factors were

calculated from 1,000 single-cell stochastic simulations under basal conditions out to 10 days for each parameter combination. Square inset in (B)

corresponds to the following parameter set: PBR = 10 hr-1, PPRR = 10 hr-1, BIR = [0.01 0.05 0.1 0.5 1] hr-1, and BTR = [0.01 0.05 0.1 0.5 1] hr-1. Square

inset in (C) corresponds to the following parameter set: BTR = 0.1 hr-1, BIR = 0.1 hr-1, PPRR = [1 5 10 50 100] hr-1, and PBR = [1 5 10 50 100] hr-1.

https://doi.org/10.1371/journal.pcbi.1010152.g001
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indicating that the relative magnitude of BIR to BTR controls the ratio of promoters in the AP

+BP to UP state (Eq 1). In addition,

½AP�
½BP�

¼
PPRR
PBR

þ
BTR
PBR

Eq 2

indicating that the relative magnitude of PBR to BTR+PPRR controls the ratio of promoters in

the AP to BP state (Eq 2). As seen in Eq 2, the relative strengths of both PPRR to PBR and BTR

to PBR toggle the amount of AP state compared to the BP state. Within our chosen parameter

space, PPRR is usually greater than BTR (reflecting the different time scales of these biological

processes), allowing the ratio of AP states to BP states to simplify to the relative magnitude of

PPRR to PBR. For fixed values of BIR and PBR, lower PPRR and higher BTR values lead to low

steady-state RNA production (S1D Fig), consistent with the finding that UP dominates the

fractional state probabilities (S1E Fig). With information regarding BIR:BTR and PPRR:PBR

ratios, we can summarize the initial fractional distributions of the three promoter states, with

the BIR:BTR ratio controlling promoter accessibility (i.e., the amount of closed promoter rela-

tive to open promoter, UP to AP+BP), and the PPRR:PBR ratio controlling transcriptional

cycling (i.e., the switching between bound and unbound open promoter, AP to BP).

Under steady-state conditions, the fractional distribution of the initial promoter states

affects the amount of mRNA produced. We visualized how the promoter accessibility ratio

(i.e. BIR:BTR) and the transcriptional cycling ratio (i.e. PPRR:PBR) differentially affect steady-

state mRNA production using different heatmap configurations. We first examined the effect

of the promoter accessibility ratio (Fig 1B) by varying BIR and BTR (inner heatmaps) for a

range of fixed values of PBR and PPRR (outer grid). As PBR and PPRR increased, average

steady-state mRNA levels increased, with the highest levels at the bottom right corner (Fig 1B).

Within each square (i.e., for a fixed value of PBR and PPRR), average mRNA levels varied with

the promoter accessibility ratio, as can be observed by the patterning along the diagonal, with

average mRNA increasing from low promoter accessibility ratios (bottom left corner) to high

promoter accessibility ratios (upper right corner) within each inner heatmap. In our transcrip-

tional cycling ratio heatmaps for fixed values of BIR and BTR (Fig 1C), we observed a different

pattern, noting that average mRNA level increased as PBR and PPRR increased (Fig 1C, upper

left to bottom right of each heatmap). However, the smaller relative value of PBR versus PPRR

acts as a rate-regulation step for the overall transcriptional cycle [7]. Thus, as BIR increases

and BTR decreases across the entire grid, average steady-state mRNA levels generally increase,

but the variation is limited by the transcriptional cycling ratio (Fig 1C).

To observe the distribution of initial promoter states varied with these ratios, we zoomed in

on one inner heat map. First, we fixed PPRR and PBR at values of 10 (i.e., “outer” PPRR:

PBR = 1), and then visually explored how the distribution of initial promoter states varied for a

range of promoter accessibility ratios (Fig 1B, box). For this range, we observed that the frac-

tion of promoters that exist in the UP state decreased with increasing accessibility ratio (Fig

1D), consistent with Eq 1 and average mRNA level (Fig 1B). Note that because the transcrip-

tional cycling ratio is 1, the non-UP fraction is equally distributed between the AP (teal) and

BP (yellow) states. Repeating this analysis for a fixed promoter accessibility ratio of 1 (Fig 1C,

box), we observed that varying the transcriptional cycling ratio changed the relative amounts

of AP and BP, while the total fraction of UP remains approximately constant (at ~50% for BIR:

BTR = 1), consistent with Eq 2 (Fig 1E). We observed the highest fraction of BP in the bottom

left corner, and the highest fraction of AP in the top right corner.

Previous studies suggest that variations in chromatin environments generate cellular het-

erogeneity [17,25,50,51]. Varied chromatin environments can be represented in the
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transcriptional cycling model by initializing promoters with different promoter accessibility

and transcriptional cycling ratios leading to variations in the distribution of initial promoter

states, and therefore we were interested in how varying these ratios would affect transcriptional

noise. To examine this, we calculated how the Fano factor (F = σ2/μ, where σ2 is the variance

and μ is the mean) varied for the same “zoomed in” heatmaps. We observed that the promoter

accessibility ratio had a modest influence on the Fano factor, with the highest values generally

observed for promoter accessibility ratios < 1 (Fig 1F). Notably, a promoter accessibility

ratio < 1 generally characterizes bursty transcription processes, for which activation rates are

less than inactivation rates [52]. However, for promoter accessibility ratios<< 1, the Fano fac-

tor decreases because the fractional probability of non-UP becomes negligible, and very few

cells produce transcripts (Fig 1F, bottom left corner).

Interestingly, we observed that noise is independent of the transcriptional cycling ratio, as

the Fano factor graph is symmetrical about the diagonal (Fig 1G). Rather, the Fano factor

increases as both PPRR and PBR increase because, while the probability of occupying the UP

state stays approximately constant, the promoters switching between the AP or BP states pro-

duces more mRNA through increased transcriptional cycling, enhancing differences between

the closed (UP) and open (AP+BP) states. The rate-limiting nature of the transcriptional cycle

in the three-state promoter system requires equal contribution of PBR and PPRR for high lev-

els of transcriptional activity in the basal state. In other words, if only one rate of this cycle

increases (for instance, a higher PBR compared to a PPRR), the cycle remains paused. Thus,

while PPRR and PBR control amounts of AP and BP respectively, changes in expression and

noise are more dependent on the absolute values of PPRR and PBR.

Activating gene expression under different promoter initialization states

affects transcriptional noise and cell-to-cell heterogeneity

A key biological question is how activation of TFs upon exogenous stimulation affects tran-

scriptional noise [27,28]. TFs often recruit molecular complexes that alter one or more of the

rates in the transcriptional cycling model. For example, as discussed above, a consequence of

activating NF-κB is to mediate the recruitment of P-TEFb, releasing paused RNAPII and

allowing transcriptional elongation to proceed more efficiently [32–34]. Because regulation of

RNAPII pause release is a widely conserved mechanism to control transcription [53–56], we

simulated this activation pathway by increasing the pause release rate, PPRR, in our model and

quantified how it affected transcriptional noise.

We first conducted a sensitivity analysis of how increasing PPRR affected transcription

over 24 hours, monitoring mRNA over various combinations of BIR, BTR and PBR. For this

and the following studies of inducible transcription, we limited our parameter range to match

those previously reported in the transcriptional bursting literature (Table 1). The four

Table 1. Model development and parameter space.

Reaction Rate Value / Range References

UP!AP BIR (Burst Initiation Rate) [0.01–1] hr-1 [7,52,57–60]

AP!BP PBR (Polymerase Binding Rate) [1–100] hr-1 [7,52,57,61–63]

AP!UP
BP!UP

BTR (Burst Termination Rate) [0.01–1] hr-1 [7,52,57,58,60]

BP!RNA+AP PPRR (Polymerase Pause Release Rate) [1–100] hr-1 [7,18,52,62,63]

RNA!Protein Kp (Translation Rate) 1 [4,48]

RNA!; DegR (Degradation of RNA Rate) 0.34 [4,18]

Protein!; DegP (Degradation of Protein Rate) 0.1 [4,49]

https://doi.org/10.1371/journal.pcbi.1010152.t001
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parameters were varied over two orders of magnitude, which enabled exploration of a wide

range of initial fractional promoter states. We selected a 2-fold increase in PPRR as an appro-

priate activation signal (S2A Fig), as this increased gene expression over basal conditions

(mRNA> 3) without excessive activation. Starting from the basal steady-state (i.e., the state

after 10-day simulations with basal PPRR), we tracked activation of transcription by running

1,000 stochastic simulations of the model for each parameter condition for 24 hours following

a 2-fold increase in PPRR.

We first examined activation trajectories for promoters initiated with three different pro-

moter accessibility ratios (0.1, 1 and 10) for the same fixed PBR and PPRR as in Fig 1B.

Increasing the promoter accessibility ratio increased the fraction of promoters in the AP+BP

states relative to the UP under basal conditions (Fig 2A, left). Upon activation (i.e., a 2-fold

increase in PPRR), a fraction of promoter states switched from the BP to AP state, but the frac-

tion of promoters in the UP state remained approximately constant for all three ratios, as

increasing PPRR does not affect the UP state (Fig 2A, right). Examining the transcriptional tra-

jectories over 24 hours revealed three distinct behaviors (Fig 2B). Initializing promoters with a

low promoter accessibility ratio (BIR:BTR = 0.1) rarely led to transcriptional activation, as evi-

denced by only a few non-zero trajectories and a probability density function (PDF) contain-

ing cells that are mostly off (Fig 2B, top). In contrast, initializing promoters with a high

promoter accessibility ratio (BIR:BTR = 10) resulted in almost complete activation (Fig 2B,

bottom). Interestingly, initializing with a promoter accessibility ratio of 1 resulted in heteroge-

neous outcomes, characterized by bimodal activation. As expected, average mRNA increased

over 24 hours in all cases, with the largest absolute increase observed for the promoter accessi-

bility ratio of 10 (Fig 2C). Transcriptional noise (as quantified by the Fano factor) also

increased over 24 hours in all cases, although promoter accessibility ratios of 10 and 1 peaked

at 1 and 4 hours respectively (Fig 2D). This plateau of noisy expression for the higher promoter

accessibility ratios reflect the time required for the stimulated system to equilibrate after PPRR

increases (Fig 2B, bottom and middle panel). Overall, this analysis illustrates how different dis-

tributions of initial promoter states lead to varied phenotypes upon activation, with the basal

fraction of UP inversely correlated to the fraction of activating cells.

Next, we examined how varying the transcriptional cycling ratio (0.1, 1, and 10) contributes

to noise and heterogeneity upon PPRR activation. As noted previously, under basal conditions,

as the ratio of transcriptional cycling decreases, the fraction of BP increases, while the fraction

of UP remains constant (Fig 2E, left). Upon stimulation (i.e., a 2-fold increase in PPRR at

time = 0), the amount of AP increased marginally by 2 hours (Fig 2E, right). Increasing the

transcriptional cycling ratio over 24 hours increased both the fraction of promoters actively

transcribing (Fig 2F) and the average mRNA by 24 hours (Fig 2G). This increase in mRNA

production is accompanied by increases in noise (Fano factor; Fig 2H). This increase peaked

around the 4-hour mark for transcriptional cycling ratios of 1 and 10, corresponding to when

trajectories begin to plateau, and leads to bimodal mRNA levels across cells by 24 hours (Fig

2F, middle and bottom grey). Lower transcriptional cycling ratios lead to lower levels of gene

transcription, and decreased Fano factor, as the trajectories cluster near low expression levels

(Fig 2F, top). However, while higher transcriptional cycling ratios increased activation, noise

also increased, because the UP fraction remained unchanged and thus there were non-acti-

vated cells by 24 hours even at the highest transcriptional cycling ratio. Notably, it is possible

that the transcriptional cycling ratio might saturate, i.e. due to local depletion of p-TEFb which

would limit the rate of polymerase pause release [64], in which case we would expect to reach

an upper limit on mRNA expression count and noise, after which they would start to decrease.

To generalize our observations, we classified sections of the parameter space as “always on,”

“always off,” and “bimodal” (for classification breakdown, see Materials and Methods) (S2B
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Fig 2. The initial distribution of promoter states influences the heterogeneity in transcriptional activation modeled as an increase in PPRR. (A)

Three representative pie charts of fractional promoter-state probability of UP (blue), AP (teal) and BP (yellow) for BIR:BTR ratios of 0.1, 1, and 10 with

PBR and PPRR held constant at 10 hr-1. Basal conditions were calculated from 1000 single-cell stochastic simulations out to 10 days for each parameter

combination. At time = 0, PPRR was increased two-fold (B), and new fractional probabilities were captured at 2 hours. (B) Representative trajectories for

BIR:BTR = 10 (pink), BIR:BTR = 1 (green), and BIR:BTR = 0.1 (cerulean). Each line represents one stochastic simulation out to 24 hours. Only 100

simulations are plotted for each condition for ease of visualization. Gray regions on the right represent the probability density of mRNA counts at 24
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Fig). We then analyzed the initial fractional promoter states for each of these phenotypes (S2C

Fig). The “always off” phenotype had much higher levels of UP relative to AP and BP, whereas

the “always on” phenotype had approximately equivalent amounts of each promoter. The

“bimodal” phenotype was in the middle, with higher UP as compared to the “always on” popu-

lation, but lower BP and AP as compared the “always off.” This suggests that the distribution

of initial promoter states contributes to bimodality following transcriptional activation.

Positive feedback that amplifies the polymerase pause release rate (PPRR)

in the transcriptional cycling model does not affect bimodality

Positive feedback is a common motif used to activate and amplify gene expression [38,49], and

so we next sought to explore how positive feedback would influence gene expression noise fol-

lowing inducible activation. There are many different biological mechanisms of positive feed-

back, and so we limited our exploration to the mechanism used by HIV. Briefly, upon

initiation of HIV transcription, the initiated transcripts form a stem-loop structure referred to

as the transactivating response region (TAR), which leads to promoter proximal pausing by

RNAPII [65]. HIV encodes its own transcriptional transactivator (Tat), which recruits P-TEFb

to the transcriptional start site [66,67] where it releases paused RNAPII to enable elongation

and the generation of a full-length transcript [6,36,68]. HIV exhibits bimodal activation under

basal conditions [69] and following stimulation with TNF [70], and therefore we were inter-

ested to see to what extent positive feedback contributed to this observation.

We added Tat-mediated positive feedback to the transcriptional cycling model by amplify-

ing PPRR with a Tat-dependent term (Fig 3A) as shown:

Feedback ¼ PPRR � 1þ A �
½TAT�

K þ ½TAT�

� �

Eq 3

in which K determines the half-maximal saturation and A is the amplitude of the feedback.

We performed a sensitivity analysis to determine how these two terms affected transcriptional

activation by 24 hours. We chose a region of the parameter space with bursty characteristics

(promoter accessibility ratio < 1), and a transcriptional cycling ratio = 1 to remove any rate

limiting effects downstream of promoter transition from unavailable to available. We found

that increasing A by five orders of magnitude only increased average mRNA and protein levels

approximately 1.5-fold, while increasing K across a similar range had almost no effect (Fig 3B

and S3A Fig). Varying A and K did not affect the fraction of promoters in the UP state (S3B

Fig), consistent with the analysis that the UP fraction is unaffected by changes in PPRR. Vary-

ing A did affect the fraction of promoters in the AP and BP states, while K had no effect. As the

amount of AP saturates the fractional availability, the additional feedback strength will not

alter transcriptional production. The influence of K on the sensitivity of the feedback can be

visualized by plotting the relative feedback value for varying levels of K. As K decreases, it

reaches high feedback strength at very low level of protein production, saturating the signal

(S3C Fig). Once saturated, the reaction regulation rate becomes PBR and amplifying PPRR via

positive feedback will not lead to further increases in protein production.

hours, with kernel smoothing. (C-D) Average mRNA counts (C) and Fano factor (D) for the three BIR:BTR ratios at 0, 1, 2, 4 and 24 hours. Average

mRNA values and Fano factor were calculated from 1,000 single-cell stochastic simulation for each parameter combination. Error bars represent 95%

bootstrapped confidence intervals. (E) Three representative pie charts of fractional promoter-state probability of UP (blue), AP (teal) and BP (yellow) for

PPRR:PBR ratios of 0.1, 1, and 10 with BIR and BTR held constant at 0.1 hr-1. Fractional probabilities were calculated as described in (A). (F)

Representative trajectories for PPRR:BBR = 0.1 (yellow), PPRR:PBR = 1 (green), and PPRR:PBR = 10 (orange). Data presented as described in (B). (G-H)

Average mRNA counts (G) and Fano factor (H) for the three PPRR:PBR ratios at 0, 1, 2, 4 and 24 hours. Data presented as described in (C-D).

https://doi.org/10.1371/journal.pcbi.1010152.g002
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Previous studies have suggested that Tat-positive feedback is required for bimodality of

protein production [71]. However, we observed that, for our regions of interest in the parame-

ter space, implementing positive feedback as an amplification of PPRR did not alter the bimo-

dality observed in the absence of feedback (Fig 3C). Overall, we conclude that for the

transcriptional cycling model in which Tat feedback only affects RNAPII pause release (i.e.,

PPRR), Tat positive feedback increases overall expression but does not alter bimodality.

Positive feedback on PPRR increases transcriptional noise when initialized

from promoter states with high PPRR:PBR ratios

Although Tat-mediated feedback on PPRR in the transcriptional cycling model does not affect

bimodality, it does influence the rate of transcriptional cycling, increasing the rate at which BP

transitions back to AP with a release of transcript (Fig 3A). To visualize how feedback affects

activation in different regions of the parameter space, we returned to our promoter

Fig 3. Positive feedback on PPRR activation does not influence bimodality of the mRNA and protein distributions in the three-state

transcriptional cycling model. (A) Updated three-state promoter system with HIV nucleosome remodeling, RelA recruitment, and Tat-

mediated transcript elongation, which is amplified via positive feedback. Positive feedback is modeled as a saturating function with an

amplitude, A, and half-max, K. (B) Heatmap of average protein counts at 24 hours with feedback. Protein counts were generated through

stochastic simulation for 1,000 cells for each combination of K and A, which were varied over 5 orders of magnitude. The other parameters

were fixed as follows: BIR = 0.1 hr-1, BTR = 1 hr-1, PBR = PPRR = 10 hr-1 (C) Kernel fittings of mRNA counts at 24 hours. Each box contains

the probability density curve for that parameter combination.

https://doi.org/10.1371/journal.pcbi.1010152.g003
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accessibility (BIR:BTR) and transcriptional cycling (PPRR:PBR) ratios to examine mRNA

averages, noise profiles, and trajectories after activation. We modeled Tat feedback through

the addition of Eq 3, and stochastically simulated our three-state system over an interval of

ten days to reach a basal steady-state. The system was then activated by increasing PPRR

2-fold for the same parameter regions explored in Fig 2, but this time in the presence of Tat

feedback.

We first examined how feedback affects activation for different promoter accessibility

ratios. Although feedback does not affect the initial fraction of promoters in the UP state, it

does move more of the non-UP fraction from the BP to the AP state (Fig 4A, left), as the effec-

tive PPRR is increased with the addition of feedback. After activation via a 2-fold increase in

PPRR, even more of the BP fraction is converted to AP (Fig 4A, right). We saw similar trends

in the trajectories of the three promoter accessibility ratios as compared to our results without

feedback (Fig 4B; compare to Fig 2B), however they were differentially affected by feedback.

For the highest promoter accessibility ratio (BIR:BTR = 10), feedback increased average

mRNA by approximately 1.4-fold over 24 hours (Fig 4B, top, black versus red, and Fig 4C). By

contrast, feedback only moderately increased average mRNA for the intermediate promoter

accessibility ratio (BIR:BTR = 1), and it had almost no effect on the lowest ratio (BIR:

BTR = 0.1; Fig 4B, middle and bottom), as most of these promoters remained in the UP state

and thus were unaffected by PPRR amplification.

Feedback produced only minor increases in noise (i.e., Fano factor), with the lowest pro-

moter accessibility ratio exhibiting the largest increases by 24 hours (Fig 4D). As expected,

feedback played a larger role in amplifying gene transcription for cells that had higher pro-

moter accessibility ratios (and thus less UP). Feedback amplified a few highly active trajectories

for lowest promoter accessibility ratio, but did not alter simulations that were initialized in the

UP state, leading to an overall increase in the Fano factor.

Feedback also variably affected activation trajectories initialized across different transcrip-

tional cycling ratios (0.1, 1, and 10; Fig 4E). For the highest ratio (PPRR:PBR = 10), increasing

PPRR via feedback did not significantly change the distribution of trajectories, average mRNA

levels, or noise over time (Fig 4F–4H), because PBR was already the regulating reaction for

transcription for this ratio. For the two lower ratios (0.1 and 1), feedback increased both

mRNA production and noise over 24 hours (Fig 4G–4H). Examining the trajectories, we quali-

tatively observed a few outlier cells that exhibited large increases in mRNA production with

feedback, which likely correspond to the small fraction of cells initialized in the BP state,

because feedback amplifies the signal of cells that have available BP. For parameter sets that

lead to few cells initiated in the BP state, feedback on PPRR does little to change the phenotype

of stimulated cells.

The three-state transcriptional cycling model qualitatively reproduces

experimentally observed activation of latent HIV

We next explored how accurately the transcriptional cycling model could reproduce experi-

mental data on latent HIV activation. We and others have previously used a random telegraph

model to describe HIV bursting dynamics [5,18,45,49]. However, the random telegraph model

with only two promoter states did not fully the differences in chromatin environment that

affected transcriptional bursting of latent viral integrations. For example, for LTR integrations

that exhibit similar transcriptional bursting dynamics in the basal state (i.e., are fit by the same

basal parameters in the two-state model and have average counts of basal mRNA < 3), we can

measure significant differences in the local chromatin environment, as evaluated by the ratio

of acetylated histone 3 to total histone 3 (AcH3:H3, Fig 5A). These differences in the basal
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Fig 4. Transcriptional activation in the presence of PPRR positive feedback predominately alters activation of more permissive initial promoter

states. (A) Three representative fractional promoter-state probability pie charts with the addition of feedback of UP (blue), AP (teal) and BP (yellow) for

BIR:BTR ratios of 0.1, 1, and 10 with PBR and PPRR held constant at 10 hr-1. Data presented as described in Fig 2A. (B) Representative simulated

trajectories with feedback for BIR:BTR = 10 (pink), BIR:BTR = 1 (green), and BIR:BTR = 0.1 (cerulean) presented as described in (Fig 2B). Gray regions on
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state are associated with significant differences in transcriptional activation upon stimulation

with TNF [4] (Fig 5B). This suggests that the two promoter states of the random telegraph

model are insufficient to describe the transcriptional dynamics of these latent HIV integrations

in the basal state and during TNF-mediated transcriptional activation. Moreover, stimulation

of viral activation using the two-state model did not recapitulate bimodality, a known feature

of HIV expression [69,70]. Therefore, we sought to determine if the transcriptional cycling

model could better reflect the biology of HIV reactivation.

To determine optimal parameter sets describing the four latent HIV integrations, we fit our

model to experimental measurements of transcript distributions at 0-, 2- and 4-hours post

TNF treatment in four clonal Jurkat T cell populations each with one of the viral integrations

[4], identified here as Integration 8.4, Integration 4.4, Integration 6.6, and Integration 10.6. As

described above, TNF activation was simulated by increasing PPRR 2-fold. Using a selection

algorithm (see Materials and Methods), we found four sets of parameters that minimized error

across three features of the experimental measurements of mRNA distributions: the average

transcript level, Fano factor, and coefficient of variation (CV) (S4A–S4C Fig; Table 2).

We then added Tat positive feedback into the transcriptional cycling model and compared

simulation to experimental measurements of transcript distributions in the presence of feed-

back without further fitting (Fig 5C–5E). We found that average mRNA, Fano factor, and CV

calculated from 1000 simulations reproduced our experimental measurements with feedback

with good accuracy (R2 values of 0.968, 0.956, and 0.60 respectively), demonstrating that the

chosen feedback parameters can reproduce Tat amplification.

When we analyzed the initial promoter states for the selected parameter set for the four

integrations, we noted that viral integrations with higher ratios of AcH3:H3 were fit with

parameters that exhibited higher ratios of (AP+BP):UP (Fig 5F) but that all were classified as

latent (i.e., exhibit average counts of basal mRNA levels < 3). Thus, with the additional param-

eters to account for chromatin remodeling and polymerase recruitment and release in the

three-state model, we identified distributions of initial promoter states that more accurately

reflected experimentally measured differences in the chromatin environment.

Finally, we compared our simulations of TNF-activated HIV Tat protein expression over 24

hours to our experimental measurements [4]. We found that increasing PPRR by 2-fold across

all four integrations produced significant differences in viral activation by 24 hours. Integra-

tions 6.6 and 10.6 exhibited high levels of activation (calculated as 71% and 72% respectively

above a basal threshold of 275 simulated proteins, shown via the red dashed line), while 4.4

and 8.4 were not strongly activated (Fig 5G). Moreover, activation of 6.6 and 10.6 was bimodal

(Fig 5G), as we had observed experimentally by flow cytometry. While the transcriptional

cycling model more accurately captured the chromatin states underlying HIV activation differ-

ences, a 2-fold increase in PPRR alone did not fully replicate reactivation seen experimentally.

Also, the activation of 4.4 did not produce the bimodality seen experimentally. To address

these issues, we turned to a multi-step activation model.

the right represent the probability density of mRNA counts at 24 hours, with kernel smoothing, with feedback (black) and without feedback (red). (C-D)

Fold-change in mRNA counts (C) and Fano factor (D) for the three BIR:BTR ratios at 0, 1, 2, 4 and 24 hours as compared to non-feedback simulations.

Data were generated through stochastic simulation for 1,000 cells for each parameter combination. Error bars represent 95% bootstrapped confidence

intervals. (E) Three representative pie charts of fractional promoter-state probability with the addition of feedback of UP (blue), AP (teal) and BP (yellow)

for PPRR:PBR ratios of 0.1, 1, and 10 with BIR and BTR held constant at 0.1 hr-1. Fractional probabilities were calculated as described in (A). (F)

Representative simulated trajectories with feedback for PPRR:PBR = 0.1 (yellow), PPRR:PBR = 1 (green), and PPRR:PBR = 10 (orange). Data presented as

described in (B). (G-H) Fold-change mRNA counts (G) and Fano factor (H) for the three PPRR:PBR ratios for timepoints of 0, 1, 2, 4 and 24 hours as

compared to non-feedback simulations. Data presented as described in (C-D).

https://doi.org/10.1371/journal.pcbi.1010152.g004
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Fig 5. The three-state transcriptional cycling model reproduces transcriptional activation heterogeneity observed for a range of latent HIV

integrations. (A) Ratio of enrichment of total histone H3 to acetylated H3 (AcH3) in Jurkat T cells at the indicated target promoters quantified by

ChIP-qPCR. Data are presented as mean of % input (non-IP control) ± SD of two biological replicates. (B) Experimental GFP-HIV trajectories for the
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Activation of the transcriptional cycling model via multiple paths

reproduces additional observed features of latent HIV activation

As described above, following stimulation by the inflammatory TNF, NF-κB mediates steps in

transcriptional activation in addition to its role in the recruitment of P-TEFb [35]. NF-κB also

mediates recruitment of CBP/p300 for chromatin remodeling [30], as well as Mediator, RNA-

PII and other members of the preinitiation complex [31]. Just as we modeled the role of NF-

κB in recruiting P-TEFb (i.e., through a 2-fold increase in PPRR), we can recapitulate these

additional steps in regulating promoter accessibility and RNAPII binding as fold increases in

BIR and PBR, respectively (Fig 6A).

To capture the multi-factorial role of NF-κB activity following TNF stimulation, we

increased BIR, PBR, and PPRR 2-fold from basal state conditions across a range of initial

parameter values that were consistent with the transcriptional profiles of latent integrations

(i.e., average count of mRNA < 3). Then, using a similar methodology as our PPRR-only acti-

vation scheme, we selected a parameter space that most optimally fit the features of transcrip-

tion at 0, 2 and 4 hours for the experimental measurements of the four latent integrations

without feedback (S5A–S5C Fig). We then ran simulations in the presence of feedback to pre-

dict transcript count and distribution at basal, 2, and 4 hours. The parameters chosen as pre-

dictions are shown below in Table 3.

These predictions for mRNA average, CV, and Fano factor showed good fit with our experi-

mental dataset in the presence of feedback with an R2>0.90 (Fig 6B–6D). The fractional distri-

bution of initial states found to be optimal for these integration positions under basal and

latent conditions changed when activation increased all three parameters. All viral integrations

had higher levels of UP as compared to the previous simulation (Fig 6E), which is consistent

with an activating transcription factor that can act on closed, unavailable chromatin, as NF-κB

is known to do. In addition, these parameter sets better capture bursty parameter spaces,

where BIR < BTR for all four integrations (Table 2). Jurkat cells harboring viral integrations

6.6 and 10.6 again exhibited bimodal protein distributions by 24 hours (Fig 6F–6G), with 73%

of the population activated above threshold. Integration 4.4 activated to 7% above threshold,

suggesting that this multi-activation model better captures reactivation for these more

repressed viral integrations. Further optimization might be achieved through reparameteriza-

tion of feedback terms or fine-tuning of fold-change activations. Altogether, these results dem-

onstrate how implementing multiple TF activation paths in our three-state model more

accurately replicates NF-κB-mediated activation of latent HIV viruses.

four HIV integrations, plotted with 95% confidence intervals and normalized via experimental setup. (C-E) Scatterplots of three-state promoter

simulation with feedback compared to experimental measurements for mRNA Average (C), Fano factor (D), and CV (E). Error bars represent 95%

bootstrapped confidence intervals (C) Fractional state probabilities under basal conditions of UP (blue), AP (teal) and BP (yellow) for the four

integrations based upon the three-state model. Simulations were run 10,000 times. (F) Representative simulated protein trajectories over 24 hours of

the 4 integrations. (G) Violin kernel fitting of protein distributions at basal conditions and at 24 hours of the four integrations. Black bar represents

mean. Red dashed line represents a protein threshold of 275 with percentages as the amount above that threshold. Experimental data in this figure

reproduced from [4].

https://doi.org/10.1371/journal.pcbi.1010152.g005

Table 2. Parameters selected for experimental fitting with PPRR activation.

Parameter Fittings for Integration 8.4 Fittings for Integration 4.4 Fittings for Integration 6.6 Fittings for Integration 10.6

BIR 1 hr-1 0.5 hr-1 0.1 hr-1 0.1 hr-1

BTR 10 hr-1 1 hr-1 0.1 hr-1 0.1 hr-1

PBR 50 hr-1 50 hr-1 50 hr-1 50 hr-1

PPRR 1 hr-1 1 hr-1 50 hr-1 100 hr-1

https://doi.org/10.1371/journal.pcbi.1010152.t002
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Fig 6. Implementing transcriptional activation via increases in multiple parameters reproduces transcriptional activation heterogeneity observed for a

range of latent HIV integrations with more biological accuracy. (A) Schematic of multi-point three-pronged activation in the transcriptional cycling model
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The upstream activation path of the transcriptional cycling model

differentially affects features of noisy inducible transcription

To compare how each ‘activation path’ contributed to multi-step activation, we took the fitted

parameter combinations for the four viral integrations, and examined how BIR, PBR, and

PPRR fold-change activation alone affected noise as compared to a multi-step activation.

While this parameter space may not replicate our observed experimental data, it allowed for

direct comparison across low and high activating viral integrations. For every activation path-

way, BIR, PBR, PPRR, or Multi (activating BIR, PBR, and PPRR simultaneously), the appropri-

ate pathway parameter(s) were increased 2-fold and simulated for 24 hours.

Examining transcripts and protein counts at basal and 24 hours post activation (Figs S6A

and 7A), we see similar patterns across all viral integrations, with the Multi pathway producing

the most transcript and proteins out to 24 hours whatever the initial starting state. However,

noise (as quantified by Fano factor) is highest for the low-activating 8.4 and 4.4 viral integra-

tions when activated via the PPRR pathway, while it is highest for 6.6 and 10.6 when activated

via the PBR pathway (Figs S6B and 7B). Notably, activation via the BIR pathway leads to a

marked decrease in Fano factor because it increases the frequency of switching between the

open and closed promoter states, leading to less separation between the productive and unpro-

ductive populations.

To visualize these differences in noise, we plotted the averaged protein trajectories along

with kernel probability density functions for each activation pathway (Fig 7C and 7D). The

variations across trajectories for each viral integration highlighted the basal configuration (Fig

6E) upon activation, with 4.4’s changes in BIR leading to increases in simulated protein (Fig

7C top right), as this promotes UP to AP+BP changes. For 6.6 and 10.6, the multi-point activa-

tion overall saw the highest increases, with no clear delineation among the individual activa-

tion lines. We also compared final protein counts at 24 hours as compared to basal conditions

(Fig 7D). Increases to PPRR and PBR for 6.6 and 10.6 lead to more skewed distributions (Fig

7D bottom), with the highest noise but lower activation (S6C Fig). From these comparisons,

we can conclude that BIR activation leads to lower noise across integration sites, without sub-

stantial changes to protein average. In contrast, PPRR and PBR increase noise through a few

highly productive cells, leading to more skewed distributions. These findings of how model

reactions rates relate to gene expression noise are consistent with analytical solutions previ-

ously solved and reported for the steady-state three-state transcriptional cycling model [7].

Overall, we conclude that phenotypic heterogeneity following activation by exogenous stimu-

lation depends on the distribution of the initial promoter states, as well as the biological activa-

tion pathway.

for HIV. (B-D) Scatterplots of three-state promoter simulation with feedback compared to experimental measurements for mRNA Average (B), Fano factor (C),

and CV (D). Error bars represent 95% bootstrapped confidence intervals. (E) Fractional state probabilities under basal conditions for the four integrations based

upon the three-state model. Simulations were run 1,000 times. (F) Simulated trajectory protein data of 50 representative cells out to 24 hours of the four

integrations. (G) Violin kernel fitting of protein distributions at basal conditions and at 24 hours of the four integrations. Black bar represents the mean. Red

dashed line represents a protein threshold of 275 with percentages as the amount above that threshold.

https://doi.org/10.1371/journal.pcbi.1010152.g006

Table 3. Parameters selected for experimental fitting with multi-point activation.

Parameter Fitting for Integration 8.4 Fitting for Integration 4.4 Fitting for Integration 6.6 Fitting for Integration 10.6

BIR 0.5 hr-1 0.5 hr-1 0.05 hr-1 0.05 hr-1

BTR 10 hr-1 5 hr-1 0.1 hr-1 0.1 hr-1

PBR 100 hr-1 100 hr-1 50 hr-1 100 hr-1

PPRR 1 hr-1 5 hr-1 10 hr-1 10 hr-1

https://doi.org/10.1371/journal.pcbi.1010152.t003
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Discussion

Despite widespread observations of transcriptional bursting, the molecular mechanisms regu-

lating bursting remain unclear. While experimental studies have suggested a variety of contrib-

utors, including RNAPII pausing and chromatin remodeling, the canonical mathematical

model of transcriptional bursting is too simple to explore these mechanisms using simulations,

and it restricts integrating models of transcriptional bursting with specific processes affected

by upstream signals and TFs.

Here, we used a three-state transcriptional cycling model [19] to explore how chromatin

variations, polymerase initiation and pausing contribute to transcriptional bursting. Previous

work has highlighted the importance of burst initiation and polymerase pause release on con-

trol of transcription through this model [7,19]. We found that the variation in the fractional

promoter state probabilities produced by this three-state transcriptional cycling model more

Fig 7. Multi-step activation can be broken down into discrete activation lines which influence noise and protein counts by 24 hours. (A-B)

Average protein counts (A) and Fano factor (B) for the four activation options at 24 hours. Protein counts were generated through stochastic

simulation for 1,000 cells for each parameter combination. Error bars represent 95% bootstrapped confidence intervals. (C) Simulated

trajectory protein data of 50 representative cells out to 24 hours of the four activation lines with the four integrations. (D) Violin kernel fitting

of protein distributions at basal conditions and at 24 hours of the four activation lines with the four integrations. Black bar represents the mean.

https://doi.org/10.1371/journal.pcbi.1010152.g007
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accurately described the range of promoter configurations generated by epigenetic variations at

basal state. The motivation for this work was to represent the varied chromatin environments at

NF-κB-inducible promoters, including the HIV LTR, which lead to altered transcriptional

expression and noise, as we highlighted in recent work [4,28]. Indeed, we found that the tran-

scriptional cycling model produced varied promoter-state fractions representing chromatin

environments of quiescent-but-inducible HIV promoters in a range of biological contexts (Fig

1), and captured the observed differences in noise upon upstream signal activation (Fig 2).

Our previous experimental studies demonstrated that NF-κB target genes with distinct

chromatin environments respond differently to TNF stimulation, resulting in different burst-

ing dynamics and ultimately different patterns of inducible gene expression noise [4,28]. For

example, we showed that by increasing histone acetylation via treatment with the HDAC

inhibitor trichostatin A (TSA) at an HIV LTR promoter with a refractory chromatin environ-

ment, we could switch TNF from increasing burst frequency to increasing burst size, leading

to increased gene activation noise [4]. Our model reproduced this result (Fig 7), while also

allowing for exploration of how downstream steps in the transcriptional cycling model, such

as pause release, also affected noise [72]. Interestingly, this result contrasts with a recent exper-

imentally elegant study demonstrating that increasing histone acetylation via targeted recruit-

ment of the histone acetyltransferase p300 decreased noise in gene expression following TF

stimulation [73]. It is likely that by exploring different initial promoter states, our model

would also be able to reproduce this result.

When we applied the three-state model coupled to positive feedback to simulate activation

of latent-but-inducible HIV viral integrations, we found that it better represented our experi-

mental observations of chromatin remodeling and RNAPII pause release [4]. Unlike the two-

state random telegraph model, the transcriptional cycling model reproduced experimentally

observed bimodal patterns of HIV expression within our parameter range. Furthermore, the

range of initial promoter states captured by the transcriptional cycling model led to different

patterns of gene expression noise following activation (i.e., a sudden change in a model param-

eter that increases the rate of transcription). This model result was consistent with our experi-

mental observation that the same activating TF can influence multiple mechanisms of

activation for our viral integrations, resulting in varied activation profiles. The results of this

study highlight the importance of including chromatin remodeling within transcriptional

bursting models, particularly when comparing target genes with large variations in initial pro-

moter state fractions, representing different chromatin environments.

Several studies have demonstrated that Tat positive feedback is a direct contributor to

bimodal HIV gene expression [69,71]. However, we observed that the parameter regions in our

model that produced bimodal gene expression did not require Tat positive feedback. For our

model assumptions, Tat positive feedback on PPRR further amplifies the separation between

activated cells and non-activated cells, but the initial promoter state regulates bimodality. In set-

tings with more homogeneous chromatin environments, positive feedback may contribute to

the regulation of bimodality, but we did not explore these parameter regions in this study.

Gene expression noise has both intrinsic and extrinsic contributions to noise, with extrinsic

noise referring to cell-to-cell differences that affect global gene expression in the cell, such as

total levels of RNAPII, whereas intrinsic noise captures expression variability that varies sto-

chastically by gene [23,74–76]. Our model analysis focused on intrinsic noise because we used

stochastic simulations of gene expression while imposing uniform changes in upstream signal-

ing inputs (e.g., increasing PPRR 2-fold). However, many studies have found a role for NF-κB

signaling variations in regulation heterogeneity in gene expression [77–80]. Indeed, we have

previously reported that transcriptional output is strongly correlated to the fold-change in

upstream NF-κB signal activation in individual cells, regardless of initial chromatin state [81].

PLOS COMPUTATIONAL BIOLOGY A transcriptional cycling model of noisy inducible transcription

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010152 September 9, 2022 20 / 29

https://doi.org/10.1371/journal.pcbi.1010152


In future modeling studies, uniform fold-changes in rate parameters could be replaced by vari-

able fold changes to represent extrinsic signaling variability, and the contribution of intrinsic

versus extrinsic noise could be inferred by comparing the noise generated by stochastic simu-

lation of the transcriptional cycling model to these results. If NF-κB is primarily assumed to

increase polymerase binding and pause release rates, then we would expect extrinsic noise in

NF-κB signaling to increase the variance between activated cells, similar to experimental

reports. If NF-κB affects the burst initiation or termination rates, then the fractional responses

of cells (i.e., bimodality) might also be affected, although this would depend on the initial chro-

matin states of the gene targets.

In our study, we used error minimization to choose initial parameter sets for our experi-

mentally measured viral integrations, however these parameter sets are not unique. A limita-

tion of our study is that there are many different parameter sets that would produce

qualitatively similar results. Additional work would be required to fit the transcriptional

cycling model to experimental data to identify unique parameter sets describing each viral

integration. In particular, fitting the non-Poisson moments for RNA and protein distributions

might provide additional information to further restrict the possible solutions for initializing

the three-state transcriptional cycling model [7,82]. This could then be used in conjunction

with techniques for fitting datasets, such as Bayesian parameter estimation, which requires the

knowledge of appropriate priors from the solutions.

Future work with this model allows for studies of how exogeneous perturbations affecting

chromatin remodeling combined with other transcriptional regulatory mechanisms (e.g. RNAPII

pause release or transcription factor recruitment) synergize to activate gene expression. For exam-

ple, using TSA to induce chromatin remodeling at the LTR promoter is a clinical strategy to reac-

tivate latent HIV reservoirs to clear the infection [4], and this has been found to synergize with

TNF and other NF-κB activators [4,83,84]. Using this model, we can more accurately simulate the

effects of multiple drug treatments affecting these pathways and predict how they will impact gene

expression noise and viral activation and provide possible avenues for future developments.

Materials and methods

Model development

The three-state transcriptional cycling model without positive feedback can be represented by

the following mass-action kinetic equations:

d½UP�
dt
¼ � BIR UP½ � þ BTR ½AP� þ ½BP�ð Þ Eq 4

d½AP�
dt
¼ BIR UP½ � � BTRþ PBRð Þ AP½ � þ PPRR BP½ � Eq 5

d½BP�
dt
¼ PBR AP½ � � BTRþ PPRRð Þ BP½ � Eq 6

d½RNA�
dt

¼ PPRR BP½ � � drna RNA½ � Eq 7

d½Protein�
dt

¼ kp RNA½ � � dprotein Protein½ � Eq 8
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While transcription is stochastic at the single-cell level, we assumed that gene expression

follows a deterministic trajectory under population dynamics. We also assumed that the pro-

moter can exist in one of three states, UP, AP, or BP. This conservation of states can be

expressed by the following equation.

½UP� þ ½AP� þ ½BP� ¼ 1 Eq 9

These equations were deterministically solved using an ODE solver. We utilized the ODE

solver in NFSIM [85] to model our system at steady-states conditions a time interval of ten

days, capturing dynamics at equal time increments. We used a parameter set that could cap-

ture the wide range of mRNA responses, PBR = [0.1 0.5 1 5 10 50 100 500] hr-1, PPRR = [0.1

0.5 1 5 10 50 100] hr-1, BIR = [0.005 0.01 0.05 0.1 0.5 1 5 10 50] hr-1, and BTR = [0.005 0.01

0.05 0.1 0.5 1 5 10 50] hr-1. These ranges are up to 10-fold higher and/or lower than the param-

eter ranges used for our analysis of inducible transcription (see Table 1), because we wished to

explore bursting dynamics across a wide range of constitutive transcriptional activity prior to

focusing on inducible transcription. Data matrices of the solutions were analyzed using

MATLAB.

Stochastic simulation and activation

To stochastically simulate the model, we used the SSA utility of NFSIM [85], which imple-

ments Gillespie algorithm [86]. The model was first initialized under steady-state basal condi-

tions for ten days. The system was then activated by increasing PPRR two-fold at time = 0, and

then simulated out for 24 hours. The promoter states, along with RNA and protein counts,

were captured in equal time increments. Unless otherwise noted, each parameter combination

was stochastically simulated 1,000 times. To classify these simulations, we tested deviance

from unimodality of the probability density distribution utilizing the Hartigan’s dip test

[87,88], with dip> 0.05, and calculated the p value null hypothesis of unimodal

distribution < 0.15. Simulations that met these criteria were classified as “bimodal.” For the

remainder of the simulations, we separated “always on” from “always off” with a threshold

value of 250 proteins, in line with that used in our previous study to classify T cells expressing

HIV (“on” or activated) and not expressing HIV (“off” or not activated) [49].

At each relevant time point, cell-population averages and Fano factors for mRNA counts

and protein counts were calculated from the single-cell simulations, with 95% confidence

intervals for these metrics determined via bootstrapping (n = 10,000 and α = 0.05) as described

previously [28]. Trajectories, heatmaps, bar plots, pie charts, violin plots, and kernel estima-

tions were then generated in MATLAB to meaningfully visualize these datasets. Other simula-

tions involving protein feedback and multi-activation steps used the same parameter

combinations and analysis.

To visualize the differences along the promoter accessibility and the transcriptional cycling

ratios, six different parameter combinations were selected. Three represented variations in

promoter accessibility (BIR:BTR = 0.1, 1, or 10), while the other three represented variations

in transcriptional cycling (PPRR:PBR = 0.1, 1, or 10) (Table 4).

Fitting parameters to experimental data

We fit our model to a previously published experimental data set measured in four Jurkat T

cell lines each containing a latent HIV virus integrated at a unique location in the genome [4].

This data set consisted of measurements of HIV transcript distributions in these four cell pop-

ulations in the basal state and following 2 and 4 hours of stimulation with TNF in the presence

of cycloheximide to protein production and thus Tat positive feedback [4]. We used several
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assumptions and biological considerations to limit the range of the parameter space that we

searched.

We first limited the parameter space to parameters that meet conditions for bursting tran-

scription, characterized by infrequent transitions from low levels of mRNA production to high

levels of mRNA production. Based on our steady-state analysis, this would result in higher lev-

els of BP as compared to AP and BP, and is met with the following condition:

BTR � BIR Eq 10

The second condition is imposed to reproduce the experimentally observed differences in

our T cell populations with latent HIV integrations that are low activating (integrations 8.4

and 4.4) and high activation (integrations 6.6 and 10.6). The high-activating viral integrations

have higher levels of histone acetylation at the promoter under basal conditions, while the low-

activating viral integrations have higher levels of histone occupancy. To correlate this to our

three-state transcriptional cycling model, the low-activating viral integrations should have

higher levels of UP as compared to the high-activating viral integrations. We know that the

amount of UP is controlled by the BIR:BTR ratio, so we can represent the parameter space as

follows:

BTRLA

BIRLA
>

BTRHA

BIRHA
Eq 11

Our third condition is imposed to reproduce the observation that high-activating viral inte-

grations have higher levels of open chromatin, without significant changes to the amount of

transcriptional machinery priming as compared to the low-activation viral integrations. We

can capture this in our model if AP is greater for high-activating vs. low-activating viral inte-

grations, whereas the amount of BP remains the same. Based on our steady-state analysis of

PBR to PPRR, we can capture with the following condition:

PPRRLA

PBRLA
<

PPRRHA

PBRHA
Eq 12

With these conditions, we then sought to find the parameter space that best matched exper-

imental results. Stochastic simulations were run over a biologically plausible parameter space

(defined as in Table 1), where counts of basal mRNA< 3 as determined through deterministic

solutions and bimodality was observed according to our bimodal criteria described above. We

then used the three considerations above to select appropriate parameter spaces for each viral

integration. For each of these chosen parameter combinations, 1,000 stochastic simulations

were run, with promoter states, mRNA, and protein data recorded out to 24 hours. To quantify

the match, we performed root mean square error (MSE) minimization over mRNA transcript

counts, as well as Fano factor and CV for the experimental data at basal, 2, and 4 hours for the

Table 4. Ratio Parameter Descriptions.

Name BIR BTR PBR PPRR

BIR:BTR = 0.1 0.01 hr-1 0.1 hr-1 10 hr-1 10 hr-1

BIR:BTR = 1 0.1 hr-1 0.1 hr-1 10 hr-1 10 hr-1

BIR:BTR = 10 1 hr-1 0.1 hr-1 10 hr-1 10 hr-1

PPRR:PBR = 0.1 0.1 hr-1 0.1 hr-1 10 hr-1 1 hr-1

PPRR:PBR = 1 0.1 hr-1 0.1 hr-1 10 hr-1 10 hr-1

PPRR:PBR = 10 0.1 hr-1 0.1 hr-1 10 hr-1 100 hr-1

https://doi.org/10.1371/journal.pcbi.1010152.t004
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four viral integrations. The best fits were defined by the parameter set with the lowest com-

bined MSE across each feature. Finally, activation trajectories of mRNA and protein were then

recorded out to 24 hours using the activation schemes as described and in the presence of Tat

positive feedback for 1,000 simulations.

Supporting information

S1 Fig. Steady-state heatmaps and PPRR:BTR comparisons (related to Fig 1). (A-C) Heat

maps of the deterministic steady state solutions for UP, AP, and BP fractional probabilities.

Parameter ranges are represented low to high via arrow directionality and correspond to the

following sets: PBR = [0.1 0.5 1 5 10 50 100 500] hr-1, PPRR = [0.1 0.5 1 5 10 50 100] hr-1, BIR

= [0.005 0.01 0.05 0.1 0.5 1 5 10 50] hr-1, and BTR = [0.005 0.01 0.05 0.1 0.5 1 5 10 50] hr-1. (D)

Deterministic solution of mRNA counts representing steady state values plotted as a log scale

heatmap. Parameter ranges are represented low to high via arrow directionality and corre-

spond to the following sets: PBR = [0.1 0.5 1 5 10 50 100 500] hr-1, PPRR = [0.1 0.5 1 5 10 50

100] hr-1, BIR = [0.005 0.01 0.05 0.1 0.5 1 5 10 50] hr-1, and BTR = [0.005 0.01 0.05 0.1 0.5 1 5

10 50] hr-1. Square inset corresponds to the following parameter set: PBR = 10 hr-1, BIR = 0.1

hr-1, PPRR = [0.5 1 5 10 50] hr-1, and BTR = [0.01 0.05 0.1 0.5 1] hr-1. (E-F) Pie charts of the

fractional promoter-state probability (E) and Fano factor (F) at each parameter combination.

Values determined by stochastic simulation under basal conditions out to 10 days for 1,000

cells for each parameter combination. Promoter states denoted as UP (blue), AP (teal), and BP

(yellow).

(PDF)

S2 Fig. Classification of phenotypes after activation via PPRR increase (related to Fig 2).

(A) Fold Change mRNA trajectories for PPRR increases of 0.5 (green), 2 (cerulean), 5 (red), 10

(blue), and 50 (purple). Shaded areas are 95% confidence intervals. PPRR and PBR were set at

10 hr-1. (B) Average Protein counts at 24 hours. Protein counts were generated through sto-

chastic simulation for 1,000 cells for each parameter combination. Phenotypes of “Always

On,” “Bimodal,” and “Always Off” were established by separating out the bimodal population

(defined by Hartigan’s Dip Value > 0.05 and a p-test< 0.15 (See Materials and Methods for

more information). (C) Bar chart representing the percentage of each promoter state from

basal initialization conditions, separated by ending phenotype classification. Error bars repre-

sent 95% bootstrapped confidence intervals.

(PDF)

S3 Fig. Feedback strength influence on fractional state probabilities and protein counts

(related to Fig 3). (A-B) Heatmap of average mRNA at 24 hours (A) and fractional promoter-

state probabilities in the initial state (B) for a range of feedback strengths. All other parameters

are set to BIR = 0.1 hr-1, BTR = 1 hr-1, PBR = PPRR = 10 hr-1. Data was generated by stochastic

simulation for 1,000 cells for each parameter combination. The feedback terms K (half max)

and A (amplification factor) were varied over 5 orders of magnitude. (C) Feedback strength

calculated for varied K values and plotted versus protein.

(PDF)

S4 Fig. Model fits of experimental HIV data compared to simulations using computational

PPRR activation scheme (related to Fig 5). (A-C) Scatterplots of results from simulation of

the three-state transcriptional cycling model without feedback compared to experimental mea-

surements of mRNA distributions from populations of T cells harboring latent HIV integra-

tions and stimulated with TNF with Tat feedback blocked (from ref. 4). Correlation between

simulation and experimental data is shown for mRNA average (A), Fano factor (B), and CV
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(C). Error bars represent 95% bootstrapped confidence intervals.

(PDF)

S5 Fig. Model fits of experimental HIV data compare to simulations using computational

multi-step activation scheme (related to Fig 6). (A-C) Scatterplots of results from simulation

of the three-state transcriptional cycling model without feedback compared to experimental

measurements of mRNA distributions from populations of T cells harboring latent HIV inte-

grations and stimulated with TNF with Tat feedback blocked (from ref. 4). Correlation

between simulation and experimental data is shown for mRNA average (A), Fano factor (B),

and CV (C). Error bars represent 95% bootstrapped confidence intervals.

(PDF)

S6 Fig. Comparisons of average mRNA and Fano factor across activation paths (related to

Fig 7). (A-B) Average mRNA counts (A) and Fano factor (B) for the four activation paths

across the four HIV integrations for timepoints of 0, 1, 2, 4 and 24 hours. mRNA counts were

generated through stochastic simulation for 1,000 cells for each parameter combination. Error

bars represent 95% bootstrapped confidence intervals. (C) Percentage of cells above ‘ON’

threshold (set at 250 proteins per cell) at 24 hours.

(PDF)
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