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The tobacco variant Nicotiana benthamiana has recently emerged as a versa-

tile host for the manufacturing of protein therapeutics, but the fidelity of

many recombinant proteins generated in this system is compromised by inad-

vertent proteolysis. Previous studies have revealed that the anti-HIV-1 anti-

bodies 2F5 and PG9 as well as the protease inhibitor a1-antitrypsin (A1AT)

are particularly susceptible to N. benthamiana proteases. Here, we identify

two subtilisin-like serine proteases (NbSBT1 and NbSBT2) whose combined

action is sufficient to account for all major cleavage events observed upon

expression of 2F5, PG9 and A1AT in N. benthamiana. We propose that

downregulation of NbSBT1 and NbSBT2 activities could constitute a power-

ful means to optimize the performance of this promising platform for the pro-

duction of biopharmaceuticals.

Databases

NbSBT sequence data are available in the DDBJ/EMBL/GenBank data-

bases under the accession numbers MN534996 to MN535005.
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The market for recombinant therapeutic proteins is

increasing rapidly [1]. Plants have proved to be compe-

tent platforms for the production of biopharmaceuti-

cals as demonstrated by the growing number of plant-

made therapeutic proteins being approved for human

treatment or entering clinical trials [2,3]. A plant par-

ticularly well suited for the rapid large-scale synthesis

of vaccines and monoclonal antibodies (mAbs) is the

tobacco-related species Nicotiana benthamiana [4] due

to its high susceptibility to agrobacterium-mediated

transgene delivery by viral-based expression vectors

[5]. Furthermore, strategies have been developed which

make it possible to express therapeutic proteins with

human-like glycans and other tailored post-transla-

tional modifications in this plant [6,7]. These technolo-

gies have been exploited for the manufacturing of the

Ebola-neutralizing antibody cocktail ZMapp [8] and

the production of a seasonal influenza vaccine [9].

Despite all these qualities of N. benthamiana as an

emerging plant-based expression platform, a major

Abbreviations

A1AT, a1-antitrypsin; Ac, acetyl; CDR, complementarity-determining region; CHO, aldehyde; CMK, chloromethylketone; FMK, fluo-

romethylketone; FP, fluorophosphonate; mAb, monoclonal antibody; Nb, Nicotiana benthamiana; SBT, subtilisin-like serine protease; Suc,

methoxysuccinyl; Z, benzyloxycarbonyl.

379FEBS Letters 595 (2021) 379–388 ª 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0001-9013-5408
https://orcid.org/0000-0001-9013-5408
https://orcid.org/0000-0001-9013-5408
mailto:


drawback is still unresolved: recombinant proteins

expressed in this plant frequently suffer from prote-

olytic degradation [10]. Several recombinant proteins

with therapeutic potential including mAbs and human

a1-antitrypsin (A1AT) have been shown to undergo

inadvertent proteolysis in N. benthamiana [11–14]. This
degradation reduces the yield as well as the quality of

the protein of interest and can lead to erroneous con-

clusions about its size and other features [15].

Although proteases populate virtually all compart-

ments of plant cells [10,16], convincing evidence has

been provided that the degradation of mAbs in Nico-

tiana species occurs primarily in the apoplast, the peri-

cellular space in plant tissues [17]. Unfortunately,

mAbs – like many other therapeutic proteins – need to

be glycosylated for proper function and therefore have

to be targeted to the secretory pathway [18].

Several strategies were proposed to counteract

unwanted protein degradation in plants: targeted dis-

ruption of protease genes, coexpression of protease

inhibitors and downregulation of endogenous protease

activities by means of RNA interference or other anti-

sense-based mechanisms [19,20]. For either strategy,

substantial knowledge about the host enzymes

involved in proteolytic breakdown of foreign proteins

is required a priori. So far, the responsible proteases

have not been identified in any plant-based expression

system, thus prohibiting targeted approaches to tackle

unwanted proteolysis in N. benthamiana and other

plant species.

Although the secretome of N. benthamiana is known

to harbour proteases from all catalytic classes [16], we

have previously shown that serine protease inactivators

could block the antibody-degrading capacity of

N. benthamiana apoplastic fluid in vitro [11]. A recent

study reported the presence of several subtilisin-like

serine proteases (SBTs) in the apoplast of agroinfil-

trated N. benthamiana leaves [16]. SBTs constitute a

large family of plant serine proteases with formidable

endopeptidase activities [21]. In the present investiga-

tion, we aim to assess whether SBTs are involved in

recombinant protein degradation in N. benthamiana.

First, we isolate N. benthamiana SBTs present in the

leaf apoplast using activity-based probes and identify

them by mass spectrometry. We then characterize the

two most abundant enzymes (NbSBT1 and NbSBT2)

and demonstrate their capacity to cleave mAbs and

A1AT in vitro. In combination, NbSBT1 and NbSBT2

generate all cleavage products observed upon produc-

tion of these potential biotherapeutics in plants.

Hence, our results implicate NbSBT1 and NbSBT2 in

recombinant protein degradation in planta.

Materials and methods

Isolation and identification of apoplastic

subtilisin-like serine proteases

Nicotiana benthamiana ΔXT/FT plants deficient in N-glycan

a1,3-fucosylation and b1,2-xylosylation [22] were grown for

4–5 weeks at 24 °C with a 16-h light: 8-h dark photoperiod.

Concentrated apoplastic fluid was prepared as described [11]

and then incubated for 1 h at 37 °C with 10 µM fluorophos-

phonate (FP)-biotin (Santa Cruz Biotechnology, Santa Cruz,

CA, USA). The sample (2.5 mL) was then chromatographed

on a PD-10 column (GE Healthcare, Chicago, IL, USA)

equilibrated in 100 mM sodium acetate (pH 5.5). The recov-

ered eluate (3.5 mL) was incubated with 40 µL avidin-agar-

ose beads (Sigma-Aldrich, St. Louis, MO, USA) for 16 h at

4 °C under constant agitation. The beads were washed four

times with 4 mL 100 mM sodium acetate (pH 5.5) and once

with 4 mL 10 mM Tris/HCl (pH 6.8) prior to elution of the

bound proteins with 80 µL SDS/PAGE sample buffer

(5 min, 95 °C). The samples were then subjected to 12.5%

SDS/PAGE under reducing conditions prior to staining of

the gel with Coomassie Brilliant Blue (CBB) R-250. The 63–
70 kDa bands were excised, S-carboxamidomethylated and

then digested with sequencing-grade trypsin (Promega, Madi-

son, WI, USA). The peptides thus generated were fraction-

ated on a Thermo BioBasic C18 separation column (5 µm
particle size, 150 9 0.32 mm) operated using a Dionex Ulti-

Mate 3000 system (Thermo Fisher Scientific, Waltham, MA,

USA). A gradient from 96.5% solvent A and 3.5% solvent B

(A: 65 mM ammonium formate, pH 3.0; B: 80% acetonitrile,

20% A) to 40% B in 45 min was applied, followed by a 15-

min gradient from 40% B to 95% B, at a flow rate of

6 µL�min�1. Eluted peptides were analysed online on a

maXis 4G ETDQ-TOF mass spectrometer (Bruker, Billerica,

MA, USA) equipped with an electrospray ionization source

and operated in the positive ion mode (m/z range: 150-2200).

Molecular cloning of subtilisin-like serine

protease cDNAs

Total RNA was extracted from 35-mg samples of various

N. benthamiana tissues using the SV Total RNA Isolation

Kit (Promega). First-strand cDNA was synthesized from

1 µg RNA using the RevertAid H Minus First Strand

cDNA Synthesis Kit (Thermo Fisher Scientific) and oligo

(dT)18 as primer. PCR fragments encompassing the com-

plete ORF of the identified apoplastic SBTs were obtained

from total leaf or flower cDNA using suitable primer com-

binations (Table S1) and then subcloned into pCR4-TOPO

(Thermo Fisher Scientific) or pBluescript II KS (+) (Agilent

Technologies, Santa Clara, CA, USA). The fidelity of the

cloned cDNAs was verified by automated DNA sequencing

(Microsynth, Balgach, Switzerland).
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For ectopic expression of the two most abundant

apoplastic SBTs (NbSBT1 and NbSBT2) in N. benthami-

ana, the coding sequences of these enzymes were PCR-am-

plified using Q5 High-Fidelity DNA polymerase (New

England Biolabs, Ipswich, MA, USA) and then transferred

by Gibson assembly [23] into pEAQ-IgA-hc [24] after diges-

tion of the vector with AgeI and XhoI to remove its previ-

ous insert. After sequence confirmation, both constructs

were transformed into Agrobacterium tumefaciens strain

UIA143 [12].

Production and purification of recombinant

NbSBT1 and NbSBT2

Leaves of 5-week-old N. benthamiana plants were inocu-

lated with agrobacterial suspensions diluted to an OD600 of

0.15 with infiltration buffer (10 mM MES, 10 mM MgSO4,

0.1 mM acetosyringone, pH 5.6). Three days after infiltra-

tion, the leaves were submerged in extraction buffer

(50 mM sodium phosphate/200 mM KCl, pH 7.0) prior to

vacuum exposure in a desiccator. Exogenous buffer was

removed prior to centrifugation of the leaves for 15 min at

2000 g and 4 °C. The recovered exudate was then supple-

mented with 20 mM imidazole and loaded on a 1 mL col-

umn of Chelating Sepharose (GE Healthcare) charged with

Ni2+ ions. After washing with the same buffer, bound pro-

teins were eluted with 250 mM imidazole in extraction buf-

fer. Protein-containing eluate fractions were pooled,

dialysed twice against 2 L of extraction buffer and then

concentrated by ultrafiltration using Microsep Advance

centrifugal devices (molecular weight cut-off: 10 kDa; Pall

Corporation, New York, NY, USA).

In vitro degradation assays

mAbs (50–200 µg�mL�1; Polymun Scientific, Klosterneu-

burg, Austria) or human plasma A1AT (50 µg�mL�1;

Sigma-Aldrich) were incubated with concentrated apoplas-

tic fluid (10–250 µg�mL�1), NbSBT1 (1–30 µg�mL�1) or

NbSBT2 (3–70 µg�mL�1) in 100 mM sodium acetate (pH

5.5) at 37 °C in the absence or presence of selected protease

inhibitors (Sigma-Aldrich or Bachem, Bubendorf, Switzer-

land). After incubation for 1–16 h, samples were mixed

with an equivalent volume of SDS/PAGE sample buffer

and heated at 95 °C for 5 min prior to analysis by western

blotting with antibodies to human IgG (Sigma-Aldrich) or

A1AT (Abcam, Cambridge, UK) as described previously

[11,12]. Streptavidin–peroxidase (Vector Laboratories, Bur-

lingame, CA, USA) was used for the detection of proteins

labelled with FP-biotin or biotinyl-YVAD-CMK (Bachem)

on western blots [25]. To isolate mAb degradation prod-

ucts, reaction mixtures (500 µL) were mixed with 10 µL
rProtein A Sepharose 4 Fast Flow beads (GE Healthcare)

and incubated for 2 h at 4 °C under constant shaking. The

beads were collected by centrifugation and washed four

times with PBS. Elution of bound proteins from the beads

was achieved using 0.1 M glycine/HCl (pH 3.0). Protein-

containing eluate fractions were immediately neutralized by

addition of 0.1 M Tris/HCl (pH 8.0), subjected to buffer-ex-

change into phosphate-buffered saline and then concen-

trated by ultrafiltration using Amicon YM30 centrifugal

filter units (Merck Millipore, Burlington, MA, USA).

Cleavage site analysis

N-terminal sequence analysis of bands blotted on

polyvinylidene difluoride membranes (Bio-Rad Laborato-

ries, Hercules, CA, USA) was performed by Edman degra-

dation on an Applied Biosystems Procise 492 protein

sequencer (Protein Micro-Analysis Facility, Medical

University of Innsbruck, Austria) as described previously

[11]. Alternatively, antibodies or their degradation products

were treated with PNGase F (Roche, Basel, Switzerland) to

release their N-glycans, reduced with 5 mM DTT (45 min,

56 °C) and then fractionated on a Thermo ProSwift RP-4H

column (250 9 0.20 mm) using a Dionex UltiMate 3000

HPLC system (Thermo Fisher Scientific). Native and

digested A1AT samples were analysed without prior degly-

cosylation and reduction. After application of the sample

(5 µL), elution was performed at 65 °C and a flow rate of

8 µL�min�1 with a gradient of 20–95% solvent B (80% ace-

tonitrile in 0.01% trifluoroacetic acid) in solvent A (0.05%

trifluoroacetic acid) over 40 min as follows: 20–65% B

(15 min), 65–95% B (5 min). Eluted polypeptides were

analysed online on a maXis 4G ETD Q-TOF mass spec-

trometer (Bruker) equipped with an electrospray ionization

source and operated in the positive ion mode (m/z range:

400–3800). The analysis files were deconvoluted (Maximum

Entropy Method) using DataAnalysis 4.0 (Bruker) and

manually annotated.

Results

Identification of subtilisin-like serine proteases

present in the N. benthamiana leaf apoplast

To identify the repertoire of SBTs present in the

N. benthamiana leaf apoplast, apoplastic fluid collected

from untreated N. benthamiana leaves was incubated

with FP-biotin, a biotinylated activity-based probe

which potently reacts with serine hydrolases [26]. Its

FP moiety attaches covalently to active-site serine resi-

dues, allowing the probe to discriminate between cat-

alytically competent and inactive forms of the targeted

enzymes. Treatment of apoplastic fluid with FP-biotin

abolished processing of the proteolysis-sensitive anti-

HIV-1 mAb 2F5 even at low probe concentrations,

indicating that FP-biotin efficiently inactivates the
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protease(s) in action. Western blot analysis with strep-

tavidin–peroxidase revealed that FP-biotin-labelled

apoplastic polypeptides accumulated in a number of

discrete bands in the size range of 15–70 kDa. The

most intensely labelled band corresponded to polypep-

tide(s) of 63–65 kDa, which showed pronounced reac-

tion with FP-biotin even at a probe concentration as

low as 1 µM (Fig. 1A). To identify bands containing

serine proteases, apoplastic fluid was incubated with

various synthetic serine protease inhibitors prior to

addition of FP-biotin. This pretreatment interfered

most strongly with the labelling of the 63–65 kDa

band, with methoxysuccinyl (Suc)-Ala-Ala-Pro-Val-

chloromethylketone (Suc-AAPV-CMK) and phenyl-

methylsulphonyl fluoride (PMSF) being the most effec-

tive compounds. Notably, preincubation with Suc-

AAPV-CMK also reduced the labelling of the 67–
70 kDa band (Fig. 1B).

FP-labelled proteins were isolated by affinity chro-

matography using immobilized avidin and then

fractionated by preparative SDS/PAGE. The 63–
65 kDa and 67–70 kDa bands were excised, subjected

to tryptic digestion and analysed by mass spectrometry

to determine the identities of the constituent proteins.

In good agreement with a similar activity-based profil-

ing analysis of the secretome of agroinfiltrated N. ben-

thamiana leaves [16], 10 different SBTs could be

unanimously identified by the detection of at least two

unique peptides (Table S2). The coding sequences of

these SBTs were cloned from reverse-transcribed

N. benthamiana RNA and found to closely match

those predicted from the most current N. benthamiana

gene assemblies [27,28].

Ectopic expression and purification of

recombinant N. benthamiana SBTs

As judged from spectral counts and sequence coverage

by mass spectrometry (Tables S3,S4 and Figs S1,S2),

we selected the two most abundant SBTs present in

Fig. 1. (A) Reactivity of apoplastic proteins

with FP-biotin. Apoplastic fluid (85 µg total

protein/mL) was pretreated with the

indicated concentrations of FP-biotin (1 h,

37 °C) prior to incubation with

200 µg�mL�1 mAb 2F5 (4 h, 37 °C).

Untreated 2F5 was loaded as a control.

Samples were analysed by SDS/PAGE and

western blotting using streptavidin–

peroxidase or peroxidase-labelled

antibodies to the heavy chain of human

IgG for detection. Note the nonspecific

binding of FP-biotin and streptavidin–

peroxidase to the heavy chain of 2F5. hc,

full-length heavy chain; *, 40 kDa heavy

chain degradation product. (B) Effect of

serine protease inhibitors on the labelling

of apoplastic proteins with FP-biotin.

Apoplastic fluid was pretreated with

DMSO (control) or the indicated protease

inhibitors (100 lM Z-LL-leucinal; 100 lM

chymostatin; 100 lM Z-GGF-CMK; 100 µM

Suc-AAPV-CMK; 1 mM PMSF) for 30 min

at 37 °C prior to labelling with 10 µM FP-

biotin (4 h, 37 °C). Samples were analysed

by SDS/PAGE followed by western

blotting with streptavidin–peroxidase as

detection reagent. The migration positions

of selected molecular mass standards are

indicated, with their respective masses

expressed in kDa.
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the affinity-purified samples (NbSBT1 and NbSBT2)

for further studies. Hexahistidine-tagged versions of

NbSBT1 and NbSBT2 were expressed in N. benthami-

ana leaves and then purified by nickel-chelate affinity

chromatography. Purification of an empty-vector con-

trol (EV) (Fig. S3) was performed using leaves inocu-

lated with the parental expression vector. SDS/PAGE

under reducing conditions of purified NbSBT1 and

NbSBT2 revealed a complex band pattern consistent

with autocatalytic processing (Fig. 2), a phenomenon

reported previously for other plant SBTs [29]. Bands

of 67–70 kDa were observed in both samples, which

agrees well with the predicted molecular mass of

mature NbSBT1 and NbSBT2 after removal of the

prodomain (69.5 kDa without accounting for potential

N-glycosylation). Both 67–70 kDa bands were sub-

jected to tryptic fingerprinting by mass spectrometry.

The most N-terminal peptide detected was in either

case a semitryptic fragment. The sequences of these

two semitryptic peptides (NbSBT1: T110THSWDFLK,

NbSBT2: T111THTSQFLGLNSK) correspond to the

predicted N termini of the respective mature peptidase

domains. As determined by Edman degradation, the

major 63 kDa band observed in the NbSBT1 sample

was found to be an N-terminally truncated form of

mature NbSBT1 starting with G207 (Table S2).

To assess its activity status, purified NbSBT1 was

treated with FP-biotin. Since NbSBT2 is closely

related to Nicotiana tabacum phytaspase which selec-

tively cleaves after aspartic acid residues [30], the

activity-based probe biotinyl-Tyr-Val-Ala-Asp-chloro-

methylketone (biotinyl-YVAD-CMK) was utilized in

this instance. As expected, the 67–70 kDa forms of

NbSBT1 and NbSBT2 were found to be catalytically

competent. Interestingly, the 63 kDa form of NbSBT1

was also reactive with FP-biotin. Since one residue of

the catalytic triad (Asp148) is located within the frag-

ment removed during proteolytic processing, these

results indicate that NbSBT1 is cleaved into a two-

chain form consisting of an N-terminal light chain

(T110-A206) and a C-terminal heavy chain (G207-N770)

without losing its enzymatic activity (Fig. S4). Hence,

the heavy chain of NbSBT1 could account for the

63–65 kDa band observed upon labelling of apoplastic

proteins with FP-biotin (Fig. 2).

Cleavage of recombinant proteins by NbSBT1

and NbSBT2 in vitro

To assess the potential of NbSBT1 and NbSBT2 for

protein degradation in planta, we first tested their

capacity to cleave the mAbs 2F5 and PG9 – two

broadly neutralizing human IgG1 antibodies to HIV-1

that undergo substantial proteolytic degradation upon

their production in the leaves of N. benthamiana [11].

Each mAb was incubated with NbSBT1 or NbSBT2 at

pH 5.5 to simulate apoplastic conditions. Upon expo-

sure to NbSBT1, the heavy chains of 2F5 and PG9

were cleaved yielding characteristic 40 kDa bands.

These fragments resemble the heavy chain degradation

products produced in planta and found to originate

from cleavage within, or next to, the complementarity-

determining region (CDR) H3 loop [11]. Interestingly,

NbSBT2 did not process 2F5. Nevertheless, the latter

enzyme was capable of cleaving the heavy chain of

PG9, generating also a 40 kDa product as observed

for NbSBT1 (Fig. 3).

In order to identify the cleavage sites, the 2F5 and

PG9 degradation fragments were purified by protein A

affinity chromatography and then subjected to both

N-terminal sequencing and analysis by mass spectrom-

etry. NbSBT1 cleaved 2F5 at only one position:

besides the intact light chain, only the two heavy chain

fragments arising from cleavage at TTLF107↓G108VP

were detected by mass spectrometry. In agreement

with this result, Edman degradation of the 40 kDa

2F5 fragment revealed a single N terminus starting

Fig. 2. Characterization of purified NbSBT1 and NbSBT2. Hexahistidine-

tagged NbSBT1 and NbSBT2 produced in N. benthamianawere purified

by metal-chelate affinity chromatography and then analysed by SDS/

PAGE under reducing conditions followed by staining with CBB. For

ABPP, purified NbSBTs were incubated with 100 µM FP-biotin (NbSBT1)

or 10 lM biotinyl-YVAD-CMK (NbSBT2) for 1 h at 37 °C prior to analysis

by SDS/PAGE under reducing conditions and western blotting using

streptavidin–peroxidase for detection. The migration positions of

selected molecular mass standards are indicated, with their respective

masses expressed in kDa.
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with G108. 2F5 is cleaved at the same position when

the antibody is produced in planta or upon incubation

of the antibody with leaf apoplastic fluid in vitro [11].

In the case of PG9, NbSBT1 processed the heavy

chain at YNYY111↓D112FY, YNYH121↓Y122MD,

YHYM123↓D124VW, TTVT133↓V134SS and VTVS135↓S136AS.
Cleavage at Y111↓D112 is documented for PG9

extracted from plants [11]. Incubation of PG9 with

NbSBT2 resulted in proteolysis of the heavy chain

at NYYD112↓F113YD, DFYD115↓G116YY and

HYMD124↓V125WG, demonstrating a notable prefer-

ence of NbSBT2 for aspartic acid residues at the

substrate position preceding the scissile bond (Table S5;

Fig. S5). Hydrolysis after D112, D115 and D124 was also

observed in PG9 isolated from plants or upon incuba-

tion of the antibody with apoplastic fluid [11,31].

A1AT is another example of a recombinant protein

prone to proteolytic inactivation when expressed in

N. benthamiana [12]. When A1AT was incubated with

NbSBT1, rapid proteolysis into a 40 kDa form was

observed. Two new C termini were identified (E378 and

M382), both located in the reactive centre loop of the

protease inhibitor. Truncation of A1AT in planta

occurs largely by cleavage at the same positions [12].

NbSBT2 acted on A1AT far slower than NbSBT1,

possibly owing to the absence of aspartic acid residues

in the reactive centre loop (Fig. 3; Table S5).

While in vitro cleavage of 2F5 by apoplastic fluid

can be completely prevented by the addition of PMSF

or FP-biotin, processing of PG9 is most effectively

inhibited by a combination of aminoethylbenzene-

sulphonyl fluoride (AEBSF) and acetyl (Ac)-YVAD-

CMK [31]. We have therefore tested the effects of

these inhibitors on the degradation of 2F5 and PG9

by NbSBT1 and NbSBT2 (Fig. 4). FP-biotin and

PMSF proved highly reactive with NbSBT1: they were

the most effective NbSBT1 inactivators, almost com-

pletely blocking proteolysis of both mAbs. AEBSF

also showed a substantial inhibitory capacity. By con-

trast, Ac-YVAD-CMK and benzyloxycarbonyl-Val-

Ala-Asp-fluoromethylketone (Z-VAD-FMK) were

much less effective. The inhibition profile of NbSBT2

differed. Ac-YVAD-CMK and Z-VAD-FMK were the

substances most effective at inactivating NbSBT2,

almost completely preventing the cleavage of PG9.

This high sensitivity to Ac-YVAD-CMK and Z-VAD-

FMK is in agreement with the substrate specificities of

NbSBT2 homologues from tobacco and tomato

[29,30]. AEBSF also showed a strong inhibitory capac-

ity towards NbSBT2. By contrast, PMSF and FP-bi-

otin were far less effective. These data support the

notion that NbSBT1 accounts for most 2F5 proteoly-

sis in N. benthamiana, whereas both NbSBT1 and

NbSBT2 are involved in the degradation of PG9. In

line with previously published inhibition profiles [12],

NbSBT1 seems to be largely responsible for A1AT

processing, although NbSBT2 could play a minor role

in this process.

Discussion

Although many studies have reported instances of

unintended proteolysis in plant-based expression sys-

tems [10,19], efforts to identify proteases involved in

these degradation processes have proved futile so far.

Fig. 3. Processing of mAbs and A1AT by NbSBT1 and NbSBT2

in vitro. mAbs (2F5, PG9) or A1AT (50 µg�mL�1) were incubated

with purified NbSBT1 (2 µg�mL�1), NbSBT2 (4 µg�mL�1) or an

equivalent volume of EV at pH 5.5 for the indicated times and then

analysed by immunoblotting with antibodies to the heavy chain of

human IgG (2F5, PG9) or A1AT, respectively. The migration

positions of selected molecular mass standards are indicated, with

their respective masses expressed in kDa. hc, full-length heavy

chain; *, 40 kDa heavy chain degradation product.
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We have now isolated two N. benthamiana SBTs which

are capable of cleaving two proteolysis-prone mAbs

(2F5, PG9) as well as another protease-susceptible

human serum glycoprotein (A1AT) at the same posi-

tions as it happens in planta or upon incubation with

unfractionated apoplastic fluid. Together, the activities

of NbSBT1 and NbSBT2 are sufficient to account for

all inadvertent proteolytic events which occur during

production of these potential biotherapeutics in

N. benthamiana [11,12]. These results suggest that

NbSBT1 and NbSBT2 are the key enzymes involved

in processing of mAbs and A1AT in planta. However,

we cannot rule out that other apoplastic SBTs con-

tribute to mAb and A1AT cleavage in N. benthamiana.

The documented catalytic redundancy of plant SBTs

[21,32] suggests that some of the other apoplastic SBTs

identified in this study could display similar substrate

specificities as NbSBT1 and NbSBT2.

Proteomic studies have provided comprehensive evi-

dence that infiltration with agrobacteria modifies the

proteolytic landscape of N. benthamiana [16]. Hence, it

has been proposed that the process of agroinfiltration

triggers the synthesis of the proteases involved in

heterologous protein degradation in this plant. How-

ever, NbSBT1 and NbSBT2 are abundant apoplastic

proteins present in similar amounts in agroinfiltrated

and untreated N. benthamiana leaves. Moreover, activ-

ity-based probe profiling (ABPP) confirmed that these

two proteases are catalytically active in the apoplast

under both conditions [16]. These findings are fully

consistent with our observation that agroinfiltration

does not affect the capacity of apoplastic fluid to pro-

cess the mAbs 2F5 and PG9 in vitro [11]. However, it

is possible that other N. benthamiana SBTs are upregu-

lated upon infection with agrobacteria and thus

enhance the proteolytic potential of apoplastic fluid

after agroinfiltration. It should be noted that agroinfil-

tration has been shown to upregulate the expression of

papain-like cysteine proteinases and legumains [33],

which have been also implicated in the degradation of

recombinant proteins in N. benthamiana and related

Nicotiana species [11,20,34].

Although NbSBT1 is capable of processing the

tomato immune protease Rcr3 [35], the physiological

functions of NbSBT1 and NbSBT2 are currently

unknown. Still, some assumptions can be made based

on studies of their homologues in other plant species

including Arabidopsis thaliana and N. tabacum. The

A. thaliana SBT most similar to NbSBT1 (recently also

named NbSBT5.2 [35]) is AtSBT5.2, with whom it

shares 58% sequence identity. As noted for NbSBT1,

AtSBT5.2 is capable of autocatalytic processing [36].

Originally, AtSBT5.2 was identified as CO2 response

secreted protease (CRSP). This CO2-induced prote-

olytic activity mediates the repression of stomata for-

mation upon exposure of A. thaliana leaves to elevated

atmospheric CO2 concentrations. Mechanistically,

AtSBT5.2 has been shown to process epidermal pat-

terning factor 2 (EPF2), the precursor of an extracellu-

lar peptide repressing stomatal development [37].

Fig. 4. Effect of protease inhibitors on in vitro processing of mAbs.

2F5 or PG9 (50 µg�mL�1) were incubated with purified NbSBT1

(2 µg�mL�1) or NbSBT2 (4 µg�mL�1) for 3 h after preincubation of

the enzymes with solvent (DMSO) or the indicated protease

inhibitors [20 mM AEBSF; 1 mM PMSF; 100 µM FP-biotin; 100 µM

Ac-YVAD-CMK (YVAD); 100 µM Z-VAD-FMK (VAD)] for 1 h at

37 °C. Samples were then analysed by immunoblotting with

peroxidase-labelled antibodies to the heavy chain of human IgG.

Untreated mAbs were loaded as controls. The migration positions

of selected molecular mass standards are indicated, with their

respective masses expressed in kDa. hc, full-length heavy chain; *,

40 kDa heavy chain degradation product.
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However, the proposed cleavage site of AtSBT5.2 in

EPF2 (SLPD↓CSYA) displays no close resemblance

with the sequences hydrolysed by NbSBT1 in 2F5,

PG9 and A1AT. AtSBT5.2 is also capable of process-

ing the precursor of inflorescence deficient in abscis-

sion (IDA), yielding the mature IDA peptide involved

in the abscission of floral organs [32]. This cleavage

event occurs at the sequence YLPK↓GVPI. Interest-

ingly, the four residues following the scissile bond are

identical to those of the NbSBT1 cleavage site in the

CDR H3 loop of 2F5 (TTLF↓GVPI).

NbSBT2 is a close relative of N. tabacum phytas-

pase, a constitutively secreted apoplastic SBT promot-

ing programmed cell death in response to viral

infection or exposure to abiotic stresses [38]. Like

NbSBT2, phytaspase has an exquisite preference for

aspartic acid residues at P1, the position preceding the

scissile bond [30]. Similar observations were made for

Solanum lycopersicum Phyt2 [29], which displays 86%

sequence identity with NbSBT2 and thus probably rep-

resents its tomato orthologue. Phyt2 is capable of

cleaving the precursor of the wound hormone systemin

at two positions (VRED↓LVAQ and MQTD↓NNKL),

which results in the release of a biologically active pro-

cessing intermediate [39]. Generation of the abscission-

inducing peptide phytosulphokine by Phyt2 is due to

precursor maturation at AHLD↓YIYT [40]. These

results compare well with NbSBT2, which also toler-

ates many amino acids at substrate positions other

than P1. Phytaspase is potently inhibited by peptide

aldehydes such as Ac-YVAD-CHO and Ac-VAD-

CHO [38]. This is in good agreement with the efficient

inactivation of NbSBT2 by Ac-YVAD-CMK and Z-

VAD-FMK. By contrast, these two inhibitors exert

comparatively small effects on the proteolytic activity

of NbSBT1. On the other hand, PMSF is a far better

inactivator of NbSBT1 than of NbSBT2. Hence, the

combined application of PMSF and Ac-YVAD-CMK

could present a powerful means to prevent unwanted

proteolysis of recombinant proteins in extracts from

N. benthamiana as long as lines with silenced or dis-

rupted NbSBT1 and NbSBT2 genes are not available.
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