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Silent speech recognition breaks the limitations of automatic speech

recognition when acoustic signals cannot be produced or captured clearly,

but still has a long way to go before being ready for any real-life applications.

To address this issue, we propose a novel silent speech recognition framework

based on surface electromyography (sEMG) signals. In our approach, a new

deep learning architecture Parallel Inception Convolutional Neural Network

(PICNN) is proposed and implemented in our silent speech recognition system,

with six inception modules processing six channels of sEMG data, separately

and simultaneously. Meanwhile, Mel Frequency Spectral Coe�cients (MFSCs)

are employed to extract speech-related sEMG features for the first time. We

further design and generate a 100-class dataset containing daily life assistance

demands for the elderly and disabled individuals. The experimental results

obtained from 28 subjects confirm that our silent speech recognition method

outperforms state-of-the-art machine learning algorithms and deep learning

architectures, achieving the best recognition accuracy of 90.76%. With sEMG

data collected from four new subjects, e�cient steps of subject-based transfer

learning are conducted to further improve the cross-subject recognition ability

of the proposed model. Promising results prove that our sEMG-based silent

speech recognition system could have high recognition accuracy and steady

performance in practical applications.

KEYWORDS

surface electromyography (sEMG), silent speech recognition, Mel frequency spectral

coe�cient, convolutional neural network, subject-based transfer learning
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1. Introduction

Automatic speech recognition (ASR) has a long history of

research (Bahl et al., 1983; Hinton et al., 2012; Chu et al., 2020).

By audio signal processing and modeling, speech contents can

be transcribed into texts for various applications (Yu and Deng,

2016; Yang et al., 2021). Yet in particular cases, the audio signals

cannot be clearly produced or captured. For example, ASR is

improper for patients and the elderly with speech disorders

like dysphonia, because the utterances cannot be pronounced

and recorded clearly (Green et al., 2003). Furthermore, some

emergency situations like the sudden loss of voice and speech

impediment may require special speech interaction assistance

as well (Jong and Phukpattaranont, 2019). To this end,

silent speech recognition (SSR) is proposed to overcome the

limitations of ASR under the above circumstances (Meltzner

et al., 2018).

Silent Speech Recognition:With the absence of exploitable

audio input, multiple biomedical modalities and signals have

been implemented in the decoding of human intentions through

SSR (Ji et al., 2018). Permanent magnet pellets, for example,

are used in Hofe et al. (2013) to capture permanent-magnetic

articulography (PMA) speech data as additional information

for speech recognition. Similarly, electromagnetic articulograph

(EMA) based SSR uses sensors adhered to the tongue and lip

to record articulatory movements during speech (Kim et al.,

2017). Ultrasound images of the lip region can be used as

speech clues as they provide the real-time position of the

tongue during speech, and sometimes they are combined with

optical images (Hueber et al., 2008; Cai et al., 2011) to give

better recognition performance. Electro-optical stomatography

(EOS) adopts electrical sensors and optical sensors to record

the complete trace of lip and tongue movements during

speech (Stone and Birkholz, 2016). Although electromagnetic

signals, ultrasound, and optical images are used for speech-

related information decoding, they have some limitations

regarding the data acquisition methods. For example, the use

of electromagnetic sensors adhered to the tongue directly in

the mouth may bring health concerns, and the ultrasound

probe is not suitable for portable applications. Although EOS

is proposed to extract speech information from the lip region

especially, there are too many sensors placed in the mouth,

affecting the normal speech process. From this aspect, surface

electromyography (sEMG) signal can be captured easily from

the surface of body skin (Englehart et al., 1999) and has been

used in previous studies for speech recognition from about the

1980s (Morse et al., 1989), showing satisfactory performance

over the time (Denby et al., 2010; Schultz et al., 2017).

Surface EMG Feature Extraction: sEMG is produced by

muscle movements according to the electrical propagation of

central and peripheral nerves (Chowdhury et al., 2013a). It is

captured by surface electrodes, which are adhered to speech-

related muscles and have very little influence on the subject

during speech. While at the same time, it is non-stationary

and difficult to be processed because of the electrophysiology

principles and irregular motor unit discharges during muscle

activities (Karlsson et al., 1999; Xie andWang, 2006; Chowdhury

et al., 2013b). As a result, different types of features and

feature extraction methods have been adopted in sEMG signal

processing. As summarized in Srisuwan et al. (2018) and

Mendes Junior et al. (2020), time domain features such as Mean

Absolute Value (MAV), Root Mean Square (RMS), and Variance

(VAR) describe how sEMG signals vary temporally. They can be

extracted in a simple but fast way and have been widely used

in the study of sEMG signals (Hudgins et al., 1993; Englehart

et al., 1999; Tkach et al., 2010; Samuel et al., 2018). On the

other hand, frequency domain features are also used in the

recognition and classification of sEMG signals, especially for

the study of muscle fatigue (Phinyomark et al., 2012). However,

in some cases they show relatively poor recognition results

compared to using time-domain features (Srisuwan et al., 2018;

Jong and Phukpattaranont, 2019; Mendes Junior et al., 2020).

Furthermore, studies show better recognition performance by

combining several types of features to form a new feature

vector of the collected data (Atzori et al., 2016; Mendes Junior

et al., 2020). Recently, spectral features such as Mel-Frequency

Cepstral Coefficients (MFCC) (Meltzner et al., 2017; Kapur

et al., 2018; Zhang et al., 2020) tend to be more popular in

both acoustic speech recognition and sEMG-based silent speech

recognition. They have relatively higher dimensions and can

be used to extract more speech-related characteristics from the

original signals.

Surface EMG based Silent Speech Recognition:

Classification algorithm plays an important role in sEMG-

based silent speech recognition. Statistical model Hidden

Markov Model (HMM) is one of the most classical recognition

methods for both automatic speech recognition and silent

speech recognition, and has been widely implemented in

relevant studies (Meltzner et al., 2011, 2017, 2018; Kubo

et al., 2013). With the development of high-performance

computers and data acquisition techniques, machine learning

algorithms such as the basic Feedforward Neural Networks

(Jong and Phukpattaranont, 2019), Linear Discriminant

Analysis (LDA) (Liu et al., 2020), Bayes network (Dobrucki

et al., 2016), Random Forests (RF) (Rameau, 2020; Zhang et al.,

2020), and Support Vector Machine (SVM) (Rameau, 2020)

have been used for silent speech recognition. Recently, deep

learning has achieved great success in pattern recognition tasks,

among which Convolutional Neural Network (CNN) shows

outstanding performance not only in image classification but

also in speech recognition (Liu et al., 2018; Xiong et al., 2018;

Rashno et al., 2019). Successful implementations of CNN in

sEMG-based silent speech recognition are reported as well. For

example, Kapur et al. (2018) employed 1-dimensional CNN to

process MFCC features extracted from sEMG data and used a

deep structure to predict the word label in the output. Under
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laboratory circumstances, it can be easy to collect high-quality

data for machine learning algorithms, which is not consistent

with the real application situation outside. The research of

robust recognition algorithms and transfer learning strategies is

necessary when it is difficult to acquire enough data for model

training and cross-subject application in practice.

The combination of spectral features and machine learning

algorithms has been widely accepted in sEMG-based silent

speech recognition, yet it is not guaranteed to have satisfactory

recognition accuracy because of the complex frequency

components and the noise mixed in sEMG signals during

data acquisition. What’s more, physiological signals rely heavily

on the physiological conditions of subjects, which brings

great challenges for cross-subject recognition. More effective

methods are required both in feature extraction and recognition,

especially for real-life applications. From this aspect, we carried

out this research on the facial sEMG-based silent speech

recognition approach and provided a robust interaction system

for different users. Through the experiments of data collected

from healthy subjects, and the research of transfer learning for

cross-subject scenery, we constructed our sEMG-based silent

speech recognition system at this step, and we were prepared

for further practical applications. Our main contributions in this

paper include:

• Proposing a novel deep learning architecture named

Parallel Inception Convolutional Neural Network

(PICNN). This parallel processing architecture is designed

to further extract and recognize spatial features from

the spectrum of sEMG signals. It is proven to have the

best recognition performance in offline evaluation and

robustness in cross-subject experiments, showing great

potential for future implementation in daily life assistance.

• Design and generate a 100-class Chinese phrase corpus

with 28 healthy subjects who participated in sEMG data

collection, containing short demands and utterances in

medical care and living assistance for various users.

The corpus simulates basic application circumstances

for the proposed silent speech recognition system and

provides a research platform for cross-subject silent speech

recognition research in this paper.

• Implement a subject-based transfer learning strategy for

cross-subject experiments and improve the recognition

ability of the proposed PICNN model. By simple steps

of fine-tuning with a limited amount of new data,

pre-trained models can be used for new subjects with

steady performance. It is an essential foundation for

practical applications of sEMG-based silent speech

recognition systems.

In the following part of this paper, the construction and

pre-processing procedures of the sEMG speech corpus are

described in detail in Section 2. Section 3 introduces the

newly developed PICNNmodel. Section 4 presents experimental

details, including feature extraction methods and baseline

models used in following experiments. Results of our research

are delivered in Sections 5, 6 gives some further discussions.

Section 7 makes a conclusion of this work and proposes outlook

in the future.

2. Cross-subject sEMG speech
dataset

2.1. Corpus design

Based on the five levels of Maslow’s Hierarchy of Needs

(Maslow, 1943), we design 100 classes of daily assistance

demands in Chinese for a wide range of users, especially the

elderly and patients with speech disorders. Five categories of

demands, including physiology, safety, social interaction, self-

respect, and fulfillment, as well as entertainment requirements

are considered in the design of demand contents to covermost of

the interaction needs and meet as many potential requirements

as possible in daily life. There are three to five different

Chinese characters in each demand. Specifically, 18 demands

contain three characters, 48 demands contain four characters

and the remaining 34 demands contain five characters. There

are some examples listed in Table 1 with phonetic Mandarin

transcriptions of their pronunciation.

2.2. sEMG signal acquisition

The sEMG data is captured using surface electrodes from six

muscles on the subject’s face and neck, i.e., mentalis, risorius,

levator labii superioris, anterior belly of the digastric, mylohyoid,

and platysma (indicated as CH1 to CH6), which are all related

to the speech process. The device we use for sEMG signal

acquisition is NSW308M bipolar EMG system produced by

Neuracle Technology. Six channels of sEMG data collection

electrodes are placed on the surface of corresponding muscles,

as shown in Figure 1 below. An additional reference electrode

is placed upon the collarbone in order to record the potential

difference of the human body as a baseline.

The sEMG data in the dataset is collected from 28 normal

subjects (nineteen male and nine female subjects, aged from 23

to 32, with a mean age of 26.21), with Mandarin as their mother

language. During the data collection experiment, each subject

is required to utter the Chinese phrases in a low voice. When

the phrase is displayed on the screen and sustained for 2 s, we

record the real-time sEMG signals from corresponding muscles

simultaneously. A timeline for the data collection process is

shown in Figure 2. Some demands shall be uttered quicker if

there are more characters while some can be uttered slowly if

there are fewer words. All the 100 phrases in the corpus are
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TABLE 1 Examples of the utterances in corpus.

Category Label Demand Phonetic transcription in mandarin English translation

Physiology 8 我要上厕所 wo3yao4shang4ce4suo3 I’m going to the toilet

Safety 28 紧急呼救 jin3ji2hu1jiu4 Emergency

Social Interaction 65 我要发短信 wo3yao4fa1duan3xin4 I want to send a text message

Self-respect and Fulfillment 77 我能行的 wo3neng2xing2de5 I can do it

Entertainment 89 我要看电视 wo3yao4kan4dian4shi4 I want to watch TV

FIGURE 1

Positions of paired electrodes adhered on subject’s face and

neck for data acquisition.

read once in one session and each subject repeats 10 sessions

during the whole data collection experiment. Additionally, a

non-content class of sEMG data is recorded at the end of each

session (indicated as baseline data in Figure 2) so there are

101 classes of sEMG data in one session. For the cross-subject

sEMG speech dataset used in this research, there are 280 sessions

of sEMG data collected from 28 subjects, including 28,078

pieces of valid sEMG data (we delete corresponding sEMG data

when the subject makes a mistake uttering the phrase) each

2-s long. Data acquisition experiments are approved by the

Institutional Review Board of Tianjin University (TJUE-2021-

138). The informed consent form is read and signed by each

subject before experimental procedures.

2.3. Signal pre-processing

Raw sEMG data is recorded at the sampling rate of 1,000 Hz.

Although they have undergone a series of processing steps such

as filtering and de-noising by the software built in the acquisition

system, there are still several types of interference such as DC

offset, 50 Hz power frequency noise, and peak amplitude mixed

in the sEMG data. These noises will result in a low signal-to-

noise ratio (SNR), therefore signal pre-processing is required.

On the other hand, we plan to release our corpus and dataset for

more research in sEMG-based silent speech recognition in the

near future. For convenience of use, it is important to conduct

necessary pre-processing steps to improve our data quality. To

be specific, a Butterworth notch filter for 50 Hz power frequency

noise removal is first applied to the raw data. The frequency

range of effective sEMG signals is mainly distributed at 10–400

Hz (Lyu et al., 2014), thus a Butterworth band-pass filter of

10–400 Hz is then implemented.

3. Parallel inception convolutional
neural network

3.1. Fine-grained feature combination

In conventional research, sEMG data collected from

different muscles tend to be considered as a whole and fed into

the following recognition system. However, innovated by the

original framework of Inception architecture and GoogLeNet

(Szegedy et al., 2015), its outstanding upgrades (Szegedy et al.,

2016, 2017) and Xception architecture (Chollet, 2017), we

find it may be efficient to process sEMG signals in each

channel separately to obtain the unique spatial features among

six channels and regional features within each channel. The

design of parallel architecture is to better extract muscle

activity patterns from different positions on the face and

neck, and keep their particular characteristics during model

training and recognition. From this aspect, we propose our

sEMG-based silent speech recognition model Parallel Inception

Convolutional Neural Network (PICNN) in this paper. The

newly proposed PICNN model adopts parallel convolutional

architecture, indicated as the Inception module, in the front end

of the model to process the input from each data channel. As

shown in Figure 3, six inception modules are used to extract

fine-grained features from each channel, respectively, while

keeping the spatial correlations of six channels as another latent

information for recognition. An inception module is consisted

of three sizes of convolutional filters (i.e., 1×1, 3×3, 5×5),

with 32 feature maps for each size of them. Input sEMG data

are filtered by three types of filters respectively and a total of

96 feature maps can be obtained by concatenating the three

types of feature outputs. In practice, we adopt the architecture

of the inception module with dimension reductions, as raised

in Szegedy et al. (2015). A Max pooling layer is added after
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FIGURE 2

Data collection experiment timeline for one session.

concatenation to further reduce the feature dimension. For two-

dimensional spectral feature input, we use 2D convolution layers

and for one-dimensional features like time domain features, we

merely change to use the 1D convolution layer but keep the

whole architecture and filter size the same.

3.2. PICNN architecture

Surface EMG data from six channels are processed by six

Inception modules described above simultaneously, and the

output feature maps are concatenated one by one to form a

feature vector with a total number of 576. In parallel processing,

parameters of convolution kernels used in each channel are

updated after training and error propagation, which means

we have extracted regional characteristics from six channels of

sEMG data collected in the previous procedure. After that, a

common convolutional neural network structure is adopted for

feature processing and Softmax is used as the final activation

function for classification. As shown on the right side of

Figure 3, the remaining part of the proposed PICNN has a

total of six convolution layers, four max pooling layers and a

global max pooling layer to form a deep convolutional neural

network, indicated as Convolution Block in the Figure 3. The

number of hidden nodes in the last fully connected layer is

101 in this study, according to the number of classes in the

speech corpus we collected. Besides, each convolution layer is

followed by the Batch Normalization layer to avoid fluctuations

of model parameters during training and testing (Ioffe and

Szegedy, 2015). Dropout is also added to each max pooling

layer to resist overfitting, and 25% of the neurons will be

randomly dropped in this process. Leaky Rectified Linear Unit

(Leaky ReLU) is used as an activation function in the whole

PICNN architecture.

4. Experiment

4.1. Feature extraction methods

Time domain features are widely used in sEMG signal

processing and sEMG-based silent speech recognition (Wand

et al., 2014; Srisuwan et al., 2018), so we use some of them in

our research as well. We omit the first 250 ms of sEMG data

as the reaction period of each subject, and then a sliding time

window with a fixed length of 200 ms is used here. It moves 50

ms forward each step so the total number of time windows is

32 for each channel of sEMG data. The total number of sliding

windows for each utterance is always the same because the data

length is 2 s, no matter how long the utterance is. Considering

the 1,000 Hz sampling rate, there are 2,000 sampling data points

in each piece of sEMG data from each channel. The window

length of 200 ms and hop size of 50 ms were determined by

a pre-research based on previous studies (Smith et al., 2011;

Mendes Junior et al., 2020). We selected three window length

values of 200, 500, and 1,000 ms, combined with three overlap

rates of 0.25, 0.5, and 0.75 for the sliding time windows.

Paired experiments were conducted to compare the recognition

accuracy, and we observed that 200 ms of window length with

an overlap of 0.75 (which indicated the hop size of 50 ms) gave

the best recognition performance.

In this paper, four time domain features are selected and

tested, those being Mean Absolute Value (MAV), Variance

(VAR), Root Mean Square (RMS), and Mean Waveform Length
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FIGURE 3

Architecture of proposed PICNN model.

(MWL). Mean Absolute Value (MAV) is a common feature used

in sEMG signal pattern recognition and related applications

(Oskoei and Hu, 2007; Phinyomark et al., 2009). It is used

to measure the overall muscle activities and represent muscle

movements during speech. For a time series x(i), it is defined as:

MAVk =
1

W

W
∑

i=1

|x (i)| (1)

where k is the kth time window (the same definition is used

below) and W is the length of sliding time window (i.e., 200

sample points according to sampling rate). These variables are

kept the same in the following feature extraction methods.

Variance (VAR) reflects the deviation between signal

amplitude and its mean value. It also detects clustering

characteristics of certain muscle activity from corresponding

sEMG signals. We use population variance here and the

mathematical definition of VAR is:

VARk =
1

W

W
∑

i=1



x (i) −
1

W

W
∑

i=1

x (i)





2

(2)

Root Mean Square (RMS) relates to the average power of the

movement. RMS values of different signal channels can reflect

the contribution of the muscles in different positions when

speaking. RMS can be calculated by:

RMSk =

√

√

√

√

1

W

W
∑

i=1

x (i)2 (3)

Mean Waveform Length (MWL) is the overall measure

of muscle activities, and it also indicates the complexity and

persistence of the sEMG signals. MWL can be defined as:

MWLk =
1

W

W−1
∑

i=1

|x (i+ 1) − x (i)| (4)

We use each of them as the independent feature input

in recognition experiments and then combine them to form

a new feature vector named TD4. What’s more, our previous

research (Wu et al., 2021) indicates that the combination of both

time and frequency domain features can have better recognition

performance, so we add another two frequency domain features

Mean Frequency (MNF) andMedian Frequency (MDF) into the

feature vector and combine them as TFD6. Mean Frequency

(MNF) is the centroid frequency of the Power Spectral Density

(PSD) obtained from sEMG signal. It is calculated as follows:

MNFk =

∑W
i=1 fiPi

∑W
i=1 Pi

(5)

where f refers to the frequency and P is the PSD corresponding

to f . Median Frequency (MDF) is the frequency that divides the
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PSD into two equal parts. It satisfies the following equation:

MDF
∑

i=1

Pi =

∞
∑

i=MDF

Pi =
1

2

∞
∑

i=1

Pi (6)

Apart from time domain and frequency domain features,

spectral features Short Time Fourier Transform (STFT), Mel-

Frequency Cepstral Coefficient (MFCC), and log Mel frequency

spectral coefficient (MFSC, also referred to as Mel-filterbanks

in Zeghidour et al., 2018) are used in the feature extraction as

well. STFT sets finite windows on the non-stationary signal and

calculates the Fourier transform within the windowed signal. It

can be obtained by:

STFT(t, f ) =

∫ ∞

−∞

x(τ )h(τ − t)e−j2π f τ dτ (7)

where h(τ − t) is the window function, f and τ are modulation

frequency and translation parameter, respectively. MFSC is

used for sEMG signal feature extraction for the first time.

The feature extraction method of MFSC is similar to MFCC,

including pre-emphasis, framing and windowing, Fast Fourier

Transform (FFT), Mel filter bank filtering, and logarithm in the

end (Mohamed, 2014), while it omits the last step of Discrete

Cosine Transform (DCT) in the feature extraction of MFCC

(Zheng et al., 2001). Another convenient way to obtain MFSC

is to perform a Short Time Fourier Transform (STFT) of the

input signal and then take averages of triangular filters in the

frequency domain, as defined in Zeghidour et al. (2018). We

adopt these three features, i.e., STFT, MFCC, and MFSC to

compare the recognition performance of spectral features and

the above feature extraction methods.

In practice, we implement 36 Mel filters and 36 frames to

form the MFSC features from each channel of sEMG signals.

For MFCC features, we implement 36 frames and a frame of

12 Mel filters, first-order derivative, and second-order derivative

of the Mel filters, to form a 36 × 36 dimensional feature

matrix for each channel of data. The python package librosa

(doi: 10.5281/zenodo.3955228) is used to obtain MFSC and

MFCC features during this process. We set the length of the FFT

window to 200 and the hop length to 50, respectively. For STFT

features, we use the python package signal from the Python

SciPy library.

4.2. Baseline models

According to the previous research in the sEMG based

silent speech recognition area, we selected some commonly used

machine learning algorithms and state-of-the-art deep learning

architectures as baseline models to compare the recognition

and classification ability. Three machine learning algorithms,

i.e., Random Forest (RF), Linear Discriminant Analysis (LDA),

and Support Vector Machine (SVM) are used here because of

their successful implementations in sEMG pattern recognition

studies. The deep learning architecture, Convolutional Neural

Network (CNN) is chosen, which is one of the most basic but

popular deep learning architectures in several deep learning

fields such as computer vision and natural language processing.

As our model is a more complex architecture of CNN, we would

like to compare it with this basic model to see how the proposed

PICNN outperforms conventional models in this research.

Particularly, CNN used in this paper is constructed upon a

famous structure named VGGNet (Simonyan and Zisserman,

2014). We make some slight adjustments to the number of

convolution layers and filter sizes of VGG16 to fit in our dataset.

The number of feature maps obtained by each convolution

layer is reduced by half and we also omit the last few of them

in the original VGG16 architecture due to the data shape of

input features.

Further, we adopt another structure of CNN as the

baseline model. It is Inception architecture, from which our

model PICNN is innovated and further developed. Inception

architecture is used to extract spatial information and regional

features by grouped convolution layers with different kernel

sizes. It originally appeared in GoogLeNet (Szegedy et al., 2015)

for computer vision and image processing tasks, achieving

outstanding performance as expected. We use this Inception

module and construct a similar structure of GoogLeNet as a

baseline model. Different from PICNN, sEMG features of six

channels are first concatenated as a larger input and then fed

into convolutional kernels with sizes of 1×1, 3×3, and 5×5,

respectively. The feature maps obtained from each convolution

layer will be further concatenated to form a feature vector and

fed into a deep convolution block afterward. It is followed by a

fully connected layer and Softmax to give a recognition result.

To be conveniently referred to in the following experiments,

we simply name this structure as Inception, as shown

in Figure 4.

4.3. Surface EMG based silent speech
recognition system and experiment
settings

The diagram of our sEMG-based silent speech recognition

system using the PICNN model is shown in Figure 5, and

we take MFSC feature input as an example to show the

whole data processing pipeline. sEMG data from the training

set and corresponding labels are used in the offline training

process, while the model parameters obtained from this step

are used for model testing to further analyze the recognition

and classification ability of our system. The whole dataset we

obtained from 28 subjects is first shuffled randomly. After that,

80% of the data is used for model training and validation, and

the rest 20% is used for testing. From this aspect, we focus on
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FIGURE 4

Structure of inception model used in this paper.

FIGURE 5

Diagram of proposed sEMG-based silent speech recognition system.

the cross-subject recognition ability of our model, rather than

the recognition ability for each subject, respectively.

We carry out data collection programs and recognition

experiments in Python. Relevant models and classification

tools in the Python library scikit-learn are used in the

realization and evaluation of three machine learning

algorithms. For baseline models CNN and Inception,

as well as our PICNN model, we code on our own

with Tensorflow and Keras rather than using available

model packages.

5. Results

We use the classification accuracy on the test set as

the evaluation of model recognition ability. It is defined
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TABLE 2 Classification accuracy (%) for di�erent feature extraction methods and classifiers.

Classifier
Feature extraction method

MAV VAR RMS MWL TD4 TFD6 STFT MFCC MFSC

LDA 19.11 16.65 18.71 19.36 25.04 24.12 16.15 12.96 7.34

RF 42.31 40.44 40.87 47.35 44.27 43.41 39.17 24.41 29.90

SVM 53.22 46.51 51.46 58.73 54.10 51.67 45.42 28.54 39.42

CNN 60.36 57.14 58.56 67.29 68.29 68.87 64.33 80.93 87.34

Inception 66.83 63.03 63.66 72.08 70.32 69.89 71.31 81.36 89.80

PICNN 68.36 66.01 67.79 74.95 71.83 72.90 73.31 f82.67 90.76

as follows:

Accuracy =
number of correctly predicted labels

total number of labels
(8)

Apart from it, the recognition rate for each class of Chinese

phrase is also adopted to show the robustness of our model. We

define the recognition rate as follows:

Recognition rate =
True Positive

True Positive+ False Negative
(9)

which is the same definition as recall in classic classification

tasks. We use these two evaluation metrics (i.e.,

classification accuracy and recognition rate) in the next

recognition experiments.

5.1. Comparison of feature extraction
methods and recognition models

The classification accuracy for each pair of feature extraction

method and classifier is shown in Table 2. It was obvious

that our PICNN model achieved the highest classification

accuracy among these six recognition models using different

feature extraction methods, far exceeding the machine learning

algorithms LDA, RF, and SVM in this research. The classification

accuracy reached 90.76% for MFSC features and the PICNN

model, which indicated the best recognition performance of

our sEMG-based silent speech recognition system. The results

showed the effectiveness and promising recognition ability of

our sEMG data acquisition system and recognition system,

getting us prepared to invite the elderly and patients with speech

disorders to participate in our research.

We also investigated the recognition rate for each class of

phrase in the corpus to better analyze the robustness of our

model. In practice, we recorded the recognition rate for all the

101 classes of Chinese phrases and the empty demand using

CNN, Inception, PICNN architectures with MFSC, as well as

SVM classifier with MWL feature. LDA and RF failed to obtain

a classification accuracy above 50% with any of the feature

TABLE 3 Recognition rate analysis for di�erent models.

Classifier SVM CNN Inception PICNN

Minimum 0.35 0.59 0.61 0.74

Mean 0.61 0.87 0.89 0.90

Standard Deviation 0.150 0.076 0.071 0.054

extraction methods so we abandoned these two models in the

following experiments. Statistical analysis of the recognition rate

for these 101 classes of utterances in the corpus using four

classifiers was shown in Table 3.

From the perspective of each class of demands, we focused

on the minimum recognition rate of the above methods. The

minimum recognition rate stood for the worst recognition

result. It was 74% for PICNN and outperformed the other

three models. Our proposed PICNN architecture obtained not

only the highest recognition accuracy on the whole dataset but

also the highest recognition threshold considering each class

of demands.

On the other hand, we also looked into the variance and

degree of dispersion in the recognition rates. The standard

deviation was 0.054 for PICNN, which showed the least

dispersion degree of the recognition rate among classes. It

confirmed that the proposed PICNN method had smaller

recognition differences among different classes in the corpus and

more robust performance.

5.2. Recognition di�erences among
classes

To further study the recognition differences among

utterances, we analyzed the classification report, summarized the

confusion matrix of our PICNN model using the MFSC feature,

and recorded the 10 classes of demands which obtained the

lowest recognition rate. Detailed information on these demands

and how they were misclassified into other classes was illustrated

in Table 4.
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TABLE 4 Specific information of the 10 classes of demands with the

lowest recognition rate.

Label Misclassified labels (number of

samples misclassified)

Recognition

rate

38 98 (1), 82 (2), 33 (2), 30 (1), 24 (2), 13 (1), 3 (1),

0 (1)

0.83

77 82 (1), 48 (1), 31 (1), 13 (1), 11 (1), 0 (1) 0.81

79 85 (14), 80 (1), 64 (1), 54 (1), 16 (1) 0.81

85 93 (1), 80 (1), 79 (2), 77 (1), 30 (1) 0.81

92 97 (2), 68 (1), 66 (2), 25 (1), 18(1), 6 (1) 0.81

80 98 (1), 90 (2), 81 (4), 23 (1), 16 (1) 0.79

89 97 (2), 95 (2), 92 (2), 88 (1), 83 (1), 77 (1), 69 (1),

68 (2), 66 (4), 29 (1), 6 (1), 4 (1)

0.79

69 97 (1), 92 (2), 84 (1), 77 (1), 74 (1), 59 (1), 33 (1),

23 (4), 4 (1), 0 (1)

0.76

4 71 (1), 69 (1), 42 (1), 39 (1), 36 (2), 30 (1), 15 (1),

11 (2)

0.75

12 92 (1), 91 (1), 82 (1), 81 (1), 77 (1), 69 (1), 60 (1),

38 (1), 32 (1), 31 (1), 13 (1), 11(1), 5 (1), 3 (2), 1

(1)

0.74

Since we shuffled the whole dataset before model training

and testing, there were slight differences in the number of

data for each class of demands in the test set. Overall, the

number of misclassified samples for each class was no more

than six against each false label. However, we still noticed that

14 pieces of sEMG data labeled 79 were classified into label 85.

The demand with label 79 was I want to cut my hair and the

demand with label 85 was I want to wash my hair. The phonetic

transcriptions of these two utterances in Mandarin were shown

in Table 5. They were quite similar to each other considering

the contents and pronunciation in Chinese. The differences in

muscle activities and sEMG data were not distinguished by

feature extraction process and classifier. Meanwhile, we noticed

that the demand I’m a little bit cold with label 12 obtained the

lowest recognition rate using the four classifiers listed above.

The phonetic transcription of this utterance was also indicated

in Table 5. It was misclassified into another fifteen demands

according to the confusion matrix, far exceeding other classes of

demands in perspective of misclassification. We would continue

to study the reason why this particular demand was difficult to

be recognized by the recognition system.

5.3. Cross-subject experiments and
transfer learning

Cross-subject adaption is an essential consideration for

sEMG based silent speech recognition system. For the practical

application test, we invited four more subjects to take part

TABLE 5 Phonetic information for utterances labeled 79, 85, and 12.

Label Demand Mandarin phonetic

transcription

English translation

79 我要剪头发 wo3yao4jian3tou2fa4 I want to cut my hair

85 我要洗头发 wo3yao4xi3tou2fa4 I want to wash my hair

12 我有点冷 wo3you3dian3leng3 I’m a little bit cold

in the data acquisition process and more experiments were

carried out to improve the cross-subject recognition ability

of our PICNN model with transfer learning strategies. Data

collected from these four subjects (three male subjects and one

female subject) was used in this part of the study. The same

data collection experiment was conducted, and four pre-trained

models, i.e., PICNN, Inception, CNN, and SVM were used for

the speech recognition system. We fed the newly collected data

into these four models using corresponding features and their

model parameters obtained in previous experiments.

A subject-based transfer learning strategy was designed and

tested for these four subjects. The core idea of this cross-subject

transfer learning was to use part of the new data for model fine-

tuning and improve the recognition ability of the pre-trained

models. For each subject, we increased the percentage of labeled

data used for fine-tuning, from one session to at most eight

sessions. The rest of the data was used for model testing.

The rise of classification accuracy for each subject during

the transfer learning process is shown in Figure 6, and an

obvious increase in classification accuracy of sEMG-based silent

speech recognition system for each subject can be observed

here. Although there was a slight fluctuation of classification

accuracy, with more percentage of new data adopted for

model fine-tuning, pre-trained models could improve their

recognition ability in cross-subject application scenery. From

this perspective, we believed that this cross-subject transfer

learning strategy was effective for the implementation of the

proposed silent speech recognition system in cross-subject

tasks. Considering the differences among each subject and

each session of collected data, our newly developed PICNN

model still obtained satisfactory recognition accuracy with more

sessions involved in fine-tuning, giving the best recognition

results for Subject 3 and Subject 4 at the end of transfer

learning experiments.

6. Discussion

6.1. Feature extraction method a�ects
recognition performance

Many studies focus on the development of sEMG features

and the influence of feature extractionmethods in sEMG pattern
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FIGURE 6

Subject-based transfer learning process. The logarithmic trendline of classification accuracy for each subject was drawn based on the PICNN

model.

recognition, not only for speech recognition (Jou et al., 2006)

but also for other applications such as gesture recognition (Ma

et al., 2021). For example, the spectral and power features were

combined to form a new feature vector in Jou et al. (2006),

which was later implemented in a range of sEMG-based speech

recognition researches like Wand et al., 2014. It is clear that

the combination of features from several domains can improve

the recognition ability of sEMG based silent speech recognition

system. Interestingly, we observe a more complex conclusion

on how the feature extraction method affects sEMG pattern

recognition in our research.

Overall, spectral features, especially MFCC and MFSC are

relatively more suitable for three CNN-based deep learning

architectures with the lowest recognition accuracy of 80.93%

for MFCC and CNN pair and highest recognition accuracy of

90.76% obtained by our own model PICNN using MFSC. Both

time domain features and their combinations with frequency

components fail to work very well in recognition experiments

with deep learning methods. While originally proposed based

on human auditory characteristics, experimental results prove

that MFCC and MFSC can be further adopted in sEMG-

based silent speech recognition tasks with promising recognition

accuracy. However, it is almost the contrary results when

spectral features are applied in machine learning algorithms.

Instead, time domain features and their combinations lead to

better recognition accuracy for LDA, RF, and SVM models. We

check our codes and the python packages we use for model

construction and find it may be because of the dimensional

reshape of the input feature, in another word it is the curse of

dimensionality for spectral features.

6.2. Speech recognition methods used in
sEMG based SSR

Apart from feature extraction approaches, the selection of

speech recognition algorithms has a significant impact on the

recognition results. Statistical methods such as Hidden Markov

Model (HMM) and Gaussian Mixture Model (GMM) have

been used for sEMG-based speech recognition for a long time.

For example, in phoneme and word classification task (Zhou

et al., 2009), an average classification accuracy of over 98%

had been achieved by the proposed GMM classifier for up to

20 words over six subjects. They were efficient recognizers for

continuous speech recognition as well (Meltzner et al., 2017).

With the development of machine learning algorithms, some

popular recognition methods have been adopted to further

improve the recognition ability of sEMG-based SSR. Support
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Vector Machine (SVM), which obtained the best classification

accuracy among three machine learning algorithms in our work,

also gave a recognition accuracy of over 75% for phoneme

classification on 10 subjects (Khan and Jahan, 2018). Linear

Discriminant Analysis (LDA) was used for eleven-instruction

classification with over 90% classification accuracy (Liu et al.,

2020). In recent years, Convolutional Neural Networks have

achieved much success in various research fields. Different from

the classification of words or phonemes with limited classes,

CNN architecture shows satisfactory recognition ability in our

work, with at least 80.93% classification accuracy using spectral

features MFCC and MFSC on the 100-class Chinese phrases.

It is a challenging task to distinguish the right label for the

corresponding utterance as there are similar pronunciation and

similar contents among these phrases, and the experimental

results also confirm that spatial feature extraction using

convolutional layers based on spectral feature input can give

a much better recognition performance than machine learning

algorithms like SVM, RF, and LDA. Furthermore, the proposed

PICNN architecture obtains the combination of single-channel

spatial feature and cross-channel spatial feature, which is

proved to be more effective than previous and commonly

used CNN architectures. We believe the parallel inception

convolutional module is a valuable spatial feature extractor. It

can be cooperated with temporal neural networks to improve

speech recognition ability and implemented in more complex

applications in future work.

6.3. Cross-subject issue in practice

In a review paper on sEMG signal processing, classification,

and application, the author pointed out the substantial

differences in EMG signal patterns caused by physiological and

behavioral differences among users (Phinyomark et al., 2020).

The changes in sEMG signals across users brought challenges

and discussions for the implementation of EMG signals, not

only in silent speech recognition but also in other research

fields related to muscle movements (Di Nardo et al., 2017;

Hill et al., 2018). Although the subject-based transfer learning

could improve the recognition accuracy, the final results differed

with the use of sEMG data obtained from different subjects.

As demonstrated in Figure 6, for each recognition method,

sEMG data collected from Subject 2 and Subject 3 showed

relatively higher recognition performance, compared to data

collected from the other two subjects. The cross-subject issue

in practical applications urges the development of a robust

recognition model for sEMG based silent speech recognition

system, and it is also an essential consideration when we design

our PICNNmodel.

7. Conclusion and outlook

In this paper, we proposed a new deep learning architecture,

PICNN, with both high recognition accuracy and robustness.

On the 100-class dataset we designed and collected, the best

recognition accuracy of 90.76% was achieved by PICNN with

MFSC features, which was implemented in sEMG-based silent

speech recognition for the first time. Furthermore, to improve

the cross-subject recognition ability of our system, we applied

subject-based transfer learning with the fine-tuning of the pre-

trained PICNN model, making our model more robust for

different subjects and users. The experimental results confirmed

that our proposed PICNNheld promising ability in sEMG-based

silent speech recognition tasks, and the silent speech recognition

system designed in this paper had great potential for practical

application for a wide range of users, including certain patients

and the disabled in need.

To better improve the recognition performance of our silent

speech recognition system, we would invite more subjects of

different ages and health conditions to participate in the data

collection process. Considering the target users and application

scenarios, we believe the diversity in training and testing data is

the essential part of further implementation.

Furthermore, the differences in recognition rates for

different demands in the dataset will be learned in future work.

We notice that some demands have unsatisfactory recognition

rates even when we try different feature extraction methods

and classifiers in our experiments. We would like to carry

on more experiments with machine learning algorithms and

physiological principles of speech activity aspects, with more

subjects to find out why these particular demands cannot be

recognized. It is expected to further improve the robustness of

our system.
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