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Aims: Patients on antituberculosis (anti-TB) therapy are at risk of drug-induced liver

injury (DILI). MicroRNA-122 (miR-122) and cytokeratin-18 (K18) are DILI biomarkers.

To explore their utility in this global context, circulating miR-122 and K18 were mea-

sured in UK and Ugandan populations on anti-TB therapy for mycobacterial

infection.

Methods: Healthy subjects and patients receiving anti-TB therapy were recruited at

the Royal Infirmary of Edinburgh, UK (ALISTER—ClinicalTrials.gov Identifier:

NCT03211208). African patients with human immunodeficiency virus–TB coinfec-

tion were recruited at the Infectious Diseases Institute, Kampala, Uganda (SAEFRIF—

NCT03982277). Serial blood samples, demographic and clinical data were collected.

In ALISTER samples, MiR-122 was quantified using polymerase chain reaction. In

ALISTER and SAEFRIF samples, K18 was quantified by enzyme-linked immunosor-

bent assay.

Results: The study had 235 participants (healthy volunteers [n = 28]; ALISTER: active

TB [n = 30], latent TB [n = 88], nontuberculous mycobacterial infection [n = 25];

SAEFRIF: human immunodeficiency virus-TB coinfection [n = 64]). In the absence of

DILI, there was no difference in miR-122 and K18 across the groups. Both miR-122

and K18 correlated with alanine transaminase (ALT) activity (miR-122: R = .52, 95%

CI = 0.42–0.61, P < .0001. K18: R =0.42, 95%CI = 0.34–0.49, P < .0001). miR-122

distinguished those patients with ALT>50 U/L with higher sensitivity/specificity than

K18. There were 2 DILI cases: baseline ALT, 18 and 28 IU/L, peak ALT 431 and

194 IU/L; baseline K18, 58 and 219 U/L, peak K18 1247 and 3490 U/L; baseline

miR-122 4 and 17 fM, peak miR-122 60 and 336 fM, respectively.

Conclusion: In patients treated with anti-TB therapy, miR-122 and K18 correlated

with ALT and increased with DILI. Further work should determine their diagnostic

and prognostic utility in this global context-of-use.
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1 | INTRODUCTION

Tuberculosis (TB) is in the top 10 global causes of death, with an esti-

mated 10 million new cases, 1.2 million deaths among human immu-

nodeficiency virus (HIV)-negative individuals and 251 000 deaths

among HIV-positive individuals in 2018.1 The global burden of TB is

unequally distributed, disproportionately affecting low- and middle-

income countries particularly in Africa and Asia. One of the barriers to

the effective treatment of TB are the adverse drug reactions experi-

enced by patients on anti-TB medications, with 1 of the most com-

mon being drug-induced liver injury (DILI).2 Three of the 4 first-line

drugs used in the treatment of TB—isoniazid, rifampicin and

pyrazinamide—are potentially hepatotoxic.3 The estimate of the inci-

dence of DILI in individuals undergoing anti-TB treatment for active

TB varies from 2 to 33% depending on the cohort studied, drug regi-

men used, monitoring and reporting practices.2,4,5 Individuals who

experience DILI often need to stop treatment and, if clinically indi-

cated, recommence once liver function tests (LFTs) return to normal.

However, for some individuals, re-exposure to the same drugs leads

to reoccurrence of DILI,6 and for others, liver injury progresses even

after treatment has stopped.7 Therefore, there is an unmet clinical

need for new tools to improve the safety of this essential antimicro-

bial treatment.

Diagnosis of DILI relies on LFTs, with alanine aminotransferase

(ALT) activity considered a gold standard for determining liver injury.

The DILI Expert Working Group defines DILI as ≥3× upper limit of

normal (ULN) of ALT in the presence of symptoms, or ≥5× ULN ALT

in the absence of symptoms.8 Although ALT is currently the gold stan-

dard for determining DILI, there are issues associated with its use.

ALT is not specific to the liver and can provide false positive results,

with elevations in ALT occurring after muscular damage following

exercise9 or subsequent to a myocardial infarction.10 Furthermore,

elevations in ALT are not specific to DILI11 and can occur due to met-

abolic perturbations.12,13 In paracetamol-overdose DILI, there is a

delay between insult to the liver and rise in ALT,14 meaning ALT is not

optimal as a biomarker of DILI in this context. To address these chal-

lenges recent work has identified novel biomarkers capable of diag-

nosing, and in some cases predicting DILI.

MicroRNAs (miRNAs) are small noncoding RNAs regulate post-

transcriptional gene expression. MiR-122 is a 22-nucleotide micro-

RNA is highly expressed in, and highly specific for, the liver, with little

to no expression in other tissues. In liver injury, miR-122 is released

from necrotic hepatocytes, resulting in elevated miR-122 concentra-

tions in the bloodstream.15 Cytokeratin-18 (K18) is an intermediate

filament protein responsible for maintaining the cytoskeletal structure

in the liver and other epithelial cells and is reported to make up 5% of

the liver's total protein content.16 K18 is a mechanistic biomarker of

liver injury, providing information on the pattern of cell death. In

apoptosis, the release of a caspase-cleaved form of K18 (cc-K18) is an

early event during cellular structural rearrangement,17 whereas, in

necrosis, the full-length form of K18 (FL-K18) is passively released

upon cell death.17 MiR-122 and K18 are able to predict DILI in

patients who overdose on paracetamol earlier than standard LFTs18,19

and provides enhanced hepatic specificity over other biomarkers.20

Both novel biomarkers have regulatory support from the US Food and

Drug Administration as biomarkers for DILI,21 although to date their

development has been largely limited to testing in western

populations.

The aim of this study was to explore the properties of miR-122

and K18 in relevant European and African patients with mycobacterial

infection (with and without HIV coinfection). Specifically, our aims

were to determine whether the infective disease process and routine

What is already known about this subject

• Drug-induced liver injury (DILI) is a major concern in the

treatment of tuberculosis (TB).

• There are new biomarkers for DILI (microRNA-122 and

cytokeratin-18) that have the potential to add value

because of enhanced specificity/sensitivity compared to

current tests.

• These mechanistically informative DILI biomarkers have

qualifying data from large USA and European studies.

However, these markers have not been tested in Africa.

Given the global burden of TB our aim was to explore

biomarker utility in this global context of use.

What this study adds

• The baseline concentrations of cytokeratin-18 did not

substantially differ across UK and Ugandan populations

on treatment for TB and human immunodeficiency virus.

MicroRNA-122 did not differ across healthy subjects and

UK patients treated for mycobacterial infection.

• These biomarkers significantly correlated with alanine

transaminase activity (current liver injury marker) and

were elevated with DILI. MicroRNA-122 distinguished

those patients with alanine transaminase >50 U/L with

higher sensitivity/specificity than K18.

• MicroRNA-122 and cytokeratin-18 have potential in this

context-of-use and should be taken forward into larger

studies, which could provide data for formal qualification.
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management with anti-TB medicines affect these biomarkers in the

absence of DILI and to characterise how miR-122 and K18 change in

relation to ALT and in cases of DILI.

2 | METHODS

Participants with active TB, latent TB and nontuberculous mycobacte-

rial (NTM) infection were recruited into the Assessing Antibiotic-

Induced Liver Injury for the Stratification of Tuberculosis Patients

(ALISTER) clinical study at the Royal Infirmary, Edinburgh

(ClinicalTrials.gov Identifier: NCT03211208). Participants with HIV-TB

coinfection were recruited into the Safety and Efficacy of High Dose

Rifampicin in Tuberculosis (TB)-HIV Co-infected Patients on

Efavirenz- or Dolutegravir-based Antiretroviral Therapy (SAEFRIF)

clinical trial at the Infectious Disease Institute, Kampala, Uganda

(ClinicalTrials.gov Identifier: NCT03982277).

2.1 | Healthy subjects

As a control group to test whether circulating miR-122 and K18 were

affected by active TB, latent TB or NTM infection, adults with no

medical complaints and no medication use were recruited and blood

was drawn with informed consent.

2.2 | ALISTER clinical study

Participants were recruited at the Royal Infirmary of Edinburgh. Adults

(≥16 years, ≤85 years), receiving treatment for active or latent TB, or

NTM infection were included. Patients were excluded if they did not

have the capacity to provide informed consent or were known to be

HIV positive. Full written informed consent was obtained from every

participant and the study was approved by the West of Scotland

Research Ethics Committee.

Patients were classified as having active TB either if they had cul-

ture confirmation of Mycobacterium tuberculosis and presence of

active disease, or if a clinician decided there was sufficient evidence

of active disease to start them on treatment. Latent TB patients had a

positive interferon-γ release assay and no evidence of active disease.

Patients with NTM infection had grown at least 2 cultures with non-

tuberculous mycobacterium and had clinical signs of pulmonary

disease.22,23

Active and latent TB patients were treated following World

Health Organisation guidelines.24,25 Patients with susceptible active

TB were treated with isoniazid, rifampicin, ethambutol and

pyrazinamide for an initiation phase of 2 months, followed by rifampi-

cin and isoniazid for a continuation phase of 4 months.24 Patients with

latent TB were treated with either a combination of isoniazid and

rifampicin for 3 months, or isoniazid or rifampicin alone for

6 months.25 Patients with Mycobacterium avium complex infection

were treated with the recommended regimen of rifampicin,

ethambutol and clarithromycin for 2 years.23 Dependent on the NTM

species, disease severity, resistance profile of the infection and toler-

ance of the individual, drugs were replaced or added, including isonia-

zid, moxifloxacin, azithromycin and amikacin.22,23

2.3 | SAEFRIF clinical trial

The SAEFRIF clinical trial (NCT03982277) was performed at the

Infectious Disease Institute at Makerere University, Uganda. The data

presented in this paper provide preliminary data on liver safety from

64 trial participants. A full report on predefined study end-points will

be provided on trial completion. Ethical approval for this study was

sought from Joint Clinical Research Council ethics committee, the

National Drug Authority and the Uganda National Council for Science

and Technology. All participants signed an informed consent form

prior to study enrolment.

Inclusion criteria were HIV-infected patients aged ≥18 years who

were due to initiate rifampicin-containing therapy for newly diag-

nosed active TB, and were either already taking or planning to start

efavirenz-based or dolutegravir-based antiretroviral therapy. Exclu-

sion criteria were patients who have rifampicin resistant TB, pregnant

women, women of reproductive age on dolutegravir who decline the

use of effective contraceptive, patients with liver disease, ALT > 5×

ULN or glomerular filtration rate < 50 mL/min.

The trial protocol is described by Nabisere et al.26 Patients were

randomised to 1 of 4 arms of the trial for the first 2 months of treat-

ment, either the standard (10 mg/kg) or high dose (35 mg/kg) rifampi-

cin alongside standard doses of the other first line TB drugs and either

efavirenz- or dolutegravir-based antiretroviral therapy. Baseline blood

samples (serum) were collected at baseline and weeks 2, 4, 6 and 8 of

treatment.

2.4 | Data and blood samples

For the ALISTER study and SAEFRIF trial demographic and clinical

data from the participants were recorded from medical records and

clinical trial records. Liver function test results (ALT) were recorded

from each clinic visit. Blood samples were collected at first clinic visit

and subsequent clinic visits. Once collected, blood was processed

by centrifugation and the supernatant was aliquoted and stored

at −80�C.

2.5 | Quantification of miR-122

Serum samples were stored at −80�C before analysis. Freeze–thaw

cycles were avoided to preserve miRNA integrity. MiR-122 was quan-

tified in samples from healthy volunteers and the ALISTER study. miR-

122 could only be measured in Edinburgh. Due to the global COVID

pandemic and the HIV-positive status of the SAEFRIF samples these

could not be shipped and miR-122 was not measured. All ALISTER
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samples were stored for a maximum of 1 year (median [interquartile

range, IQR]: 16.3 [7.6–33.3] weeks). This is less time in storage than

previously published studies, which have demonstrated miRNA stabil-

ity.27,28 MiRNA was extracted using the miRNeasy Serum/Plasma kit

(Qiagen, Venlo, Netherlands) following the manufacturer's instruc-

tions. Total RNA was extracted from 50 μL diluted in 150 μL nuclease

free water. Briefly, RNA was extracted from the serum by lysis

reagent (1000 μL) and chloroform (200 μL). After centrifugation at

12 000 × g for 15 minutes at 4�C up to 600 μL of the aqueous phase

was transferred to a new tube with 900 μL absolute ethanol. RNA

was purified on a RNeasy minElute spin column and eluted in 15 μL

RNase-free water and stored at −80�C. Extraction efficiency was

monitored by adding 5.6 × 108 copies of synthetic Caenorhabditis

elegans miR-39 spike-in control after the addition of lysis reagent

before the addition of chloroform and phase separation. The miScript

II Reverse Transcription kit was used to prepare cDNA according to

the manufacturer's instructions. Briefly, 2.5 μL of RNA eluate was

reverse transcribed into cDNA. The synthesised cDNA was diluted

and used for cDNA template in combination with the miScript SYBR

Green polymerase chain reaction (PCR) kit (Qiagen, Venlo, The Neth-

erlands) using the specific miScript assays (Qiagen, Venlo, The Nether-

lands). Reverse transcription (RT)-PCR was performed in duplicate on

a Light Cycler 480 (Roche, Burgess Hill, UK) using the recommended

miScript cycling parameters. In this study, miR-122 was quantified in

fM by generating a standard curve. Serial dilutions of known standard

were made using synthetic miR-122 (syn hsa-miR-122-5p, 219600,

Qiagen). The dilutions were prepared in triplicate, using the same RT

and PCR protocol as described above. The cycle threshold (Ct) values

were plotted against the logarithm of the concentration, demonstrat-

ing a clear linear relationship between Ct value and Log (conc.). The

Ct is defined as the number of PCR cycles required for the fluorescent

signal to cross the threshold (exceed background level). The resultant

regression line was used to ascertain the concentration of miR-122

present in the samples. Acceptable repeatability was demonstrated by

measuring the intra-assay variability of miR-122 duplicates29 and

expressed as concentration (fM) per MIQE guidelines30 (CV: 0.25%,

[0.11–0.49% IQR]). The intra-assay variation in miR-39 Ct values was

assessed (CV median [IQR]: 3.04 [2.50–3.64] %). Reproducibility was

determined by measuring interassay variability across plates and days

by measuring miR-122 concentrations of reference samples. A no-

enzyme control, omitting the reverse transcriptase enzyme during

reverse transcription, and no-template control omitting the cDNA in

the RT-PCR plate were also included in every run. No-enzyme and

no-template controls had Ct values of >35. Ct values <35 were reg-

arded as positive amplification signals.

2.6 | Quantification of K18

Samples were stored at −80�C before analysis. K18 was quantified in

samples from healthy volunteers and patients in the ALISTER study,

with these samples stored for a maximum of just over 2 years

(113 wk; median [IQR]: 48.4 [28.7–77.8] wk) prior to analysis. The

K18 assay was established and samples were analysed by author

S.A.E.R. in Uganda. K18 was quantified in serum samples from the

SAEFRIF trial, these samples were stored for a maximum of 1 year

(median [IQR]: 19.1 [11.1–26.2] wk). K18 has been reported as stable

in serum up to 7 freeze–thaw cycles31 and for up to 2 years when fro-

zen.32 Total K18 was quantified using the Peviva M65 classic

enzyme-linked immunosorbent assay (Bioaxxes, Tewkesbury, Glos,

UK), according to the manufacturer's instructions. Samples were mea-

sured in duplicate. CV values for the dataset were (median [IQR]:

2.85% [1.33–4.97%]). Reproducibility was determined using the pro-

vided plate controls.

2.7 | Assessment of causality

DILI was predefined in this study as >3× ULN ALT in the presence of

symptoms or >5× ULN in absence of symptoms.8 The ULN for ALT

was 50 IU/L in the populations studied, as defined by local clinical

practice. The Roussel Uclaf Causality Assessment Method (RUCAM)

was used to determine formal causality between anti-TB medication

and liver injury.33 The pattern of liver injury was determined using the

R ratio, considering ALT and alkaline phosphatase activity. Further

factors considered include time to onset, course of injury, risk factors

(age and alcohol), concomitant drugs, the exclusion of nondrug causes

of injury and previous information on drug hepatotoxicity.

2.8 | Statistical analysis

Data were summarised as median (IQR) or n (%) for summary statistics

of the study participants. One-way Kruskal–Wallis ANOVA was used

to determine the difference in miR-122 and K18 between the healthy

subjects and different patient groups. Wilcoxon matched-pairs signed

rank test was used to determine the difference in miR-122 and K18

upon starting treatment. The coefficient of variation was calculated

across 3 or more samples to assess the intraindividual variability of

ALT and K18 in the HIV-TB coinfected population. Correlation of the

biomarkers was determined using Spearman's rank correlation. The

difference between miR-122 or K18 in samples grouped by ALT was

determined using a Mann–Whitney t-test. A receiver operating char-

acteristic (ROC) analysis was undertaken on all patient samples

grouped by normal ALT (≤50 IU/L) and elevated ALT (>50 IU/L). Sta-

tistical analyses were performed using Graphpad Prism (GraphPad

Software, La Jolla, California).

3 | RESULTS

A total of 207 patients were recruited into the study, along with

28 healthy volunteers; in ALISTER: active TB (n = 30), latent TB (n =

88), NTM infection (n = 25); in SAEFRIF: HIV-TB coinfection (n = 64).

The healthy volunteers had a median age of 27 years (IQR 24–30) and

64% were male. All were white British. Demographic and clinical
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TABLE 1 Clinical and demographic characteristics of patients in the study. Data are presented as median (interquartile range) or n (%)

Active TB

(n = 30)

Latent TB

(n = 88)

NTM infection

(n = 25)

HIV-TB coinfection

(n = 64)

Age (y) 41 (33–56) 40 (23–63) 66 (57–74) 38 (32–44)

Sex Male 20 (67%) 23 (26%) 10 (40%) 40 (62%)

Female 10 (33%) 65 (74%) 15 (60%) 24 (38%)

Ethnicity African 2 (7%) 7 (8%) 0 (0%) 64 (100%)

Arab 0 (0%) 1 (1%) 0 (0%) 0 (0%)

Bangladeshi 1 (3%) 2 (2%) 0 (0%) 0 (0%)

Indian 7 (23%) 3 (3%) 0 (0%) 0 (0%)

Iraqi 1 (3%) 0 (0%) 0 (0%) 0 (0%)

Pakistani 5 (17%) 3 (3%) 1 (4%) 0 (0%)

South--east Asian 2 (7%) 1 (1%) 0 (0%) 0 (0%)

White 12 (40%) 66 (75%) 24 (96%) 0 (0%)

Unknown 0 (0%) 5 (6%) 0 (0%) 0 (0%)

Location of infection Pulmonary 11 (37%) - - 51 (80%)

Extrapulmonary 16 (53%) - - 9 (14%)

Both 3 (10%) - - 1 (1%)

Unknown 0 (0%) - - 3 (5%)

Culture confirmed Yes 20 (67%) - - 64 (100%)

No 10 (33%) - - 0 (0%)

Resistance None 26 (87%) - - -

Isoniazid 1 (3%) - - -

Pyrazinamide 2 (7%) - - -

Rifampicin 0 (0%) - - -

MDR 1 (3%) - - -

NTM species Mycobacterium avium complex - - 22 (88%) -

Mycobacterium abscessus - - 2 (8%) -

Mycobacterium malmoense - - 1 (4%) -

Baseline ALT (IU/L) 18 (14–35) 15 (12–21) 15 (12–22) 20 (14–30)

Treatment Isoniazid, rifampicin - 43 (48%) - -

Isoniazid - 26 (30%) - -

Rifampicin - 18 (20%) - -

Moxifloxacin - 1 (1%) - -

Rifampicin, azithromycin - 1 (4%) -

Rifampicin, clarithromycin - - 3 (12%) -

Rifampicin, clarithromycin, amikacin - - 1 (4%) -

Rifampicin, ethambutol - - 1 (4%) -

Rifampicin, ethambutol, amikacin - - 1 (4%) -

Rifampicin, ethambutol, clarithromycin - - 15 (60%) -

Rifampicin, ethambutol, moxifloxacin - - 1 (4%) -

Rifabutin, clarithromycin, moxifloxacin - - 1 (4%) -

Clarithromycin, clofazimine, azithromycin - - 1 (4%) -

Isoniazid, rifampicin, pyrazinamide,
ethambutol plus antiretroviral
therapy

- - - 64 (100%)

Initiation phase Isoniazid, rifampicin, pyrazinamide,
ethambutol

22 (73%) - - -
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characteristics for patients within ALISTER and SAEFRIF are

presented in Table 1. There was no significant difference in miR-122

(P = .09) between the groups. There was a statistically significant but

clinically minor difference in K18 between groups (P = .03; Table 2,

Figure 1). Serial samples were collected in 65 patients in the ALISTER

study (Figure 2). The time patients had spent on treatment was

median (IQR): active TB 3.0 (2.4–6.9); latent TB 3.9 (2.4–12.2); NTM

infection 4.0 (2.2–6.9) weeks. Commencing treatment was associated

with a statistically significant, clinically insignificant increase in ALT

(median [IQR]: baseline 15 [12–24]; on treatment 17 [13–27] IU/L;

P = .03) and miR-122 (median [IQR]: baseline 3.12 [1.20–5.63]; on

treatment 3.95 [1.75–7.98] fM; P = .01). There was also an increase in

TABLE 1 (Continued)

Active TB

(n = 30)

Latent TB

(n = 88)

NTM infection

(n = 25)

HIV-TB coinfection

(n = 64)

Isoniazid, rifampicin, pyrazinamide,

moxifloxacin

1 (3%) - - -

Isoniazid, rifampicin, pyrazinamide,
ethambutol,
moxifloxacin

1 (3%) - - -

Isoniazid, rifabutin, pyrazinamide,
ethambutol

1 (3%) - - -

Isoniazid, rifampicin, ethambutol,
moxifloxacin

3 (10%) - - -

Rifampicin, ethambutol, moxifloxacin 1 (3%) - - -

Bedaquiline, clofazimine, cycloserine 1 (3%) - - -

Continuation phase Isoniazid, rifampicin 20 (67%) - - -

Isoniazid, rifampicin, moxifloxacin 2 (7%) - - -

Isoniazid, rifampicin, ethambutol 2 (7%) - - -

Isoniazid, Rifabutin, moxifloxacin 1 (3%) - - -

Isoniazid, ethambutol, moxifloxacin 1 (3%) - - -

Isoniazid, rifampicin, pyrazinamide,
ethambutol

1 (3%) - - -

Rifampicin, ethambutol, moxifloxacin 2 (7%) - - -

Bedaquiline, clofazimine, cycloserine 1 (3%) - - -

ALT, alanine transaminase; HIV, human immunodeficiency virus; MiR, microRNA; NTM, nontuberculous mycobacterial; TB, tuberculosis

TABLE 2 Circulating ALT, miR-122 and K18 in individuals with normal ALT (<50 IU/L) in healthy volunteers and first samples taken upon
starting ALISTER study or SAEFRIF trial

Healthy volunteers
(n = 28)

Active TB
(n = 26)

Latent TB
(n = 87)

NTM infection
(n = 25)

HIV-TB coinfection
(n = 59)

ALT (IU/L) Median 18 22 16 16 18

[IQR] [12–22] [14–27] [12–23] [13–25] [14–27]

Coefficient of

variation (%)

44.0 40.7 48.4 54.3 50.3

MiR-122 (fM) Median 2.88 4.14 2.92 1.57 -

[IQR] [1.75–3.96] [1.34–7.56] [1.46–4.54] [0.91–3.72]

Coefficient of

variation (%)

65.8 183.4 120.6 168.5 -

K18 (U/L) Median 210 145 152 163 172

[IQR] [134–259] [92–220] [105–215] [138–263] [132–276]

Coefficient of

variation (%)

45.9 62.2 207.8 69.2 79.4

ALT, alanine transaminase; HIV, human immunodeficiency virus; IQR, interquartile range; MiR, microRNA; NTM, nontuberculous mycobacteria; TB,

tuberculosis.
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K18, which did not reach statistical significance (median [IQR]: base-

line 150 [103–224]; on treatment 167 [110–246] U/L; P = .4). Serial

samples were also collected in 50 SAEFRIF patients (Figure 3). In the

SAEFRIF patients, starting treatment did not lead to a significant

change in ALT (median [IQR]: week 0: 22 [14–31]; week 2:

24 [14–32] IU/L; P = .62) or K18 (median [IQR]: week 0:

204 [130–344]; week 2: 169 [117–262] U/L; P = .3).

When all samples from all time points were included, there was a

significant correlation between ALT and miR-122 (n = 251, Spearman

rank r = 0.52, 95%CI = 0.42–0.61, P < .0001; Figure 4A). There was a

significant, but less tight, correlation between ALT and K18 (n = 491,

Spearman rank r = 0.42, 95% CI = 0.34–0.49, P < .0001; Figure 4B).

miR-122 correlated with K18 (n = 252, Spearman rank r = 0.32, 95%

CI = 0.20–0.43, P < .0001; Figure 4C).

MiR-122 was increased 8.0-fold in samples with elevated ALT

(>50 IU/L) compared to samples with normal ALT (predefined as

≤50 IU/L; median [IQR]: elevated ALT 23.9 [11.5–60.4]; normal ALT

3.00 [1.31–4.82] fM; P < .0001; Figure 5A). K18 was increased

2.3-fold in those samples with elevated ALT (>50 IU/L) compared to

samples with normal ALT (≤50 IU/L; median [IQR]: elevated ALT

395 [217–683]; normal ALT 170 [120–250] U/L; P < .0001;

Figure 5B). ROC analysis was performed on these grouped samples

(Figure 5C,D). MiR-122 identified elevated ALT (>50 IU/L) with high

accuracy (ROC-AUC = 0.93, 95% CI = 0.88–0.98, P < .001). K18 iden-

tified elevated ALT (>50 IU/L) with lower accuracy (ROC-AUC = 0.80,

95% CI = 0.72–0.87, P < .0001). The sensitivity and specificity of miR-

122 and K18 was unchanged when only samples from patients on

treatment were included in the analysis (miR-122: ROC-AUC = 0.93,

95%CI = 0.87 to 0.99, P < .0001. K18: ROC-AUC = 0.78, 95%

CI = 0.68 to 0.87, P < .0001; Figure S1).

The interindividual variability in miR-122, K18 and ALT was com-

pared in the different patient groups (Table 2). Interindividual variabil-

ity was higher for both miR-122 and K18 than ALT. Sequential

samples from the SAEFRIF trial (patients with normal ALT (<50 IU/L)

and 3 or more samples collected) were analysed to determine the

intraindividual variability over time (CV median [IQR]: ALT 23.9

[16.6–36.1] %; K18 35.4 [24.9–41.9] %; P = .02). Intraindividual vari-

ability was higher for K18 than ALT.

In this study there were 2 cases of DILI (as predefined in study

protocols), both cases were for patients receiving isoniazid alone for

the treatment of latent TB within the ALISTER study. The first case

was of a 51-year-old white British male patient, who experienced

peak ALT activity of 431 IU/L, (Figures 6A,E). Before starting treat-

ment, he had normal ALT (18 IU/L), miR-122 was 4 fM and his K18

F IGURE 1 Circulating concentration
of A, alanine transaminase (ALT; IU/l),
B, microRNA (miR)-122 (fM) and C, K18
(U/L). Data are the first collected samples
from the ALISTER study or SAEFRIF trial.
Participants include healthy volunteers
(n = 28), active tuberculosis (TB; n = 26),
latent TB (n = 87), nontuberculous
mycobacteria (NTM) infection (n = 25)

and human immunodeficiency virus
(HIV)–TB coinfection (n = 59). Data are
presented as dot plots. Line shows
median and bars show interquartile
range. The significance of differences
between groups were determined
by 1-way Kruskal–Wallis ANOVA
(ALT P = .2; miR-122 P = .09;
K18 P = .03)
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was 58 U/L. Three months into treatment, his ALT activity increased

to 431 IU/L, miR-122 rose to 60 fM and K18 rose to 1248 U/L. Drug

treatment was halted and ALT returned to within normal limits

18 weeks later. Formal causality between isoniazid and liver injury

was determined using the RUCAM scale and was determined as prob-

able (RUCAM scale = 6).

The second case was of a 71-year-old white British female

patient, (Figures 6B,D,F). At baseline her ALT activity was 28 IU/L,

miR-122 was 17 fM and K18 was 219 U/L. Two weeks into treat-

ment, her ALT activity had not increased (25 IU/L) but K18 and

miR-122 had risen (307 U/L and 63 fM, respectively). DILI was

present 5 weeks into treatment with the presence of a drug rash

and elevated ALT at 194 IU/L. At this time, K18 activity had risen

to 3490 U/L and miR-122 concentration had increased further to

336 fM. Drug treatment was halted, and the patient was dis-

charged and lost to further follow up. RUCAM causality

F IGURE 2 Circulating concentration
of A, alanine transaminase (ALT; IU/L),
B, microRNA (miR)-122 (fM) and C, K18
(U/L) in sequential samples in patients
within the ALISTER study, (active
tuberculosis, n = 9; latent tuberculosis,
n = 46; nontuberculous mycobacteria,
n = 10) Data shown as dot plots. Black
dots show patients with normal ALT

activity at baseline and on treatment;
blue dots show patients with ALT activity
>50 U/L at baseline which decreased on
treatment; red dots show patients whose
ALT increased above 50 U/L with
treatment. Dotted line on (A)
ALT = 50 IU/L. The significance of
differences between baseline and on
treatment concentrations of biomarkers
was determined by Wilcoxon signed rank
test (ALT P = .03; miR-122 P = .01;
K18 P = .4)

F IGURE 3 Circulating concentration
of A, alanine transaminase (ALT; IU/L)
and B, K18 (U/L) for sequential samples
in patients within the SAEFRIF trial. Black
dots show patients with normal ALT
throughout treatment, red points show
patients whose ALT rises >50 IU/L during
treatment, blue points show patients
whose ALT falls from >50 IU/L upon
starting treatment. Dotted line on (A)
ALT = 50 IU/L
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F IGURE 4 Correlation of
A, microRNA (miR)-122 (fM) vs. alanine
transaminase (ALT; IU/L), B, K18 (U/L) vs.
ALT (IU/L) and C, miR-122 (fM) vs. K18
(U/L). Patient samples (healthy
volunteers, n = 28; active tuberculosis
[TB], n = 44; latent TB, n = 142;
nontuberculous mycobacteria [NTM]
infection, n = 39; human

immunodeficiency virus–tuberculosis
[HIV-TB] coinfection, n = 241). Statistical
analysis of the significance of the
correlation calculated using Spearman's
rank correlation coefficient (miR-122 vs.
ALT: n = 251, Spearman rank R = .52,
95% CI 0.42–0.61, P < .0001; K18 vs.
ALT: n = 491, Spearman rank R = .42,
95% CI 0.34–0.49, P < .0001; miR-122 vs.
K18: n = 252, Spearman rank R = .32,
95% CI 0.20–0.43, P < .0001)

F IGURE 5 Comparison of samples
grouped by normal alanine transaminase
(ALT; ≤50 IU/L) and elevated ALT
(>50 IU/L). A, MicroRNA (miR)-122
concentration (fM) and B, K18 (U/L).
Patient samples (healthy volunteers,
n = 28; active tuberculosis [TB,] n = 44;
latent TB, n = 142; nontuberculous
mycobacteria infection, n = 39; HIV-TB
coinfection, n = 241). Statistical analysis
of the significance of the difference
between the groups calculated with
the Mann–Whitney t-test (miR-122
P < .0001; K18 P < .0001). Receiver
operator characteristic (ROC) analysis of
samples grouped by normal ALT
(≤50 IU/L) and elevated ALT (>50 IU/L),
C, miR-122 and D, K18. MiR-122 (ROC-

area under the curve [AUC] = 0.93, 95%
CI = 0.88–0.98, P < .001). K18 (ROC-
AUC = 0.80, 95% CI = 0.72–0.87,
P < .0001)
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assessment indicated that isoniazid was the probable cause of liver

injury (RUCAM scale = 7).

4 | DISCUSSION

The utility of miR-122 and K18 as exploratoryDILI biomarkers has been

demonstrated by several multicentre studies and this has resulted in

Food and Drug Administration support for continued development to

full qualification.21 However, the properties of these biomarkers have

not been robustly studied in patients with TB in Africa.

Given the potential involvement of the liver in TB infection, it

was important to determine if circulating concentrations of miR-122

and K18 differed from healthy individuals in the presence of infection,

including active, latent and NTM infection and HIV-TB coinfection.

For example, if either biomarker was elevated by mycobacterial infec-

tion per se then it would be de-prioritised as a biomarker in this impor-

tant context of use. In this study, we have demonstrated that

circulating miR-122 and K18 in healthy volunteers and patients with

active TB, latent TB and NTM infection are not substantially different.

This suggests that the presence of mycobacterial infection does not

affect circulating miR-122 and K18. Furthermore, circulating K18 in

HIV-TB coinfected African patients was similar to the other groups,

which were predominantly Caucasian. This suggests that the healthy

reference interval for K18 in an African and Caucasian population is

likely to be similar. In addition, we have demonstrated that, in the

absence of DILI, neither miR-122 nor K18 change substantially upon

commencing treatment. Both miR-122 and K18 correlate with ALT,

indicating these biomarkers may have diagnostic utility. In this pilot

study, miR-122 distinguished those patients with an elevated ALT

F IGURE 6 Circulating concentration of (A, B)
alanine transaminase (ALT; IU/L), (C, D)
microRNA (miR)-122 (fM) and (E, F) K18 (U/L)
over the course of treatment (weeks) for 2 cases
who developed DILI as predefined as >3× upper
limit of normal ALT in the presence of symptoms
or >5× upper limit of normal in absence of
symptoms.8 Case 1 (A, C, E); Case 2 (B, D, F)
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with greater sensitivity and specificity than K18 but this should be

interpreted with caution as there were only 2 cases of DILI as

predefined in our study protocol. In these DILI cases, the elevations in

ALT temporarily correlated with a rise in both miR-122 and K18. In

addition, in 1 of these patients, miR-122 and K18 rose before ALT,

indicating a potential for these novel biomarkers to predict the devel-

opment of DILI earlier than ALT. The results of this study provide ini-

tial evidence for the potential use of both miR-122 and K18 as

biomarkers of TB medicine associated DILI.

Further work should focus on determining the diagnostic value of

the biomarkers, whether they correlate with rises in ALT and so can

diagnose DILI within this population. A clear definition of the dynamic

range, sensitivity and specificity of miR-122 and K18 within this popu-

lation is needed before they can be used as a biomarker of DILI. Fur-

thermore, given that evidence suggests miR-122 and K18 both rise

earlier than ALT in paracetamol DILI, it is important to determine if

they have the same predictive value in patients with mycobacterial

infections. This predictive ability of these novel biomarkers may

enable early identification of patients at risk of DILI, leading to pre-

vention of liver injury through halting or altering treatment regimens

before significant liver injury develops. Specifically, the biomarkers

could be a useful early indicator of the development of DILI in

patients being reintroduced to essential anti-TB medications, a group

at elevated risk of DILI recurrence.

Our study had a limited number of cases of anti-TB DILI. His-

torical data suggested approximately 2–5% of patients receiving

anti-TB treatment in the UK will develop DILI. However, within the

ALISTER study only 2 patients developed DILI, 1.4% of the patients

recruited. Larger multicentre studies are required to recruit enough

patients to determine the diagnostic power of miR-122 and K18 in

anti-TB DILI. The majority of values for circulating miR-122 concen-

trations in the patient groups fell within the published upper limit of

the healthy reference interval of 45 fM generated from the SAFE-T

dataset.34 However, there were 2 patients with miR-122 increased

above this healthy reference interval (miR-122 = 77 and 77 fM)

when ALT was still normal (ALT = 25 and 26 IU/L). This may reflect

a limitation of miR-122, namely that it has been reported to have

relatively high variability.34 In our study, the variability of the novel

biomarkers was higher than ALT, with miR-122 having higher inter-

subject variability than K18. Although the previously published

healthy reference interval provides a valuable comparison, the circu-

lating concentration of miR-122 in healthy volunteers in this study

fell between 0.21 and 8.75 fM, considerably lower than the publi-

shed ULN of 45 fM, which was generated from the SAFE-T

dataset.34 This healthy reference interval was developed using a

larger sample size than that included in this study. However, it was

determined using different quantification and normalisation

methods, therefore a direct comparison is challenging. There were

2 patients who had substantially elevated K18 in the absence of

elevated ALT. Firstly, in ALISTER (K18 = 4207 U/L, ALT = 43 IU/L).

Secondly, in the SAEFRIF trial, where a patient had K18 ranged

from 10 000–20 000 U/L, but not substantially elevated ALT

(22–52 IU/L). The reason for these 2 outliners is unknown and

requires further study with larger patient numbers. Another limita-

tion of our study is that miR-122 was only measured in the

ALISTER cohort, whereas K18 was measured in both ALISTER and

SAEFRIF cohorts. This limitation was due miR-122 only being mea-

sured in Edinburgh. The global COVID pandemic and the HIV-

positive status of the SAEFRIF samples meant these could not be

transferred out of Uganda. Given the possible superior sensitivity/

specificity of miR-122 over K18 which is suggested by this pilot

study it will be important for future studies to measure miR-122 in

the African setting. Finally, this study did not include patients rec-

ruited in Asia, a region with high TB prevalence. This group should

be included in future studies.

In summary, the presence of mycobacterial infection does not

alter miR-122 or K18 concentrations in the absence of DILI. African

HIV-TB coinfected patients had similar K18 concentrations to healthy

volunteers and Caucasian TB patients. Patients who experienced ele-

vations in ALT also demonstrated rises in both miR-122 and K18 indi-

cating the diagnostic potential of these biomarkers. Future trials of

miR-122 and K18 as biomarkers of anti-TB DILI could be performed

using the data presented in this paper to inform the study design.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of the British Heart Foun-

dation Centre of Research Excellence Award. The sample collection

and analysis was performed by S.A.E.R., Ugandan studies were run by

C.S.W., J.M. and D.J.S. ALISTER was supported by A.T.H. and

K.D. Supervision was provided by W.O., T.T.B. and K.T. The PI was

J.W.D. Sarah Rupprechter was funded by the UK Medical Research

Council via the Doctoral Training Programme Grant in Precision Medi-

cine at the University of Edinburgh. Author SAER was funded by the

MRC Precision Medicine Doctoral Training Programme.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data available on request from the authors.

ORCID

James W. Dear https://orcid.org/0000-0002-8630-8625

REFERENCES

1. World Health Organization (WHO). WHO TB Report. WHO Library

Cataloguing-in-Publication Data World. 2019.

2. Saukkonen JJ, Cohn DL, Jasmer RM, et al. An official ATS statement:

Hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med.

2006;174(8):935-952.

3. Girling DJ. The hepatic toxicity of antituberculosis regimens con-

taining isoniazid, rifampicin and pyrazinamide. TubercleElsevier. 1977;

59(1):13-32.

4. Ramappa V, Aithal GP. ‘Hepatotoxicity Related to Anti-tuberculosis

Drugs: Mechanisms and Management. J Clin Exp Hepatol. 2013;3(1):

37-49.

5. Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WC, van der

Ven A, Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity:

3216 RUPPRECHTER ET AL.

https://orcid.org/0000-0002-8630-8625
https://orcid.org/0000-0002-8630-8625


Concise up-to-date review. J Gastroenterol Hepatol. 2008;23(2):

192-202.

6. Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid-induced

hepatotoxicity: Then and now. Br J Clin Pharmacol. 2016;81(6):

1030-1036.

7. Hassan HM, Guo HL, Yousef BA, Luyong Z, Zhenzhou J. Hepatotoxic-

ity mechanisms of isoniazid: A mini-review. J Appl Toxicol. 2015;35

(12):1427-1432.

8. Aithal GP, Watkins PB, Andrade RJ, et al. Case definition and pheno-

type standardization in drug-induced liver injury. Clin Pharmacol Ther.

2011;89(6):806-815.

9. Pettersson J, Hindorf U, Persson P, et al. Muscular exercise can cause

highly pathological liver function tests in healthy men. Br J Clin

Pharmacol. 2008;65(2):253-259.

10. LaDue JS, Wroblewski F. The Significance of the Serum Glutamic

Oxalacetic Transaminase Activity Following Acute Myocardial Infarc-

tion. Circulation. 1955;11(6):871-877.

11. Senior JR. Alanine Aminotransferase: A Clinical and Regulatory Tool

for Detecting Liver Injury–Past, Present, and Future. Clin Pharmacol

Ther. 2012;92(3):332-339.

12. Hanley AJ, Williams K, Festa A, et al. Elevations in markers of liver

injury and risk of type 2 diabetes: the insulin resistance atherosclero-

sis study. DiabetesAmerican Diabetes Association. 2004;53(10):

2623-2632.

13. Sattar N, Scherbakova O, Ford I, et al. Elevated alanine aminotransfer-

ase predicts new-onset type 2 diabetes independently of classical risk

factors, metabolic syndrome, and C-reactive protein in the west of

Scotland coronary prevention study. DiabetesAmerican Diabetes

Association. 2004;53(11):2855-2860.

14. Antoine DJ, Dear JW. How to treat paracetamol overdose and when

to do it. Expert Rev Clin PharmacolTaylor & Francis. 2016;9(5):

633-635.

15. Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential

biomarkers for drug-induced liver injury. Proc Natl Acad Sci. 2009;106

(11):4402-4407.

16. Adebayo D, Mookerjee RP, Jalan R. Mechanistic biomarkers in acute

liver injury: Are we there yet? J HepatolEuropean Association for the

Study of the Liver. 2012;56(5):1003-1005.

17. Caulín C, Salvesen GS, Oshima RG. Caspase cleavage of keratin

18 and reorganization of intermediate filaments during epithelial cell

apoptosis. J Cell Biol. 1997;138(6):1379-1394.

18. Antoine DJ, Dear JW, Lewis PS, et al. Mechanistic biomarkers provide

early and sensitive detection of acetaminophen-induced acute liver

injury at first presentation to hospital. Hepatology. 2013;58(2):

777-787.

19. Dear JW, Clarke JI, Francis B, et al. Risk stratification after paraceta-

mol overdose using mechanistic biomarkers: results from two pro-

spective cohort studies. Lancet Gastroenterol Hepatol. 2018;3(2):

104-113.

20. Vliegenthart AD, Shaffer JM, Clarke JI, et al. Comprehensive micro-

RNA profiling in acetaminophen toxicity identifies novel circulating

biomarkers for human liver and kidney injury. Sci Rep. 2015;5(1):

1–13.
21. Food and Drug Administration Centre for Drug Evaluation and

Research. Letter of Support for Drug-Induced Drug-Induced Liver

Injury (DILI) Biomarker(s). 2016. Available at: https://www.fda.gov/

downloads/Drugs/DevelopmentApprovalProcess/UCM517355.pdf

(Accessed: 8 October 2018).

22. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA

statement: Diagnosis, treatment, and prevention of nontuberculous

mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367-

416. https://doi.org/10.1164/rccm.200604-571ST

23. Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guide-

lines for the management of non-tuberculous mycobacterial pulmo-

nary disease (NTM-PD). Thorax. 2017;72(Suppl 2):ii1-ii64. https://doi.

org/10.1136/thoraxjnl-2017-210927

24. World Health Organization (WHO). Guidelines for treatment of drug-

susceptible tuberculosis and patient care. Geneva: WHO press; 2017

https://doi.org/10.1586/17476348.1.1.85

25. World Health Organization (WHO). Latent tuberculosis infection:

updated and consolidated guidelines for programmatic management.

Geneva: WHO press; 2018. https://doi.org/10.1056/NEJMcp0

21045

26. Nabisere R, Musaazi J, Denti P, et al. Pharmacokinetics,

SAfety/tolerability, and EFficacy of high-dose RIFampicin in

tuberculosis-HIV co-infected patients on efavirenz- or dolutegravir-

based antiretroviral therapy: Study protocol for an open-label, phase

II clinical trial (SAEFRIF). Trials. 2020;21(1):1-9.

27. Balzano F, Deiana M, Dei Giudici S, et al. MiRNA stability in frozen

plasma samples. Molecules. 2015;20(10):19030-19040.

28. Shaughnessy RG, Farrell D, Riepema K, Bakker D, Gordon SV. Analy-

sis of biobanked serum from a mycobacterium avium subsp para-

tuberculosis bovine infection model confirms the remarkable stability

of circulating mirna profiles and defines a bovine serum mirna reper-

toire. PLoS ONE. 2015;10(12):1-22.

29. Karlen Y., McNair A., Perseguers S., Mazza C., Mermod N. Statistical

significance of quantitative PCR. BMC Bioinformatics. 2007;8 (1):131.

https://doi.org/10.1186/1471-2105-8-131

30. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum

information for publication of quantitative real-time PCR experi-

ments. Clin Chem. 2009;55(4):611-622.

31. Olofsson MH, Ueno T, Pan Y, et al. Cytokeratin-18 is a useful

serum biomarker for early determination of response of breast

carcinomas to chemotherapy. Clin Cancer Res. 2007;13(11):

3198-3206.

32. Cummings J, Ranson M, Butt F, Moore D, Dive C. Qualification of

M30 and M65 ELISAs as surrogate biomarkers of cell death: long

term antigen stability in cancer patient plasma. Cancer Chemother

Pharmacol. 2007;60(6):921-924.

33. Bethseda (MD): National Institute of Diabetes and Digestive and Kid-

ney Diseases. LiverTox: Clinical and Research Information on Drug-

Induced Liver Injury [Internet] Roussel Uclaf Causality Assessment

Method (RUCAM) in Drug Induced Liver Injury. [Online]. 2017.

Available at: https://livertox.nih.gov/rucam.html

34. Church RJ, Kullak-Ublick GA, Aubrecht J, et al. Candidate biomarkers

for the diagnosis and prognosis of drug-induced liver injury: An inter-

national collaborative effort. Hepatology (Baltimore, md). 2018;69(2):

760-773.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Rupprechter SAE, Sloan DJ,

Oosthuyzen W, et al. MicroRNA-122 and cytokeratin-18 have

potential as a biomarkers of drug-induced liver injury in

European and African patients on treatment for mycobacterial

infection. Br J Clin Pharmacol. 2021;87:3206–3217. https://

doi.org/10.1111/bcp.14736

RUPPRECHTER ET AL. 3217

https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM517355.pdf
https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM517355.pdf
https://doi.org/10.1164/rccm.200604-571ST
https://doi.org/10.1136/thoraxjnl-2017-210927
https://doi.org/10.1136/thoraxjnl-2017-210927
https://doi.org/10.1586/17476348.1.1.85
https://doi.org/10.1056/NEJMcp021045
https://doi.org/10.1056/NEJMcp021045
https://doi.org/10.1186/1471-2105-8-131
https://livertox.nih.gov/rucam.html
https://doi.org/10.1111/bcp.14736
https://doi.org/10.1111/bcp.14736

	MicroRNA-122 and cytokeratin-18 have potential as a biomarkers of drug-induced liver injury in European and African patient...
	1  INTRODUCTION
	  What is already known about this subject
	  What this study adds
	2  METHODS
	2.1  Healthy subjects
	2.2  ALISTER clinical study
	2.3  SAEFRIF clinical trial
	2.4  Data and blood samples
	2.5  Quantification of miR-122
	2.6  Quantification of K18
	2.7  Assessment of causality
	2.8  Statistical analysis

	3  RESULTS
	4  DISCUSSION
	ACKNOWLEDGEMENTS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


