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Abstract. Studying the structure of RNA sequences is an important problem 
that helps in understanding the functional properties of RNA. Pseudoknot is one 
type of RNA structures that cannot be modeled with Context Free Grammars 
(CFG) because it exhibits crossing dependencies.  Pseudoknot structures have 
functional importance since they appear, for example, in viral genome RNAs 
and ribozyme active sites. Tree Adjoining Grammars (TAG) is one example of 
a grammatical model that is more expressive than CFG and has the capability of 
dealing with crossing dependencies. In this paper, we describe a new inference 
algorithm for TAGRNA, a sub-model of TAG. We also introduce an RNA struc-
ture identification framework, TAGRNAInf, within which the TAGRNA inference 
algorithm constitutes the core of the training phase. We present the results of 
using the proposed framework for identifying RNA sequences with pseudoknot 
structures. Our results outperform those reported in [14] for the same problem 
that employs a different grammatical formalism. 

1   Introduction 

In recent times there has been an observed acceleration in the RNA structure determi-
nation and analysis [11] owing to its paramount importance. This is partly due to the 
discovery of many new functional RNAs, such as miRNAs and tmRNAs [3] [16] 
[29]. Another factor that has led to the speeding up of RNA structural research is the 
rise of the RNA World Hypothesis [9] which suggests that the current DNA and pro-
tein world has evolved from an RNA based world. This Hypothesis is supported by 
the fact that RNA can carry genetic information like DNA and it is capable of catalyz-
ing reactions like proteins (rRNA). Genetic information of some existent viruses is 
carried in RNA form [15]. Since the function of bimolecular sequences depends on its 
structure, analyzing RNA structures is essential to create new drugs and understand 
genetic diseases [6] [20]. Computational methods can provide less expensive solu-
tions to structure analysis than other methods such as nuclear magnetic resonance and 
x-ray crystallography. 

In the early 90’s, David Searls studied the linguistics of biological sequences [23]. 
He suggested the use of formal grammars as a tool to model and analyze DNA, RNA, 
and proteins. The use of grammars has attracted the attention of many researchers [7] 
[26] because it can model long range interactions. In addition, grammatical models 
are concise and easy to understand representation of structures of sequence families. 
Thus, it is considered to be a natural analytical approach to fully understanding the 
structure and properties of these sequences. Results for secondary structure prediction 
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and multiple sequence alignment agree with and sometimes suggest improvements 
over traditional methods [21]. 

Pseudoknot is one type of RNA structures that cannot be modeled with Context 
Free Grammars (CFG) because it exhibits crossing dependencies. Pseudoknot struc-
tures have functional importance since they appear, for example, in viral genome 
RNAs [15], ribozyme active sites [25], and tmRNA [28]. Among the available re-
search in analyzing pseudoknot structures are the works of Akutsu [2], Dirks and 
Pierce [8], and Reeder and Giegerich [18]. These algorithms are not based on formal 
grammars. In the area of modeling molecular sequences grammatically, more than 
one model, capable of representing pseudoknots, have been presented. Cai et. al. [7] 
proposed Parallel Communicating Grammar Systems (PCGS) with an O(n6) time 
parsing algorithm. Another model which also requires O(n6) parsing time has been 
proposed by Rivas and Eddy[19]. Uemura et. al. [26] suggested the use of a sub-
model of TAG, TAGRNA. Our solution is based on the TAGRNA model.  

Recently, there has been a special focus on the use of grammatical inference in bioin-
formatics. Sakakibara has published [22] in which he discusses the general merits of us-
ing grammatical inference in bioinformatics. Brazma et. al. [5] have proposed an ap-
proach to discover simple grammars for families of biological sequences. The 
grammatical formalisms they use are subclasses of regular patterns. On the use of gram-
matical inference to analyze RNA structures with Pseudoknots, Laxminarayana et. al. 
[13] presented an inference algorithm for Terminal Distinguishable Even Linear Gram-
mars (TDELG), and they have shown how to use this algorithm in an Infer-Test model 
for the detection of a pseudoknot structure in an RNA sequence. The experimental results 
they presented [14] show 54% sensitivity when using 50% of the RNA sample for train-
ing. The sensitivity rises to 85% only when 90% of the sample is used for training. Speci-
ficity was not reported. This is the same problem as the one we address, and our results 
outperform those numbers, as it will be shown. Takakura et. al. have published [24] in 
which they give a linear time algorithm for generating probabilistic TAGRNA from align-
ment data. They use the inferred grammar to find new members of nc-RNA families, 
which is a different problem from the one we address in this paper. 

The use of grammatical inference to automate the grammar building step is essential 
in facilitating the use of grammatical formalism by biologists. Otherwise, the biologist 
will always be dependent on a grammar expert. In this work, we present a complete RNA 
structure identification framework, TAGRNAInf, capable of handling pseudoknot struc-
tures. By structure identification we mean, given an RNA sequence, we answer the ques-
tion of whther it exhibits a certain structure or not. In our approach, the structure is repre-
sented by a TAG which is inferred from a training set. We describe a new polynomial 
time inference algorithm for TAGRNA which constitutes the core of the training phase 
within the identification framework. We evaluate our solution experimentally through 
calculating the sensitivity and specificity of identification. 

2   TAG and TAGRNA 

Tree Adjoining Grammars (TAGs) were originally introduced, by Joshi et. al. [12], for 
use in the field of natural language processing. Uemura et. al. [26] defined a subclass  
of TAGs, TAGRNA, suitable to model RNA pseudoknot structures. They developed  
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an O(n5) time parsing algorithm for TAGRNA. Before describing TAGRNA we will first 
give a brief introduction to the original TAG model. 

A Tree Adjoining Grammar (TAG) is defined to be a 5-tuple (T ∪ {ε}, N , I, A, S), 
where T is a set of terminal symbols, N is a set of non-terminal symbols, ε is the 
empty string symbol, and S is the starting symbol. I and A are defined as follows: 

 

I (initial trees): A finite set of finite trees with the internal nodes’ labels belong-
ing to N ∪ {S} , the leaves’ labels belonging to T ∪ {ε}, and the root is la-
beled with S. 

A (auxiliary trees): A finite set of finite trees with the internal nodes’ labels be-
longing to N ∪ {S}, and the leaves’ labels belonging to T ∪ {ε} except 
one leaf node which has the same label as the root. This special leaf node 
is called a foot node. 

Trees belonging to I ∪ A are called elementary trees. A tree derived by composing 
two other trees is called a derived tree. Trees can be composed together using the ad-
joining operation. The adjoining operation composes an auxiliary tree α with a foot 
node labeled X with any other tree β that has some internal node with the same label 
X. The operation works as follows: we start with the tree β and we extract the sub-tree 
rooted at the internal node labeled with X (let that sub-tree be γ), and replace it with 
the α. Then at the foot node of α, we reinsert γ. The adjoining operation is illustrated 
in Fig. 1.  Let T  = { t : ∃ i∈ I s.t. t can be derived from i}, then L(TAG) consists of 
the yield of all the trees in T. 

 

Fig. 1. The Adjoining Operation 

In [26], Extended Simple Linear TAG (ESLTAG) is defined to be a subclass of 
TAG with adjoining constraints [27]. In ESLTAG, the adjoining operation can occur 
only at internal nodes tagged with the symbol *, and the number of these nodes is re-
stricted. TAGRNA is a sub-class of ESLTAG where only five types of elementary trees 
are allowed (Fig. 2)1. Each type of tree is responsible for a specific kind of branching 
or structural form that an RNA sequence can have.  

3   The Structure Identification Framework 

We introduce a complete RNA structure identification framework, TAGRNAInf, which 
is capable of handling pseudoknot structures. Within this framework, we present a 
new inference algorithm for TAGRNA which constitutes the core of the training phase. 
 

                                                           
1 Tree types of TAGRNA will be explained further in section 3.1.2. 
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Fig. 2. TAGRNA 

Fig. 3 depicts the proposed framework. In the training phase, the inference algorithm 
is fed with a positive training set with structural information. The algorithm will gen-
erate a grammar for the provided sample. Then, the same sample along with a nega-
tive sample and the grammar generated by the inference algorithm will go through a 
TAG parser. For each input sequence the TAG parser will output a score. These 
 

 

Fig. 3. TAGRNAInf : RNA Structure Identification Framework 
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scores will be the input to a threshold function inference module. The inferred thresh-
old function will be used in the identification phase.  

Several scoring functions can be used. For example, it can be either the number of 
base pairs or the minimum free energy (mfe) of the RNA sequence structure. Also, a 
probabilistic function can be used to generate the scores. Currently, we use the num-
ber of base pairs as the scoring function. We intend to investigate other alternatives. 
The inferred grammar and the scoring threshold function will be used by a TAG 
parser in the identification phase. Given an RNA sequence, the identification module 
will be able to check if this sequence has a certain structure such as a pseudoknot.  

3.1   The Inference Algorithm 

The grammar inference adopted here is a three step process. The input is a set of se-
quence data that includes the structure of each sequence, and the output is a grammar 
that models the input sample. If the input sample includes at least one sequence repre-
senting each RNA structure in the population being modeled, the output grammar will 
be a correct model for the RNA population from which the sample was drawn.  For a 
population S, a grammar G is considered to be a correct model of S iff S ⊆ L(G). For 
the purpose of evaluating the inferred grammar within the proposed framework, how-
ever, we calculate the sensitivity and specificity of identification. 

The three steps of the inference process are: the pattern generation, the single pat-
tern grammar generation, and the final grammar composition. 

3.1.1   Pattern Generation 

Definition: Let ( x , x r ) and ( y ,yr ) be two substring pairs in a pattern p, we call the 
two pairs ( x , x r ) and ( y , yr ) a crossing dependency if i < k < j < l where i, j, k, and l 
are the positions of x , x r , y , and yr , respectively, in p. 

The inputs to this phase are: the sequence size, the number of stems in the input 
sequence (n),  the starting and ending indices of each stem in the sequence repre-
sented as a 4-tuple (li1,li2,mi1,mi2), where if xi  , xi

r  are the two strands of a stem in 
the sequence, li1 and li2 are the starting and ending positions of xi, respectively, and mi1 
and mi2 are the starting and ending positions of xi

r , respectively. 
The pattern generation is based on sorting the pairs (li1, li2) and (mi1,mi2) for all val-

ues of i ≤ n resulting in a sorted list P of 2n pairs (pi1, pi2). We maintain a link from 
each pair of numbers to its corresponding substring symbol xi ’s or xi

r ’s. Thus, once 
the number pairs are sorted, the x ’s are consequently sorted. Because any two inter-
vals (pi1,pi2), (pj1,pj2) are non-overlapping we can perform the sort on the first value in 
the pairs, and because we are dealing with integers we can use radix sort. This will 
require linear time in the number of stems n. The generated pattern consists of the 
sorted x ’s and  x r ’s with w’s inserted, to represent loops in the RNA structure, wher-
ever there is a gap between the numbers pi2 and p(i+1)1. The number of w’s in a pattern 
must be less than or equal 2n + 1. The insertion can be done by copying the sorted xi’s 
and xi

r ’s sequentially in an array of size 4n + 1. During the sequential copying proc-
ess, we check for gaps and insert w’s as necessary. This also requires linear time in n. 
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After the pattern is generated and before any grammar inference can be performed, 
we must insert the empty string symbol, ε, in the pattern. The empty string appears in 
TYPE 1 and TYPE 5 trees of TAGRNA (see Fig. 2). Currently, we support patterns that 
have exactly one ε symbol. Considering all the crossing dependencies ((x, x r ), 
( y , yr ,)), ε is inserted at i + 1 where i is the index of the rightmost x r  in the pattern. 

An Example 
The pseudoknot structure at the gag-pol translational readthrough site of spleen necro-
sis virus [4] has the following pattern 

w1x1w2 x2 w3x3x2
r w4 x1

r w5 x3
r  

This pattern has two crossing dependencies, ((x1, x1
r) ,(x3, x3

r)) and ((x2, x2
r) , 

(x3, x3
r)). Because x1

r  comes to the right of x2
r , the ε is inserted after  x1

r
. 

The ε location identification is facilitated by generating a list, links, in which for 
each pair of dependent substrings ( xi , xi

r ), links[i] = (j, k) where j and k are the po-
sitions of xi and xi

r  in the pattern, respectively. The list links is simply constructed 
by scanning the pattern once and filling the corresponding entries for each xi  and xi

r  
in links as they are scanned in the pattern. Thus, the time required for generating 
links is O(n), where n is the number of stems in the pattern. A simple search on 
links is performed to determine the position of ε which satisfies the above condition.  
This also requires linear time in the length of the pattern and consequently linear in 
the number of stems n. Thus, the total time required for this phase of the algorithm is 
O(n).  

3.1.2   Generating Grammar for a Single Pattern 
The general idea of the grammar generation for a pattern is to choose the correct types 
of trees, from the TAGRNA model, that can model dependencies between pairs of sub-
string symbols in the pattern, or simply model independent substrings. The choice is 
dependent on the relative positions of the substrings being modeled and the position 
of ε. If we look at the types of trees in TAGRNA, illustrated in Fig. 2, we notice the fol-
lowing. First, there is only one type of initial tree which is of TYPE 1. Thus the gen-
erated grammar will always have one of those trees. TYPE 2 trees can be used to 
model dependent pairs of substrings ( x , x r ) that appear on opposite sides of ε. TYPE 
3 trees can be used to model dependent pairs of substrings ( x , x r ) that appear on the 
same side of ε. Finally, TYPE 4 trees can be used to model independent substrings 
(loops in the RNA structure) that are represented by w symbols in the generated pat-
tern. As we mentioned above, we currently support patterns that have exactly one ε 
symbol. TYPE 5 trees can be used to model more complex structures with branching. 
At the moment, we do not make use of TYPE 5 Trees. 

To generate the grammar for one pattern, the pattern is parsed one symbol at a time. 
For each independent substring symbol w or dependent pair of symbols ( x , x r ), two aux-
iliary trees are generated. The first tree has the same non-terminal label for the root, foot 
node and the adjoining node. This tree can be used recursively to generate terminals  
{c, g, u, a} in the RNA sequence corresponding to the currently parsed pattern  
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substring symbol(s). The second tree is the same as the first one except that it has a dif-
ferent non-terminal label for the adjoining node. This tree allows transitioning to another 
substring or pair of substrings in the pattern.  Generating a grammar for a single pattern 
requires linear time in the length of the pattern and, consequently, the number of stems is 
O(n). Algorithmic details and complexity analysis can be found in [1]. 

3.1.3   Final Grammar Composition 
When the whole sample is processed, we will have a set of grammars, each represent-
ing the pattern of a single input example. To generate one grammar, which is repre-
sentative of the whole input sample, we need to combine these grammars. The TAG 
union operator, defined in [27] can be used for this purpose. The union of two TAGs 
consists of the union of the elementary trees of both grammars. 

If the input sample includes at least one sequence representing each RNA structure 
in the population being modeled, then the output grammar is a correct model for that 
population. For an input sample of size m RNA examples, the total time required by 
the algorithm is O(mn) where n is the maximum number of stems in an RNA exam-
ple. Thus the algorithm is linear in the size of the input. 

In order to reduce the size of the final grammar, the grammar composition step can 
be adjusted to check for input examples that have the same pattern. To accomplish 
that, any generated pattern must be saved. When a new example is encountered, a pat-
tern is generated for it. Then, the set of saved patterns is searched. If the same pattern 
was generated before, we move to the next input example. If not, a grammar is in-
ferred for the new pattern. The search process requires O(mn) time for one pattern. 
Thus, this modification increases the complexity to O(m2n). Even though this is more 
than linear time, this algorithm is practical.  

In practice, however, we prefer to keep the generated grammars separate. In later 
stages of the training phase and in the identification phase, the TAG parser will parse 
the input sequence against each of the generated grammars separately which is 
equivalent to parsing it against the union grammar. This will not increase the parsing 
complexity. On the contrary, it will help in optimizing it through eliminating the least 
effective grammars, as explained in section 3.3. 

An Example 
The input in this example is the following set of 4-tuples representing stems’ positions 
for the delta ribozyme structure of the hepatitis delta virus (Italy variant) as it appears 
in the Pseudobase website [4]. 

(1,7,33,39), (16,19,81,84), (20,22,30,32), (43,49,68,74), (54,57,62,65) 

First the corresponding pattern is generated: 

x1w1x2x3w2x 3
r x1

r fw3x4w4x5w5x5
r w6x 4

r w7 x2
r w8  

Table 1 shows the output trees generated for each substring or pair of substrings in 
the above pattern. The substrings appear in the order in which they are processed by 
the algorithm.  
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Table 1. Output Trees for delta ribozyme structure of the hepatitas delta virus 

Substring/Substring Pair Generated Auxiliary Trees 

(x1, x1
r)  T3L[S,S] & T3L[S,A] 

w1 T4Ld[A,A] & T4Ld[A,B] 

w8 T4Rd[B,B] & T4Rd[B,C] 

(x2, x2
r)  T2d[C,C] & T2d[C,D] 

(x3, x3
r)  T3L[D,D] & T3L[D,E] 

w2 T4Ld[E,E] & T4Ld[E,F] 

w3 T4Ru[F,F] & T4Ld[F,G] 

w7 T4Rd[G,G] & T4Rd[G,H] 

(x4, x4
r)  T3R[H,H] & T3R[H,I] 

w4 T4Ru[I,I] & T4Ru[I,J] 

w6 T4Rd[J,J] & T4Rd[J,K] 

(x5, x5
r)  T3R[K,K] & T3R[K,L] 

w5 T4Ru[L,L] & T4Ru[L,M] 

3.2   The TAG Parser and the Scoring Function 

We use a TAG parser in the training phase and the identification phase. In the training 
phase, the parser is used to generate a set of scores for the positive and negative train-
ing sequences. The generated scores are then input to a threshold function inference 
module. The scoring function used is a simple one that counts the number of base 
pairs for the sequence structure under a certain grammar. If there is more than one 
possible structure, due to the nondeterministic nature of the grammar, the parser will 
output the maximum score. As mentioned in section 3.2.3, a separate grammar for 
each pattern resulting from the positive training will be generated. The score for a cer-
tain sequence under the union of a set of grammars will, again, be the maximum of 
the scores generated from all grammars in the set. 

The parser we used is an implementation of Rajasekaran’s [17] and Vijay-
Shankar and Joshi’s [27] algorithms with some minor modifications. In our imple-
mentation of the TAG parser, in addition to n4 matrix, A, maintained by the parser, we 
associate a list of 4-tuples with every node in the grammar. For a node α, a tuple 
(i,j,k,l) ∈ List(α) iff  α ∈ A(i,j,k,l). This idea, borrowed from [17], does not improve 
the worst time complexity of the parser which is O(n6); however, it improves the av-
erage run time in practice due to sparsity of the matrix A. Another modification is the 
fact that the parser generates a score for each sequence instead of a yes/no output. 

3.3   The Threshold Function Inference Module 

This module infers a score threshold function Th(l) = p. A sequence s of size l is con-
sidered to have the RNA structure represented by a grammar G iff the TAG parser ac-
cepts s under G, with score ps ≥ p. Th(l) is a step function defined as follows: 

Th(l) = p,  i  ≤ l <  j  (1) 
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 Since both sensitivity and specificity are important criteria we infer a function 
Th(l) that maximizes the sum of sensitivity and specificity. This is achieved through 
calculating a function S for all possible paths of Th from l = 0 to l = n, where S is the 
maximum gain in specificity - loss in sensitivity resulting from each step the function 
Th makes  and n is the maximum sequence size. Then Th is constructed by tracing 
back the path resulting in maximum S. Calculating maximum S can be done in 
O(n3m2) time and O(n2m2) memory using dynamic programming, where m is maxi-
mum reported score for the input sample.  

Assume, with out loss of generality, that the number of sequences in the positive 
sample and the negative sample are equal. Let S(i,j,p,q) be maximum gain in specific-
ity – loss in sensitivity possible for a threshold function segment that starts at Th(i) = 
p, and ends at Th(j) = q. Then, the dynamic programming recurrence formulae are 
given below 

S(i,i,p,q) = S(i,i,q,q) = ( the number of negative samples of length i with 
score < q  –  the number of positive samples of length i with score 
< q) / the sample size. 

(2) 

and 

S(i,j,p,q)  = S(i,i,p,p) + S(j,j,q,q) , j =  i+1 
 = Max p ≤ l ≤ m ≤ q ( S(i+1,j-1,l,m) + S(i,i,p,p) + S(j,j,q,q) )  , j ≥  i+2 

(3) 

3.4   Selecting the Best Grammar Combination 

As mentioned earlier, the scores resulting from each grammar for the patterns gener-
ated by the training sequences are reported separately. Instead of inferring the thresh-
old function from the maximum score calculated over all the generated grammars, we 
try all possible combinations out of these grammars and pick the combination that gen-
erates the maximum sensitivity + specificity for the training set.  This approach has 
two advantages. First, it eliminates the least informative and/or nearly redundant 
grammars. Meanwhile it enhances the time performance for the identification phase by 
reducing the number of grammars, or in other words, the size of the overall grammar. 

This idea can further be used to restrict the number of grammars used to preset a 
maximum; thus choosing the best combination out of three or four grammars, for ex-
ample. Even though trying out all possible combinations requires exponential time in 
the number of grammars, the number of grammars is usually small, resulting in the 
feasibility of this solution.  

4   Experimental Results 

To evaluate the effectiveness of the inferred grammars within TAGRNAInf, we calcu-
late the sensitivity and specificity of identification. 

Sensitivity = TP + FN
TP  and  Specificity = TN + FP

TN  (4) 

where TP, TN, FP, and FN are the number of true positives, the number of true nega-
tives, the number of false positives and the number of false negatives respectively. 
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We used the grammar inference algorithm to infer a grammar for H-type pseudok-
not from a positive training set with structural information. Then we used positive and 
negative training sets to infer the threshold function. The inferred grammar and score 
threshold function were applied to a test set of RNA sequences and the sensitivity and 
specificity were calculated. 

For this experiment, we used these data sources: 
 

- The positive data population of H-type pseudoknot sequences was collected from 
Pseudobase [4], the tmRNA database [28], and pseudoknot familes in the Rfam data-
base [10]. We arbitrarily selected sequences from tmRNA and extracted PK1, PK2, 
and PK4 from them. 

- The negative data population was driven from the Rfam database [10]. We se-
lected non-pseudoknot families taking into consideration that the lengths of these se-
quences would be in the same range as the positive population.  

 

The size of each population was 500 sequences. We randomly divided each of the data 
populations to three equal subsets: Training set, test set 1 and test set 2. Table 2 lists the 
sensitivity and specificity for each subset and for the whole population. Table 3 lists the 
sensitivity and specificity of TAGRNAINF, TAGRNA [26] and PknotsRG (mfe) [18] when 
applied to Test set 1. For TAGRNA, and PknotsRG (mfe), we count TP to be the number 
of sequences belonging to the positive population with predicted structures exhibiting a 
pseudoknot. On the other hand, TN is the number of sequences belonging to the negative 
population with predicted structures not exhibiting a pseudoknot. 

Results in table 2 indicate that our approach is solid and can result in very accurate 
predictions. The same problem has been addressed in [14] using a different grammati-
cal formalism. However, the sensitivity we achieve is superior to that reported in [14]. 
For instance when the size of the training set is 50% of the available sample, they can 
achieve a sensitivity of only 54%. To achieve a sensitivity of 85%, they have to em-
ploy a training set of size 90% of the sample. They do not report specificity results. 
Results in table 3 indicate that our approach achieve a good balance between sensitiv-
ity and specificity. 

Table 2. Experimental Results for TAGRNAINF 

Data Subset Sensitivity Specificity 
Training set 87.4% 84.4% 
Test set 1 78.4% 80.8% 
Test set 2 79.6% 88% 
Whole Population 81.8% 84.4% 

 

Table 3. Comparative Results for Test set 1 

 Sensitivity Specificity 
TAGRNAINF 78.4% 80.8% 
TAGRNA 100% 71.3% 
PknotsRG (mfe) 41.6% 81.4% 
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5   Conclusion 

In this paper we have presented a grammatical inference algorithm for TAGRNA,. We 
used the inference algorithm as a module within a complete RNA structure identifica-
tion framework, TAGRNAInf, capable of identifying pseudoknot structures. The TAG 
parser used within TAGRNAInf utilizes a scoring function along with the inferred 
grammar. The scoring function currently used is the number of base pairs of the RNA 
structure detected by the parser. For a training set and a test set of equal size, our ex-
perimental results outperforms those reported in [14] for the same problem. They use 
a different grammatical model.  
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