
M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 132–143, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Pseudoknot Identification through Learning TAGRNA

Sahar Al Seesi, Sanguthevar Rajasekaran, and Reda Ammar

Computer Science and Engineering Department, University of Connecticut
{sahar,rajasek,reda}@engr.uconn.edu

Abstract. Studying the structure of RNA sequences is an important problem
that helps in understanding the functional properties of RNA. Pseudoknot is one
type of RNA structures that cannot be modeled with Context Free Grammars
(CFG) because it exhibits crossing dependencies. Pseudoknot structures have
functional importance since they appear, for example, in viral genome RNAs
and ribozyme active sites. Tree Adjoining Grammars (TAG) is one example of
a grammatical model that is more expressive than CFG and has the capability of
dealing with crossing dependencies. In this paper, we describe a new inference
algorithm for TAGRNA, a sub-model of TAG. We also introduce an RNA struc-
ture identification framework, TAGRNAInf, within which the TAGRNA inference
algorithm constitutes the core of the training phase. We present the results of
using the proposed framework for identifying RNA sequences with pseudoknot
structures. Our results outperform those reported in [14] for the same problem
that employs a different grammatical formalism.

1 Introduction

In recent times there has been an observed acceleration in the RNA structure determi-
nation and analysis [11] owing to its paramount importance. This is partly due to the
discovery of many new functional RNAs, such as miRNAs and tmRNAs [3] [16]
[29]. Another factor that has led to the speeding up of RNA structural research is the
rise of the RNA World Hypothesis [9] which suggests that the current DNA and pro-
tein world has evolved from an RNA based world. This Hypothesis is supported by
the fact that RNA can carry genetic information like DNA and it is capable of catalyz-
ing reactions like proteins (rRNA). Genetic information of some existent viruses is
carried in RNA form [15]. Since the function of bimolecular sequences depends on its
structure, analyzing RNA structures is essential to create new drugs and understand
genetic diseases [6] [20]. Computational methods can provide less expensive solu-
tions to structure analysis than other methods such as nuclear magnetic resonance and
x-ray crystallography.

In the early 90’s, David Searls studied the linguistics of biological sequences [23].
He suggested the use of formal grammars as a tool to model and analyze DNA, RNA,
and proteins. The use of grammars has attracted the attention of many researchers [7]
[26] because it can model long range interactions. In addition, grammatical models
are concise and easy to understand representation of structures of sequence families.
Thus, it is considered to be a natural analytical approach to fully understanding the
structure and properties of these sequences. Results for secondary structure prediction

 Pseudoknot Identification through Learning TAGRNA 133

and multiple sequence alignment agree with and sometimes suggest improvements
over traditional methods [21].

Pseudoknot is one type of RNA structures that cannot be modeled with Context
Free Grammars (CFG) because it exhibits crossing dependencies. Pseudoknot struc-
tures have functional importance since they appear, for example, in viral genome
RNAs [15], ribozyme active sites [25], and tmRNA [28]. Among the available re-
search in analyzing pseudoknot structures are the works of Akutsu [2], Dirks and
Pierce [8], and Reeder and Giegerich [18]. These algorithms are not based on formal
grammars. In the area of modeling molecular sequences grammatically, more than
one model, capable of representing pseudoknots, have been presented. Cai et. al. [7]
proposed Parallel Communicating Grammar Systems (PCGS) with an O(n6) time
parsing algorithm. Another model which also requires O(n6) parsing time has been
proposed by Rivas and Eddy[19]. Uemura et. al. [26] suggested the use of a sub-
model of TAG, TAGRNA. Our solution is based on the TAGRNA model.

Recently, there has been a special focus on the use of grammatical inference in bioin-
formatics. Sakakibara has published [22] in which he discusses the general merits of us-
ing grammatical inference in bioinformatics. Brazma et. al. [5] have proposed an ap-
proach to discover simple grammars for families of biological sequences. The
grammatical formalisms they use are subclasses of regular patterns. On the use of gram-
matical inference to analyze RNA structures with Pseudoknots, Laxminarayana et. al.
[13] presented an inference algorithm for Terminal Distinguishable Even Linear Gram-
mars (TDELG), and they have shown how to use this algorithm in an Infer-Test model
for the detection of a pseudoknot structure in an RNA sequence. The experimental results
they presented [14] show 54% sensitivity when using 50% of the RNA sample for train-
ing. The sensitivity rises to 85% only when 90% of the sample is used for training. Speci-
ficity was not reported. This is the same problem as the one we address, and our results
outperform those numbers, as it will be shown. Takakura et. al. have published [24] in
which they give a linear time algorithm for generating probabilistic TAGRNA from align-
ment data. They use the inferred grammar to find new members of nc-RNA families,
which is a different problem from the one we address in this paper.

The use of grammatical inference to automate the grammar building step is essential
in facilitating the use of grammatical formalism by biologists. Otherwise, the biologist
will always be dependent on a grammar expert. In this work, we present a complete RNA
structure identification framework, TAGRNAInf, capable of handling pseudoknot struc-
tures. By structure identification we mean, given an RNA sequence, we answer the ques-
tion of whther it exhibits a certain structure or not. In our approach, the structure is repre-
sented by a TAG which is inferred from a training set. We describe a new polynomial
time inference algorithm for TAGRNA which constitutes the core of the training phase
within the identification framework. We evaluate our solution experimentally through
calculating the sensitivity and specificity of identification.

2 TAG and TAGRNA

Tree Adjoining Grammars (TAGs) were originally introduced, by Joshi et. al. [12], for
use in the field of natural language processing. Uemura et. al. [26] defined a subclass
of TAGs, TAGRNA, suitable to model RNA pseudoknot structures. They developed

134 S.A. Seesi, S. Rajasekaran, and R. Ammar

an O(n5) time parsing algorithm for TAGRNA. Before describing TAGRNA we will first
give a brief introduction to the original TAG model.

A Tree Adjoining Grammar (TAG) is defined to be a 5-tuple (T ∪ {ε}, N , I, A, S),
where T is a set of terminal symbols, N is a set of non-terminal symbols, ε is the
empty string symbol, and S is the starting symbol. I and A are defined as follows:

I (initial trees): A finite set of finite trees with the internal nodes’ labels belong-
ing to N ∪ {S} , the leaves’ labels belonging to T ∪ {ε}, and the root is la-
beled with S.

A (auxiliary trees): A finite set of finite trees with the internal nodes’ labels be-
longing to N ∪ {S}, and the leaves’ labels belonging to T ∪ {ε} except
one leaf node which has the same label as the root. This special leaf node
is called a foot node.

Trees belonging to I ∪ A are called elementary trees. A tree derived by composing
two other trees is called a derived tree. Trees can be composed together using the ad-
joining operation. The adjoining operation composes an auxiliary tree α with a foot
node labeled X with any other tree β that has some internal node with the same label
X. The operation works as follows: we start with the tree β and we extract the sub-tree
rooted at the internal node labeled with X (let that sub-tree be γ), and replace it with
the α. Then at the foot node of α, we reinsert γ. The adjoining operation is illustrated
in Fig. 1. Let T = { t : ∃ i∈ I s.t. t can be derived from i}, then L(TAG) consists of
the yield of all the trees in T.

Fig. 1. The Adjoining Operation

In [26], Extended Simple Linear TAG (ESLTAG) is defined to be a subclass of
TAG with adjoining constraints [27]. In ESLTAG, the adjoining operation can occur
only at internal nodes tagged with the symbol *, and the number of these nodes is re-
stricted. TAGRNA is a sub-class of ESLTAG where only five types of elementary trees
are allowed (Fig. 2)1. Each type of tree is responsible for a specific kind of branching
or structural form that an RNA sequence can have.

3 The Structure Identification Framework

We introduce a complete RNA structure identification framework, TAGRNAInf, which
is capable of handling pseudoknot structures. Within this framework, we present a
new inference algorithm for TAGRNA which constitutes the core of the training phase.

1 Tree types of TAGRNA will be explained further in section 3.1.2.

 Pseudoknot Identification through Learning TAGRNA 135

Fig. 2. TAGRNA

Fig. 3 depicts the proposed framework. In the training phase, the inference algorithm
is fed with a positive training set with structural information. The algorithm will gen-
erate a grammar for the provided sample. Then, the same sample along with a nega-
tive sample and the grammar generated by the inference algorithm will go through a
TAG parser. For each input sequence the TAG parser will output a score. These

Fig. 3. TAGRNAInf : RNA Structure Identification Framework

136 S.A. Seesi, S. Rajasekaran, and R. Ammar

scores will be the input to a threshold function inference module. The inferred thresh-
old function will be used in the identification phase.

Several scoring functions can be used. For example, it can be either the number of
base pairs or the minimum free energy (mfe) of the RNA sequence structure. Also, a
probabilistic function can be used to generate the scores. Currently, we use the num-
ber of base pairs as the scoring function. We intend to investigate other alternatives.
The inferred grammar and the scoring threshold function will be used by a TAG
parser in the identification phase. Given an RNA sequence, the identification module
will be able to check if this sequence has a certain structure such as a pseudoknot.

3.1 The Inference Algorithm

The grammar inference adopted here is a three step process. The input is a set of se-
quence data that includes the structure of each sequence, and the output is a grammar
that models the input sample. If the input sample includes at least one sequence repre-
senting each RNA structure in the population being modeled, the output grammar will
be a correct model for the RNA population from which the sample was drawn. For a
population S, a grammar G is considered to be a correct model of S iff S ⊆ L(G). For
the purpose of evaluating the inferred grammar within the proposed framework, how-
ever, we calculate the sensitivity and specificity of identification.

The three steps of the inference process are: the pattern generation, the single pat-
tern grammar generation, and the final grammar composition.

3.1.1 Pattern Generation

Definition: Let (x , x r) and (y ,yr) be two substring pairs in a pattern p, we call the
two pairs (x , x r) and (y , yr) a crossing dependency if i < k < j < l where i, j, k, and l
are the positions of x , x r , y , and yr , respectively, in p.

The inputs to this phase are: the sequence size, the number of stems in the input
sequence (n), the starting and ending indices of each stem in the sequence repre-
sented as a 4-tuple (li1,li2,mi1,mi2), where if xi , xi

r are the two strands of a stem in
the sequence, li1 and li2 are the starting and ending positions of xi, respectively, and mi1
and mi2 are the starting and ending positions of xi

r , respectively.
The pattern generation is based on sorting the pairs (li1, li2) and (mi1,mi2) for all val-

ues of i ≤ n resulting in a sorted list P of 2n pairs (pi1, pi2). We maintain a link from
each pair of numbers to its corresponding substring symbol xi ’s or xi

r ’s. Thus, once
the number pairs are sorted, the x ’s are consequently sorted. Because any two inter-
vals (pi1,pi2), (pj1,pj2) are non-overlapping we can perform the sort on the first value in
the pairs, and because we are dealing with integers we can use radix sort. This will
require linear time in the number of stems n. The generated pattern consists of the
sorted x ’s and x r ’s with w’s inserted, to represent loops in the RNA structure, wher-
ever there is a gap between the numbers pi2 and p(i+1)1. The number of w’s in a pattern
must be less than or equal 2n + 1. The insertion can be done by copying the sorted xi’s
and xi

r ’s sequentially in an array of size 4n + 1. During the sequential copying proc-
ess, we check for gaps and insert w’s as necessary. This also requires linear time in n.

 Pseudoknot Identification through Learning TAGRNA 137

After the pattern is generated and before any grammar inference can be performed,
we must insert the empty string symbol, ε, in the pattern. The empty string appears in
TYPE 1 and TYPE 5 trees of TAGRNA (see Fig. 2). Currently, we support patterns that
have exactly one ε symbol. Considering all the crossing dependencies ((x, x r),
(y , yr ,)), ε is inserted at i + 1 where i is the index of the rightmost x r in the pattern.

An Example
The pseudoknot structure at the gag-pol translational readthrough site of spleen necro-
sis virus [4] has the following pattern

w1x1w2 x2 w3x3x2
r w4 x1

r w5 x3
r

This pattern has two crossing dependencies, ((x1, x1
r) ,(x3, x3

r)) and ((x2, x2
r) ,

(x3, x3
r)). Because x1

r comes to the right of x2
r , the ε is inserted after x1

r
.

The ε location identification is facilitated by generating a list, links, in which for
each pair of dependent substrings (xi , xi

r), links[i] = (j, k) where j and k are the po-
sitions of xi and xi

r in the pattern, respectively. The list links is simply constructed
by scanning the pattern once and filling the corresponding entries for each xi and xi

r
in links as they are scanned in the pattern. Thus, the time required for generating
links is O(n), where n is the number of stems in the pattern. A simple search on
links is performed to determine the position of ε which satisfies the above condition.
This also requires linear time in the length of the pattern and consequently linear in
the number of stems n. Thus, the total time required for this phase of the algorithm is
O(n).

3.1.2 Generating Grammar for a Single Pattern
The general idea of the grammar generation for a pattern is to choose the correct types
of trees, from the TAGRNA model, that can model dependencies between pairs of sub-
string symbols in the pattern, or simply model independent substrings. The choice is
dependent on the relative positions of the substrings being modeled and the position
of ε. If we look at the types of trees in TAGRNA, illustrated in Fig. 2, we notice the fol-
lowing. First, there is only one type of initial tree which is of TYPE 1. Thus the gen-
erated grammar will always have one of those trees. TYPE 2 trees can be used to
model dependent pairs of substrings (x , x r) that appear on opposite sides of ε. TYPE
3 trees can be used to model dependent pairs of substrings (x , x r) that appear on the
same side of ε. Finally, TYPE 4 trees can be used to model independent substrings
(loops in the RNA structure) that are represented by w symbols in the generated pat-
tern. As we mentioned above, we currently support patterns that have exactly one ε
symbol. TYPE 5 trees can be used to model more complex structures with branching.
At the moment, we do not make use of TYPE 5 Trees.

To generate the grammar for one pattern, the pattern is parsed one symbol at a time.
For each independent substring symbol w or dependent pair of symbols (x , x r), two aux-
iliary trees are generated. The first tree has the same non-terminal label for the root, foot
node and the adjoining node. This tree can be used recursively to generate terminals
{c, g, u, a} in the RNA sequence corresponding to the currently parsed pattern

138 S.A. Seesi, S. Rajasekaran, and R. Ammar

substring symbol(s). The second tree is the same as the first one except that it has a dif-
ferent non-terminal label for the adjoining node. This tree allows transitioning to another
substring or pair of substrings in the pattern. Generating a grammar for a single pattern
requires linear time in the length of the pattern and, consequently, the number of stems is
O(n). Algorithmic details and complexity analysis can be found in [1].

3.1.3 Final Grammar Composition
When the whole sample is processed, we will have a set of grammars, each represent-
ing the pattern of a single input example. To generate one grammar, which is repre-
sentative of the whole input sample, we need to combine these grammars. The TAG
union operator, defined in [27] can be used for this purpose. The union of two TAGs
consists of the union of the elementary trees of both grammars.

If the input sample includes at least one sequence representing each RNA structure
in the population being modeled, then the output grammar is a correct model for that
population. For an input sample of size m RNA examples, the total time required by
the algorithm is O(mn) where n is the maximum number of stems in an RNA exam-
ple. Thus the algorithm is linear in the size of the input.

In order to reduce the size of the final grammar, the grammar composition step can
be adjusted to check for input examples that have the same pattern. To accomplish
that, any generated pattern must be saved. When a new example is encountered, a pat-
tern is generated for it. Then, the set of saved patterns is searched. If the same pattern
was generated before, we move to the next input example. If not, a grammar is in-
ferred for the new pattern. The search process requires O(mn) time for one pattern.
Thus, this modification increases the complexity to O(m2n). Even though this is more
than linear time, this algorithm is practical.

In practice, however, we prefer to keep the generated grammars separate. In later
stages of the training phase and in the identification phase, the TAG parser will parse
the input sequence against each of the generated grammars separately which is
equivalent to parsing it against the union grammar. This will not increase the parsing
complexity. On the contrary, it will help in optimizing it through eliminating the least
effective grammars, as explained in section 3.3.

An Example
The input in this example is the following set of 4-tuples representing stems’ positions
for the delta ribozyme structure of the hepatitis delta virus (Italy variant) as it appears
in the Pseudobase website [4].

(1,7,33,39), (16,19,81,84), (20,22,30,32), (43,49,68,74), (54,57,62,65)

First the corresponding pattern is generated:

x1w1x2x3w2x 3
r x1

r fw3x4w4x5w5x5
r w6x 4

r w7 x2
r w8

Table 1 shows the output trees generated for each substring or pair of substrings in
the above pattern. The substrings appear in the order in which they are processed by
the algorithm.

 Pseudoknot Identification through Learning TAGRNA 139

Table 1. Output Trees for delta ribozyme structure of the hepatitas delta virus

Substring/Substring Pair Generated Auxiliary Trees

(x1, x1
r) T3L[S,S] & T3L[S,A]

w1 T4Ld[A,A] & T4Ld[A,B]

w8 T4Rd[B,B] & T4Rd[B,C]

(x2, x2
r) T2d[C,C] & T2d[C,D]

(x3, x3
r) T3L[D,D] & T3L[D,E]

w2 T4Ld[E,E] & T4Ld[E,F]

w3 T4Ru[F,F] & T4Ld[F,G]

w7 T4Rd[G,G] & T4Rd[G,H]

(x4, x4
r) T3R[H,H] & T3R[H,I]

w4 T4Ru[I,I] & T4Ru[I,J]

w6 T4Rd[J,J] & T4Rd[J,K]

(x5, x5
r) T3R[K,K] & T3R[K,L]

w5 T4Ru[L,L] & T4Ru[L,M]

3.2 The TAG Parser and the Scoring Function

We use a TAG parser in the training phase and the identification phase. In the training
phase, the parser is used to generate a set of scores for the positive and negative train-
ing sequences. The generated scores are then input to a threshold function inference
module. The scoring function used is a simple one that counts the number of base
pairs for the sequence structure under a certain grammar. If there is more than one
possible structure, due to the nondeterministic nature of the grammar, the parser will
output the maximum score. As mentioned in section 3.2.3, a separate grammar for
each pattern resulting from the positive training will be generated. The score for a cer-
tain sequence under the union of a set of grammars will, again, be the maximum of
the scores generated from all grammars in the set.

The parser we used is an implementation of Rajasekaran’s [17] and Vijay-
Shankar and Joshi’s [27] algorithms with some minor modifications. In our imple-
mentation of the TAG parser, in addition to n4 matrix, A, maintained by the parser, we
associate a list of 4-tuples with every node in the grammar. For a node α, a tuple
(i,j,k,l) ∈ List(α) iff α ∈ A(i,j,k,l). This idea, borrowed from [17], does not improve
the worst time complexity of the parser which is O(n6); however, it improves the av-
erage run time in practice due to sparsity of the matrix A. Another modification is the
fact that the parser generates a score for each sequence instead of a yes/no output.

3.3 The Threshold Function Inference Module

This module infers a score threshold function Th(l) = p. A sequence s of size l is con-
sidered to have the RNA structure represented by a grammar G iff the TAG parser ac-
cepts s under G, with score ps ≥ p. Th(l) is a step function defined as follows:

Th(l) = p, i ≤ l < j (1)

140 S.A. Seesi, S. Rajasekaran, and R. Ammar

 Since both sensitivity and specificity are important criteria we infer a function
Th(l) that maximizes the sum of sensitivity and specificity. This is achieved through
calculating a function S for all possible paths of Th from l = 0 to l = n, where S is the
maximum gain in specificity - loss in sensitivity resulting from each step the function
Th makes and n is the maximum sequence size. Then Th is constructed by tracing
back the path resulting in maximum S. Calculating maximum S can be done in
O(n3m2) time and O(n2m2) memory using dynamic programming, where m is maxi-
mum reported score for the input sample.

Assume, with out loss of generality, that the number of sequences in the positive
sample and the negative sample are equal. Let S(i,j,p,q) be maximum gain in specific-
ity – loss in sensitivity possible for a threshold function segment that starts at Th(i) =
p, and ends at Th(j) = q. Then, the dynamic programming recurrence formulae are
given below

S(i,i,p,q) = S(i,i,q,q) = (the number of negative samples of length i with
score < q – the number of positive samples of length i with score
< q) / the sample size.

(2)

and

S(i,j,p,q) = S(i,i,p,p) + S(j,j,q,q) , j = i+1
 = Max p ≤ l ≤ m ≤ q (S(i+1,j-1,l,m) + S(i,i,p,p) + S(j,j,q,q)) , j ≥ i+2

(3)

3.4 Selecting the Best Grammar Combination

As mentioned earlier, the scores resulting from each grammar for the patterns gener-
ated by the training sequences are reported separately. Instead of inferring the thresh-
old function from the maximum score calculated over all the generated grammars, we
try all possible combinations out of these grammars and pick the combination that gen-
erates the maximum sensitivity + specificity for the training set. This approach has
two advantages. First, it eliminates the least informative and/or nearly redundant
grammars. Meanwhile it enhances the time performance for the identification phase by
reducing the number of grammars, or in other words, the size of the overall grammar.

This idea can further be used to restrict the number of grammars used to preset a
maximum; thus choosing the best combination out of three or four grammars, for ex-
ample. Even though trying out all possible combinations requires exponential time in
the number of grammars, the number of grammars is usually small, resulting in the
feasibility of this solution.

4 Experimental Results

To evaluate the effectiveness of the inferred grammars within TAGRNAInf, we calcu-
late the sensitivity and specificity of identification.

Sensitivity = TP + FN
TP and Specificity = TN + FP

TN (4)

where TP, TN, FP, and FN are the number of true positives, the number of true nega-
tives, the number of false positives and the number of false negatives respectively.

 Pseudoknot Identification through Learning TAGRNA 141

We used the grammar inference algorithm to infer a grammar for H-type pseudok-
not from a positive training set with structural information. Then we used positive and
negative training sets to infer the threshold function. The inferred grammar and score
threshold function were applied to a test set of RNA sequences and the sensitivity and
specificity were calculated.

For this experiment, we used these data sources:

- The positive data population of H-type pseudoknot sequences was collected from
Pseudobase [4], the tmRNA database [28], and pseudoknot familes in the Rfam data-
base [10]. We arbitrarily selected sequences from tmRNA and extracted PK1, PK2,
and PK4 from them.

- The negative data population was driven from the Rfam database [10]. We se-
lected non-pseudoknot families taking into consideration that the lengths of these se-
quences would be in the same range as the positive population.

The size of each population was 500 sequences. We randomly divided each of the data
populations to three equal subsets: Training set, test set 1 and test set 2. Table 2 lists the
sensitivity and specificity for each subset and for the whole population. Table 3 lists the
sensitivity and specificity of TAGRNAINF, TAGRNA [26] and PknotsRG (mfe) [18] when
applied to Test set 1. For TAGRNA, and PknotsRG (mfe), we count TP to be the number
of sequences belonging to the positive population with predicted structures exhibiting a
pseudoknot. On the other hand, TN is the number of sequences belonging to the negative
population with predicted structures not exhibiting a pseudoknot.

Results in table 2 indicate that our approach is solid and can result in very accurate
predictions. The same problem has been addressed in [14] using a different grammati-
cal formalism. However, the sensitivity we achieve is superior to that reported in [14].
For instance when the size of the training set is 50% of the available sample, they can
achieve a sensitivity of only 54%. To achieve a sensitivity of 85%, they have to em-
ploy a training set of size 90% of the sample. They do not report specificity results.
Results in table 3 indicate that our approach achieve a good balance between sensitiv-
ity and specificity.

Table 2. Experimental Results for TAGRNAINF

Data Subset Sensitivity Specificity
Training set 87.4% 84.4%
Test set 1 78.4% 80.8%
Test set 2 79.6% 88%
Whole Population 81.8% 84.4%

Table 3. Comparative Results for Test set 1

 Sensitivity Specificity
TAGRNAINF 78.4% 80.8%
TAGRNA 100% 71.3%
PknotsRG (mfe) 41.6% 81.4%

142 S.A. Seesi, S. Rajasekaran, and R. Ammar

5 Conclusion

In this paper we have presented a grammatical inference algorithm for TAGRNA,. We
used the inference algorithm as a module within a complete RNA structure identifica-
tion framework, TAGRNAInf, capable of identifying pseudoknot structures. The TAG
parser used within TAGRNAInf utilizes a scoring function along with the inferred
grammar. The scoring function currently used is the number of base pairs of the RNA
structure detected by the parser. For a training set and a test set of equal size, our ex-
perimental results outperforms those reported in [14] for the same problem. They use
a different grammatical model.

References

1. Al Seesi, S.: Pseudoknot Identification through Learning TAGRNA, BECAT-CSE Techni-
cal Report, University of Connecticut (April 2008)

2. Akutsu, T.: Dynamic Programming Algorithms for RNA Secondary Structure Prediction
with Pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)

3. Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G.,
Eddy, S.R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G., Tuschl, T.: A Uni-
form System for microRNA Annotation. RNA 9(3), 277–279 (2003)

4. van Batenburg, F.H.D., Gultyaev, A.P., Pleij, C.W.A., Ng, J., Oliehoek, J.: Pseudobase: a
Database with RNA Pseudoknots. Nucl. Acids Res. 28(1), 201–204 (2000)

5. Brazma, A., Jonassen, I., Vilo, J., Ukkonen, E.: Pattern Discovery in Biosequences. In:
Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 255–270.
Springer, Heidelberg (1998)

6. Buratti, E., Dhir, A., Lewandowska, M.A., Baralle, F.E.: RNA Structure is a Key Regula-
tory Element in Pathological ATM and CFTR Pseudoexon Inclusion Events. Nucl. Acids
Res. 35(13), 4369–4383 (2007)

7. Cai, L., Malmberg, R., Wu, Y.: Stochastic Modeling of RNA Pseudoknotted Structures: a
Grammatical Approach. Bioinformatics 19(supp. 1), 66–73 (2003)

8. Dirks, R.M., Pierce, N.A.: A Partition Function Algorithm for Nucleic Acid Secondary
Structure Including Pseudoknots. J. Comput. Chem. 24(13), 1664–1677 (2003)

9. Gilbert, W.: The RNA World. Nature 319, 618 (1986)
10. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam:

Annotating Non-coding RNAs in Complete Genomes. Nucl. Acids Res. 33, D121–D124
(2005)

11. Holbrook, S.R.: RNA Structure: the Long and the Short of it. Current Opinion in Structural
Biology 15, 302–308 (2005)

12. Joshi, A.K., Levy, L., Takahashi, M.: Tree Adjunct Grammars. Journal of Computer and
System Sciences 10, 136–163 (1975)

13. Laxminarayana, J.A., Nagaraja, G., Balaji, P.V.: Identification of Pseudoknots in RNA
Secondary Structures: A Grammatical Inference Approach. In: Mukherjee, D.P., Pal, S.
(eds.) Proceedings of 5th International Conference on Advances in Pattern Recognition
(2003)

14. Laxminarayana, J.A., Nagaraja, G., Balaji, P.V.: Inference of a Subclass of Even Linear
Languages and its Application to Pseudoknot Identification. In: Department of Computer
Science and Engineering, Indian Institute of Technology, Bombay, India (manuscript,
2003)

 Pseudoknot Identification through Learning TAGRNA 143

15. Paillart, J.C., Skripkin, E., Ehresmann, B., Ehresmann, C., Marquet, R.: In vitro Evidence
for a Long Range Pseudoknot in the 5’-Untranslated and Matrix Coding regions of HIV-1
Genomic RNA. J. Biol. Chem. 277, 5995–6004 (2002)

16. Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh, K., Lander, E.S.,
Kent, J., Miller, W., Haussler, D.: Identification and Classification of Conserved RNA
Secondary Structures in the Human Genome. Public Library of Science. Computational
Biology 2(4), 33 (2006)

17. Rajasekaran, S.: Tree-Adjoining Language Parsing in o(n6) Time. SIAM Journal on Com-
puting 25(4), 862–873 (1996)

18. Reeder, J., Giegerich, R.: Design, Implementation and Evaluation of a Practical Pseudok-
not Folding Algorithm Based on Thermodynamics. BMC Bioinformatics 5, 104 (2004)

19. Rivas, E., Eddy, S.: The Language of RNA: a Formal Grammar that Includes Pseudoknots.
Bioinformatics 16(4), 334–340 (2000)

20. Robertson, M.P., Igel, H., Baertsch, R., Haussler, D., Ares Jr., M., Scott, W.G.: The Struc-
ture of a Rigorously Conserved RNA Element within the SARS Virus Genome. Public Li-
brary of Science: Biology 3(1), 5 (2004)

21. Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolander, K., Underwood, R.C.,
Haussler, D.: Stochastic Context-Free Grammars for tRNA Modeling. Nucl. Acids
Res. 22, 5112–5120 (1994)

22. Sakakibara, Y.: Grammatical Inference in Bioinformatics. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 1051–1062 (2005)

23. Searls, D.: The Linguistics of DNA. Am. Scient. 80, 579–591 (1992)
24. Takakura, T., Asakawa, H., Seki, S., Kobayashi, S.: Efficient Tree Grammar Modeling of

RNA Secondary Structures from Alignment Data. In: Proceedings of posters of RECOMB
2005, pp. 339–340 (2005)

25. Tanaka, Y., Hori, T., Tagaya, M., Sakamoto, T., Kurihara, Y., Katahira, M., Uesugi, S.:
Imino Proton NMR Analysis of HDV Ribozymes: Nested Double Pseudoknot Structure
and Mg2+ Ion-Binding Site Close to the Catalytic Core in Solution. Nucl. Acids Res. 30,
766–774 (2002)

26. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree Adjoining Grammars for
RNA Structure Prediction. Theoretical Computer Science 210(2), 277–303 (1999)

27. Vijay-Shanker, K., Joshi, A.K.: Some Computational Properties of Tree Adjoining Gram-
mars. In: 23 rd Meeting of the Association for Computational Linguistics, pp. 82–93
(1985)

28. Williams, K.P., Bartel, D.P.: The tmRNA Website. Nucl. Acids Res. 26(1), 163–165
(1998)

29. Williams, K.P.: The tmRNA Website: Invasion by an Intron. Nucl. Acids Res. 30(1), 179–
182 (2002)

	Pseudoknot Identification through Learning TAG_{RNA}
	Introduction
	TAG and TAG_{RNA}
	The Structure Identification Framework
	The Inference Algorithm
	The TAG Parser and the Scoring Function
	The Threshold Function Inference Module
	Selecting the Best Grammar Combination

	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

