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Abstract

To understand why molecular evolution turned out as it did, we must characterize not only the path 

that evolution followed across the space of possible molecular sequences but also the many 

alternative trajectories that could have been taken but were not. A large-scale comparison of real 

and possible histories would establish whether the outcome of evolution represents a unique or 

optimal state driven by natural selection or the contingent product of historical chance events1; it 

would also reveal how the underlying distribution of functions across sequence space shaped 

historical evolution2,3. Here we combine ancestral protein reconstruction4 with deep mutational 

scanning5–10 to characterize alternate histories in the sequence space around an ancient 

transcription factor, which evolved a novel biological function through well-characterized 

mechanisms11,12. We found hundreds of alternative protein sequences that use diverse biochemical 

mechanisms to perform the derived function at least as well as the historical outcome. These 

alternatives all require prior permissive substitutions that do not enhance the derived function, but 

not all require the same permissive changes that occurred during history. We found that if 

evolution had begun from a different starting point within the network of sequences encoding the 

ancestral function, outcomes with different genetic and biochemical forms would likely have 

resulted; this contingency arises from the distribution of functional variants in sequence space and 

epistasis between residues. Our results illuminate the topology of the vast space of possibilities 

from which history sampled one path, highlighting how the outcome of evolution depends on a 

serial chain of compounding chance events.

We applied deep mutational scanning to the DNA-binding domain of a reconstructed 

ancestral steroid hormone receptor, whose historical trajectory of functional, genetic, and 

biochemical evolution is well understood. Steroid receptors are transcription factors that 
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mediate the action of sex and adrenal steroids by binding to specific DNA sequences and 

regulating expression of target genes. The two major clades of receptors differ in their DNA 

specificity (Fig. 1a): estrogen receptors prefer an inverted palindrome of AGGTCA 

(estrogen response element, ERE)13, whereas receptors for androgens, progestogens, and 

corticosteroids prefer AGAACA (steroid response element, SRE)14. Although some 

degeneracy is tolerated, these sequences represent the high-affinity consensus sites for each 

class13,14 and have therefore been the focus of extensive biochemical characterization15–18. 

Previously, we reconstructed the ancestral protein from which all steroid receptors descend 

(AncSR1) and found it specifically binds ERE11,12. After AncSR1 duplicated, one daughter 

protein diverged in function to yield AncSR2, which prefers SRE. Re-introducing three 

substitutions from this historical interval radically shifts AncSR1’s relative affinity from 

ERE to SRE, and this effect is robust to uncertainty about the ancestral sequence19. These 

substitutions are located on the protein’s recognition helix (RH), which directly contacts the 

response element’s major groove15–17. Although they shift specificity, the RH substitutions 

alone reduce affinity below that required to activate transcription. Another eleven 

substitutions (11P) outside the RH that occurred during this evolutionary interval were 

permissive, increasing affinity for both ERE and SRE, allowing the protein to tolerate the 

function-switching RH substitutions11.

To characterize alternative ways by which SRE specificity could have evolved (Fig. 1a), we 

focused on the RH, the only portion of the protein that directly contacts the nucleotides that 

vary between ERE and SRE. We prepared a library that contains all 160,000 combinations 

of all 20 amino acids at four key sites in the RH – the three that historically shifted DNA 

specificity, plus a physically adjacent lysine that varies among the broader receptor 

superfamily (Fig. 1b). The library was constructed in AncSR1+11P, the genetic background 

that enabled the historical RH substitutions to alter DNA specificity. We engineered yeast 

reporter strains in which ERE or SRE drives expression of a fluorescent GFP reporter and 

showed that GFP activation directly relates to DNA affinity (Extended Data Fig. 1a)18. We 

transformed the library into each reporter and used FACS coupled to deep sequencing 

(FACS-seq) to quantify binding of each variant in the library to ERE or SRE (Extended Data 

Figs. 1, 2, 3, Extended Data Table 1). We classified genotypes as ERE-specific, SRE-

specific, promiscuous, or inactive; results of all downstream analyses were robust to the 

specific classification criteria (Extended Data Table 2).

We found 828 new RH variants that are SRE-specific, binding SRE as well or better than the 

historical outcome and displaying no activity on ERE (Fig. 1c). These alternative SRE-

specific genotypes employ amino acids with diverse biochemical characteristics (Fig. 1d), 

and they discriminate between SRE and ERE using different physical contacts (Figs. 1e, f, 

Extended Data Fig. 4). For example, the historical outcome (RH sequence GSKV) binds 

SRE in part by polar contacts from Lys28 to nucleotides A1 and G2, but the alternative 

outcome KAAI makes no polar contacts using residue 28, instead hydrogen-bonding from 

Lys25 to A1, G2, and the opposite-strand nucleotide T−3 (Fig. 1e). It also exhibits novel 

mechanisms of ERE-exclusion: whereas GSKV leaves the hydrogen bonding potential of C

−3 unsatisfied, KAAI also leaves G2 and T4 unpaired, because Ala28 – unlike Lys28 of 

GSKV – cannot bond to G2, and Ile29 interferes with a hydrogen bond to T4 made by the 

conserved Arg33 residue (Fig. 1f, Extended Data Fig. 4c).
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The historical outcome is therefore not unique in its genetic or biochemical mechanism of 

SRE specificity, but it might have been uniquely accessible from the ancestral RH. To 

investigate the distribution of functions across sequence space, we constructed a force-

directed graph of functional RH variants (Fig. 2a). Each node represents a functional RH 

genotype, and edges connect nodes separated by one nonsynonymous nucleotide mutation 

(steps). The network contains clusters of densely interconnected variants that share 

distinguishing amino acid states, with epistasis and the structure of the genetic code 

separating the clusters. Although the vast majority of RH variants are nonfunctional, 

virtually all of the 1351 functional variants are part of a single connected network that can 

be traversed without visiting nonfunctional genotypes2.

The ancestral and derived RHs (EGKA and GSKV, respectively) are connected by a path of 

just three steps, whereas the most distant proteins in the network are 13 steps apart. From the 

ancestral starting point, GSKV is not uniquely accessible: 64 other SRE-specific RHs are 

accessible in three or fewer steps without passing through nonfunctional intermediates. 

Some of these alternative outcomes can be reached in just one or two steps, and these too 

exhibit biochemically diverse amino acid states (Extended Data Fig. 5a). If selection against 

too-tight or too-weak binding allows access only to genotypes with DNA affinity in a narrow 

range indistinguishable from the historical genotypes, there are still hundreds of alternative 

SRE-specific outcomes, many of which are easily accessible from the historical starting 

point (Extended Data Table 2, column E). Even when trajectories are allowed only if SRE 

affinity increases at every step – as would occur under positive selection for that function – 

there are numerous alternative SRE-specific genotypes with a nontrivial probability of 

evolving from the ancestral RH, and all of these are more likely than the historical outcome 

(Extended Data Fig. 5a,b,c). Taken together, these data indicate that the historical trajectory 

was not the only path, or even the shortest, from the ancestral RH to a derived protein that is 

SRE-specific.

Next, we asked whether the evolution of SRE specificity depended on the starting point 

within the large network of mutually accessible ERE-specific genotypes. All but 2 ERE-

specific variants can get to SRE specificity without passing through nonfunctional 

intermediates (Fig. 2a), and more than 90% can do so by paths no longer than the historical 

trajectory (Fig. 2b). Evolution of the derived specificity per se was therefore not strongly 

dependent on the starting point. Whether any particular SRE-specific genotype would 

evolve, however, could be contingent on where in the network of ERE-specific variants an 

evolutionary trajectory begins. For each SRE-specific RH, we asked how many ERE-specific 

starting points could access it by a path no longer than the historical three-step trajectory 

(Fig. 2c). About one-third of possible SRE-specific genotypes are not easily reached from 

any possible starting point – some because the large diameter of the functional network 

means that the minimum genetic distance to the closest ERE-specific variant is more than 

three nonsynonymous mutations, and some because epistasis requires trajectories longer 

than the minimum genetic distance7,8. Of the remaining SRE-specific variants, most 

(including the historical outcome GSKV) are readily accessible from just one or a few 

starting points, and even the most accessed outcome is easily reached from less than one-

third of all possible starting points. As a result, most pairs of ERE-specific starting points 

reach entirely non-overlapping sets of SRE-specific outcomes (Fig. 2d), which contain 
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distinct sets of amino acids (Extended Data Fig. 6a). The evidence for dependence on 

starting point persists when path lengths longer than the historical trajectory are considered 

(Extended Data Fig. 6b,c,d) and when alternate evolutionary models are applied (Extended 

Data Table 2). Taken together, these data indicate that the derived specificity for SRE could 

have evolved in many ways from AncSR1+11P, but the underlying genetic and biochemical 

form depended strongly on the starting RH genotype.

We next asked how the historical permissive substitutions affected the accessibility of the 

derived specificity and its dependence on starting point. We constructed and characterized 

the same four-site combinatorial RH library, this time in the AncSR1 background without 

11P (Fig. 1a, Fig. 3a, Extended Data Fig. 1). Removing 11P dramatically reduces the 

number of functional variants (Fig. 3b) and the connectivity of the network (Fig. 3c). Unlike 

the AncSR1+11P sequence space, many functional variants in AncSR1 are isolated and 

therefore cannot be reached from most other genotypes without passing through 

nonfunctional intermediates. Still, most functional RHs – including the ancestral EGKA – 

are interconnected in the primary subnetwork, where many SRE-specific RHs are accessible. 

Therefore, although the historically derived RH genotype GSKV requires the historical 

permissive substitutions, other genotypes with the derived specificity could have evolved 

without 11P. But trajectories in the AncSR1 sequence space are more complex: the shortest 

path from the ancestral RH to any SRE-specific variant is 5 steps, all paths require 

permissive RH steps that do not enhance SRE activity, and all paths require promiscuous 

intermediate genotypes (Extended Data Fig. 7a,b). Thus, without the historical permissive 

substitutions, other permissive mutations would have been required for SRE specificity to 

evolve from the ancestral genotype.

The 11P substitutions enhanced the accessibility of SRE specificity not only from the 

ancestral genotype but from all ERE-specific starting points. Whereas virtually all starting 

points in the AncSR1+11P network could access at least one SRE-specific node without 

passing through nonfunctional intermediates, over a fourth of ERE-specific variants in 

AncSR1 have no path to the derived specificity, and those that can access SRE specificity 

require longer paths (Fig. 3d). Removing the historical permissive substitutions also 

increases the proportion of ERE-specific starting points that require a permissive step prior 

to acquiring SRE activity (Fig. 3e). And, unlike the AncSR1+11P network, every path from 

ancestral to derived specificity in AncSR1 must pass a promiscuous intermediate (Fig. 3e).

Finally, we investigated the mechanism by which the historical permissive substitutions 

enhanced the potential for evolution across the RH sequence space. 11P were broadly 

permissive, increasing the number of SRE-specific genotypes in the network by a factor of 

20 (Fig. 3b). Previous work suggests that increases in protein stability sometimes mediate 

generalized permissive effects20–23, but 11P have been shown not to increase the stability of 

AncSR111. We previously proposed that 11P permitted the historical RH substitutions by 

nonspecifically increasing affinity for both response elements11, which would explain the 

broadly permissive effect of 11P on many RH genotypes. This hypothesis makes four 

testable predictions. First, RH variants that do not depend on 11P to yield SRE specificity 

should have greater SRE affinity than those that require 11P, whether or not 11P are present; 

we compared the predicted affinity and FACS-seq mean fluorescence of all 11P-independent 
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and 11P-dependent SRE-specific variants and found that this prediction holds true (Fig. 4a, 

Extended Data Fig. 8a-d). Second, 11P should not change the genetic determinants of 

binding within the RH; as predicted, the most enriched residues among SRE-specific 

variants do not change between the two networks, but 11P weakens the preference for some 

tolerated states over others (Fig. 4b, Extended Data Fig. 8e). Third, 11P should not change 

the biochemical mechanisms by which the RH confers specificity, a prediction we tested by 

identifying the biochemical properties at each RH site that predict specificity for ERE and 

SRE (Extended Data Fig. 8f): we found that the determinants of SRE specificity are not 

dramatically altered by 11P (Fig. 4c). Fourth, if 11P nonspecifically enhance affinity by all 

RHs, they should add new functional genotypes across sequence space; we found that the set 

of variants permitted by 11P are not localized to some region of the network but instead 

surround the sparser set of variants that functioned independently of 11P (Fig. 4d,e). As a 

result, 11P’s nonspecific effect on affinity enhanced the connectivity of the ancestral 

sequence network, increasing the number and reducing the length and complexity of paths 

from ERE to SRE.

Our results shed light on the roles of determinism and chance in protein evolution1,3,22,24. 

The primary deterministic force is natural selection, which drives the evolution of forms that 

optimize fitness. Chance appears in two non-exclusive ways: as historical contingency – 

when the accessibility of some outcome depends on prior events that cannot be driven by 

selection for that outcome – and as stochasticity – when there are paths to numerous possible 

genotypes of similar function, and which one is realized is random (Extended Data Fig. 7c)1. 

Previous work has shown that historical function-switching substitutions in some proteins 

were contingent on prior permissive mutations11,20,25–27, but the overall roles of chance and 

determinism in the evolution of a new function can be understood only by characterizing 

other ways that the function could have evolved. Our results point to strong stochasticity and 

contingency in the many histories by which SRE specificity could have evolved. Hundreds 

of genotypes encoding SRE specificity were accessible from AncSR1, but selection for that 

function alone could not have deterministically driven evolution down any of those paths, 

because all were contingent on permissive mutations – either the historical 11P or alternative 

permissive mutations within the RH. Which particular permissive mutations happened to 

occur determined which SRE-specific genotypes then became accessible. Further, given 

some permissive set of first steps, paths to numerous SRE-specific genotypes typically 

become available. Thus, evolution of any particular SRE-specific outcome – including the 

one that evolved during history – is contingent on the initial stochastic acquisition of some 

set of permissive mutations, followed by the subsequent stochastic realization of one of 

many possible ways to encode the derived function.

Some aspects of real and counterfactual history cannot be reconstructed, but our conclusions 

are likely to be robust to major forms of uncertainty. For example, the precise probability of 

any trajectory depends on population size and on the relationship between molecular 

function and fitness, but neither of these is known. Still, we found that contingency and 

stochasticity were important not only under scenarios that emphasize purifying selection and 

drift, but also under those that favor determinism, such as when selection drives continuous 

enhancement of the derived function or allows affinity within only a narrow range. Second, 

sequence space is so vast that we could explore only a limited portion. But contingency and 
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stochasticity are likely to remain important when larger regions are considered. If these 

unexplored regions contain additional trajectories to SRE-specific outcomes, then the role of 

stochasticity in the choice among options would be even more important. Morevoer, 

contingency on starting point arising from the distribution of SRE-specific genotypes across 

sequence space would persist even if new potential outcomes were discovered, and it would 

be magnified if those outcomes were even more distant than those we characterized. Finally, 

the dependence on permissive mutations that we observed would be eliminated only if there 

is a mutation at some other site that could somehow confer SRE activity on AncSR1 in a 

single step; this seems implausible, because all other residues are distant from the variable 

bases.

Despite the abundance of accessible SRE-specific genotypes near the ancestral and derived 

RHs (Extended Data Fig. 5d,e), the genotype that historically evolved is conserved among 

present-day descendants. It is possible that some unknown property made this sequence 

selectively superior to the many genotypes that are at least as effective at recognizing SRE 

and excluding ERE. But it could also be conserved because of factors that accumulated after 

it evolved. For example, a substitution can become epistatically entrenched by subsequent 

restrictive substitutions at other sequence sites28,29. A transcription factor’s sequence may 

also become pleiotropically entrenched by subsequent mutations in the ensemble of response 

elements it binds30. If one of the many alternative SRE-specific outcomes evolved from the 

ancestral protein by chance, it too could have been subsequently locked in, yielding 

conservation and the illusion that it evolved deterministically. The singularity of the present 

seems to rationalize the past. History leaves no trace of the many roads it did not take, or of 

the possibility that evolution turned out as it did for no good reason at all.

Methods

Construction and validation of a yeast assay for steroid receptor DNA-binding domain 
function.

All work was performed in S. cerevisiae strain K20 (CEN.PK 102–5B, URA3-, HIS3-, 

LEU-)31. Oligonucleotide sequences used for cloning and sequencing are included in 

Supplementary Table 1. We constructed yeast reporter strains containing yEGFP under the 

control of a minimal CYC1 promoter with two upstream ERE or SRE palindromes, 

integrated into the ADE2 locus31. Colony PCR and Sanger sequencing confirmed correct 

integration of the ERE2-yEGFP or SRE2-yEGFP reporter. An additional 20 μg/mL adenine 

hemisulfate was added to all media to ameliorate ADE2 disruption.

The yeast expression plasmid pTNS33 contains the AncSR1 DNA-binding domain (DBD, 

GenBank AJC02122.1)11 with an N-terminal SV40 nuclear localization sequence and Gal4 

Activation Domain (AD) connected by a 9-residue linker (IQQGGSGGS). Expression of the 

AD-DBD fusion protein is controlled by the galactose-inducible GAL1 promoter, in the 

background of the pRS413 plasmid32 containing a HIS selection marker. We assembled 

pTNS33 by yeast homologous recombination using the LiAc/ssDNA/PEG method33, 

selecting for growth on SC-His plates with 2% Dextrose (+D). We confirmed correct 

plasmid assembly via Sanger sequencing.

Starr et al. Page 6

Nature. Author manuscript; available in PMC 2018 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To validate the ERE2-yEGFP and SRE2-yEGFP reporters, a selection of previously assayed 

DBDs spanning a range of DNA-binding affinities11,12 were cloned into the pTNS33 

background and transformed into each yeast reporter strain. Individual colonies were 

inoculated in 3mL SC-His with 2% raffinose (+R), and incubated for 16 hours at 30 ºC 225 

rpm in an orbital shaker incubator. Cells were back-diluted to 0.25 OD600 in SC-His with 

2% galactose (+G) to induce DBD expression and grown for an additional 24 hours. Cells 

were pelleted and suspended to 1 OD600 in 1× TBS. We analyzed 10,000 cells of each 

genotype by flow cytometry on a BD LSR-Fortessa 4–15, with 488 nm excitation and 530 

nm emission. We used gates drawn empirically on FSC/SSC and FSC-H/FSC-A scatter plots 

(e.g. Extended Data Fig. 2) to isolate a homogeneous cell population, from which we 

determined the mean per-cell green fluorescence. The relationship between mean GFP 

activation and previously measured binding affinities was fit to a segmented-linear 

relationship in R34 with the ‘segmented’ package35.

Library generation.

AncSR1 and AncSR1+11P RH libraries were constructed by synthesizing pools of 

oligonucleotides containing degenerate NNK codons at four variable sites in the recognition 

helix and inserting these into coding sequences for the previously reconstructed AncSR1 

DBD or the AncSR1+11P DBD, which contains the 11 previously identified historical 

permissive mutations11. These libraries encode all combinations of all 20 amino acids at the 

three RH sites that changed during the historical evolution of SRE specificity (sites 25, 26, 

and 29) and at the adjacent position (site 28), which physically interacts with the substituted 

residues11 and varies among the broader nuclear receptor superfamily36. Each RH library 

contains 1,048,576 genetic variants, encoding 160,000 full-length proteins and 34,481 stop-

codon-containing variants. To construct the libraries, 53-nt single-stranded DNA 

oligonucleotides were synthesized (DNA2.0, Newark, California), containing variable RH 

sites and invariant flanking sequence identical to the respective plasmid sequences 

(Supplementary Table 1). Oligonucleotide pools were converted to dsDNA by primer 

extension with Klenow polymerase and purified on a Qiagen MinElute column. Yeast 

expression plasmids containing AncSR1 or AncSR1+11P were modified by site-directed 

mutagenesis to introduce EcoRI and NcoI sites, which were cut to excise the native RH and 

linearize the vector to receive the oligonucleotide pool. Plasmid libraries were assembled via 

Gibson Assembly, incubating 0.56 pmol gel-purified linear vector, 8.4 pmol oligonucleotide 

pool, and 120 μL 2× GA Master Mix (NEB) at 50 ºC for 1 hr. Assembled libraries were 

purified over DNA Clean & Concentrator columns (Zymo) and transformed into 

electrocompetent NEB5α E. coli cells with a 2.5 kV electroporation pulse in 0.2 mm gap 

cuvettes. Aliquots of cells were serially diluted and plated on LB+carbenicillin to estimate 

transformation efficiencies. Remaining cells were grown overnight in LB+carbenicillin, and 

plasmids were harvested using the GenElute Midiprep plasmid purification kit. For both the 

AncSR1 and AncSR1+11P RH libraries, we obtained at least 20 times more transformants 

than the effective size of the library (Extended Data Table 1).

Each RH library (AncSR1 and AncSR1+11P) was independently transformed twice into 

each yeast reporter strain (ERE and SRE) for replicate FACS-seq analyses. We followed a 

yeast electroporation protocol37, scaled up for 10 times the number of cells and a total of 
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120 μg of library plasmid in 600 μL H2O. An aliquot of cells was serially diluted and plated 

on SC-His+D to estimate transformation yield, which averaged 1.25×107 cfus across the 8 

transformations (Extended Data Table 1). The remaining cells were grown to saturation in 

500 mL SC-His+D. Consistent with previous observations38, we observed that seven out of 

eight colonies post-transformation were multiple-vector transformants. We performed an 

additional passage, at which point multiple-vector clones were detected at less than one in 

eight colonies. A total of five passages occur prior to quantification (see below), so multiple 

vector transformants are expected to occur at a frequency no greater than 0.007 in the 

library. Furthermore, if our conclusion that there are many functional RH variants were 

caused by false positives due to co-transformation of nonfunctional genotypes with 

functional ones, this would result in stop-codon-containing variants being classified as 

functional, but this was never observed. Passaged yeast library aliquots of 3×109 cells were 

flash frozen in liquid nitrogen and stored at −80 ºC as 25% glycerol stocks.

Library induction and FACS.

Yeast library aliquots were thawed on ice, added to 500 mL SC-His+D, and grown for 12 

hours at 30 ºC 225 rpm. Cells were diluted to 0.25 OD600 in 500 mL SC-His+R, and grown 

for an additional 12 hrs at 30 ºC 225 rpm. Cells were then diluted to 0.25 OD600 in 200 mL 

SC-His+G to induce DBD expression, and grown for 24 hrs at 30 ºC 225 rpm. Induced cells 

were spun at 3,000 g for 5 min, suspended to 3×107 cells/mL in 1× TBS, passed through a 

40 μm nylon cell strainer, and stored on ice for sorting. Alongside each library induction, we 

induced isogenic controls expressing known DBDs according to the same protocol but at 3 

mL volumes.

Each library was sorted into 4 bins on a BD FACSAria II. Initial gates were drawn to isolate 

homogenous cells and exclude doublets, using SSC/FSC and FSC-H/FSC-A scatterplots 

(Extended Data Fig. 2). We assigned sort gate boundaries to the AncSR1+11P/SRE library 

to correspond to the observed mean fluorescence of a stop-codon-containing variant, of 

AncSR1+11P:GSKV, and AncSR1+11P:GGKA, the variant with the highest previously 

known activation; these gates yielded four bins that captured 45%, 45%, 9.5%, and 0.5% of 

the library population, respectively. Gates for other libraries were assigned to yield the same 

bin sizes. To calibrate the arbitrary-unit fluorescence scales of sorting experiments 

conducted on different days, we transformed fluorescence values by a linear model fit to the 

relationship between mean fluorescence of reference isogenic cultures induced and analyzed 

in parallel to each library sorting experiment. Cells were sorted into SC-His+D with 34 

μg/mL chloramphenicol to prevent bacterial contamination and stored on ice until ~108 cells 

were sorted. An aliquot of cells sorted into each bin was serially diluted and plated to 

estimate cfu recovery (Extended Data Table 1). Remaining cells were suspended to an 

estimated 200,000 cells/mL in SC-His+D+chloramphenicol, and grown for 16 hours at 30 ºC 

225 rpm. Plasmids were extracted from each outgrowth according to the protocol of Fowler 

et al.39, which was scaled up 16-fold for bins 1 and 2, 8-fold for bin 3, and 3-fold for bin 4 

to avoid bottlenecks. Extracted plasmids were estimated to be present at a concentration of 

2×106 plasmids/μL by comparing bacterial transformation efficiencies of yeast-extracted 

plasmid to pUC19 and bacterial-purified plasmid standards.
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Sequencing and processing.

We used PCR to amplify the variable RH region from post-sort plasmid aliquots; primers 

appended in-line barcodes40 to identify the experiment and sort bin, along with binding sites 

for sequencing primers and Illumina flow cell adapter sequences (Supplementary Table 1). 

Barcodes were of different lengths to stagger reads across clusters and were assigned to bins 

to optimize the distribution of base calls at each position during the initial rounds of 

sequencing. Multiple barcodes were used for bins 1 and 2, which contained the majority of 

cells. For each bin-barcode combination, PCR was conducted in 8 replicate 50-μL aliquots, 

with 10 μL of plasmid template, 10 μL 5× HF buffer, 1 μL 10 mM dNTPs, 2.5 μL 10 μM 

forward and reverse primer, and 0.5 μL Phusion polymerase per reaction. PCRs were 

assembled on ice, transferred to a thermocycler block preheated to 98 ºC, and subjected to 

20 PCR cycles with 60 ºC annealing. PCRs were gel-purified, quantified via BioAnalyzer 

and qPCR, and then pooled for sequencing according to the relative numbers of cells 

acquired in each bin. Single-end 50bp reads spanning the barcode and RH sequence were 

acquired on an Illumina HiSeq2500.

We discarded sequence reads with an average Phred score <30 and sequences that did not 

perfectly match the barcode and invariant portion of the template. Reads were demultiplexed 

by barcode and further processed using tools from the FASTX-Toolkit (http://

hannonlab.cshl.edu/fastx_toolkit/). RH variants with inconsistent read numbers between 

barcodes in the same bin were considered uncharacterized for that entire experiment. This 

procedure yielded filtered read counts in each sort bin greater than the number of cells sorted 

into that bin (Extended Data Table 1). To estimate the number of cells of a genotype that 

were sorted into a bin, we divided the number of sequence reads of a genotype in a bin by 

the average number of reads per cell in that bin.

Estimating mean fluorescence and standard error.

We estimated the mean fluorescence of each variant in the library from the distribution of its 

reads across fluorescence sort bins using a maximum likelihood approach41. We first 

assessed the fit of various distributions to the observed per-cell fluorescence of a series of 

isogenic cultures of different RH genotypes analyzed in isolation via flow cytometry, and 

found the logistic distribution to have the best fit by AIC (Extended Data Fig. 1b,c). We then 

used the ‘fitdistrplus’42 package in R to find the maximum likelihood mean fluorescence for 

each library variant given its distribution of cell counts across sort bins, the fluorescence 

boundaries of those bins, and the logistic distribution; this approach explicitly takes into 

account the fact that the fluorescence of a cell within a sort bin is not precisely measured and 

has been shown to be an unbiased approach for estimating underlying activities in FACS-seq 

analyses41. Estimates of mean fluorescence from the FACS-seq library characterization were 

compared between independent replicates (Extended Data Fig. 1d). Interval-censored per-

cell observations from the two independent replicates were then pooled, and the maximum 

likelihood mean fluorescence for each variant estimated from this pooled data. These final 

estimates were compared to fluorescence observed directly for isogenic cultures of randomly 

selected clones from each library, which were isolated post-sort, genotyped, re-induced in 

isogenic cultures and analyzed via flow cytometry according to the protocol above 

(Extended Data Fig. 1e).
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We estimated the standard error of mean fluorescence (SEM) for genotypes based on their 

depth of coverage (number of cells sampled) in two ways. First, we estimated SEMs from 

stop-codon-containing variants in each library by grouping them according to their depth of 

coverage and calculating the standard deviation of the sampling distribution of estimated 

mean fluorescence for variants in each group. Second, we leveraged variability in the mean 

fluorescence estimates from the two replicate FACS-seq experiments for each library: using 

coding variants for which the number of cells sampled between replicates is within 20% of 

each other, we calculated the difference between the estimate of mean fluorescence from the 

pooled data and the estimates from each of the two replicates, grouped variants by their 

average depth of coverage for the two replicates, and calculated the standard deviation of the 

distribution of differences for each group. Every variant in the library was then assigned the 

SEM for the appropriate coverage depth group. These two approaches yielded a similar 

relationship between SEM and sampling depth, but the second approach estimated higher 

SEMs at higher coverage depths (Extended Data Fig. 1g); to be conservative, we therefore 

used the second approach for further analyses.

Classifying strength of activation on each response element.

We used mean fluorescence estimates to classify the strength with which each library variant 

binds to ERE and SRE using nonparametric comparisons to distributions of reference 

genotypes. A variant was classified as active on a response element if its mean fluorescence 

was significantly greater than that of stop-codon-containing variants contained in the library: 

for each variant, the P-value for the null hypothesis that a variant is inactive was calculated 

as the proportion of stop-codon-containing variants of similar sampling depth with greater 

mean fluorescence than that of the variant of interest; variants were labeled “active” if the 

null hypothesis could be rejected at a 5% false discovery rate (using the Benjamini-

Hochberg procedure) or “inactive” if the null hypothesis could not be rejected.

Each active variant was then subclassified as a weak or strong activator by comparing its 

mean fluorescence to that of the relevant ancestral genotypes (AncSR1:EGKA on ERE, or 

AncSR1+11P:GSKV on SRE). Specifically, for each active variant we performed a test of 

noninferiority within an equivalence margin of 20% of the range between the average mean 

fluorescence of stop-codon-containing variants and the mean fluorescence of the ancestral 

reference. This test compares the mean fluorescence of a variant of interest to the 

fluorescence of cells with the relevant ancestral genotype, shifted to 80% of the range 

between the mean of stop-codon-containing variants and the ancestral reference. To 

determine whether a variant’s fluorescence is greater than this shifted ancestral reference, 

we generated 10,000 bootstrap replicates from the shifted distribution of ancestral cellular 

fluorescence, with replicate size of similar sampling depth to the variant of interest; the 

mean fluorescence of each bootstrap replicate was calculated using the FACS gates and 

maximum likelihood procedure described above. The P-value for the null hypothesis that a 

variant is a weak activator was calculated as the proportion of bootstrap replicates with 

fluorescence greater than that of the variant of interest; variants were classified as “strong” if 

the null hypothesis could be rejected at a 5% false discovery rate (using the Benjamini-

Hochberg procedure) or “weak” if the null hypothesis could not be rejected. AncSR1:EGKA 

was represented by relatively few cells in the ERE library, resulting in an artificially low 
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mean fluorescence determined by FACS-seq and a “weak” classification, so it was manually 

classified as a strong activator on ERE by definition. For library classifications, we 

determined the reference activity of AncSR1:EGKA on ERE from an isogenic culture 

analyzed in parallel to library sorts. Using the lower FACS-seq mean fluorescence 

measurement as the reference activity for this genotype does not alter our conclusions 

(Extended Data Table 2, column A).

Extrapolation to missing genotypes.

Classification of variants that are rare in the library may not be reliable. We examined how 

agreement in classification between FACS-seq replicates is affected by sampling depth, and 

we found that the probability that a variant is classified as positive in one replicate if it is 

classified as positive in the other depends on sampling depth below 15 cells (Extended Data 

Fig. 1f). We therefore considered variants with 15 or fewer cells to be experimentally 

undetermined, accounting for 2.0% to 8.8% of all variants across the four DBD/response 

element combinations (Extended Data Table 1). To predict the classification of these 

variants, we used a continuation ratio ordinal logistic regression model that predicts the 

probability that a variant is strong, weak, or inactive from its genotype, trained on the 

empirical classification of all the determined genotypes in the library. We modeled amino 

acid states as potentially contributing first-order main effects (20 states × 4 positions = 80 

parameters) and pairwise epistatic effects (4C2 × 202 = 2,400 parameters). We fit these 

models to the observed classifications in each library using a coordinate-descent fitting 

algorithm with L1 penalization, as implemented in the ‘glmnetcr’ package43 in R. We used 

10-fold cross validation to determine the quality of model predictions and to select the 

penalization parameter λ. We set λ = 10−5 to obtain a high true positive rate without 

compromising the positive predictive value (Extended Data Fig. 3).

Classifying response element specificity.

The specificity of each variant was determined from its functional classification on ERE and 

SRE. ERE-specific variants are strong on ERE and inactive on SRE; SRE-specific variants 

are strong on SRE and inactive on ERE; promiscuous variants are strong on one response 

element and strong or weak on the other; and nonfunctional variants are not strong on either 

response element. The false positive rate was very low, with no stop-codon-containing 

variants classified as functional. AncSR1+11P:EGKA is classified as promiscuous, because 

it has very strong ERE activity and SRE activity that is very weak but statistically 

distinguishable from background, consistent with previous observations11.

A small number of RH variants were unexpectedly inferred to be functional in AncSR1 but 

nonfunctional in AncSR1+11P (Extended Data Fig. 8a-c). To validate this observation, we 

re-cloned the three SRE-specific variants with the largest reduction in fluorescence when 

11P were included (CARV, HARV, HPRM) and assessed their SRE activation in the AncSR1 

and AncSR1+11P backgrounds in isogenic cultures via flow cytometry; for comparison, we 

also validated a putatively 11P-independent genotype (KASM) and two 11P-dependent 

variants (SPKM, YGKQ), alongside GSKV for reference. Inductions were conducted in 

triplicate, each from an independent transformant. Classifications of the three comparison 

genotypes were all confirmed; however, the three genotypes that were putatively restricted 
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by 11P showed no reduction in fluorescence in this assay, indicating that they were falsely 

classified as nonfunctional in the AncSR1+11P FACS-seq assay (Extended Data Fig. 8c). 

Notably, the predictive logistic regression correctly predicts that these three variants are 

strong SRE-binders in the AncSR1+11P background. These three variants manifested strong 

growth defects in the AncSR1+11P background, even in the ERE strain in which they do not 

activate GFP expression.

Robustness of results to classification method.

We tested the robustness of our conclusions to alternative methods for classifying variants as 

functional. These include: (A) using the internal library AncSR1:EGKA mean fluorescence 

estimated by FACS-seq as the reference level of AncSR1 activation on ERE; (B) increasing 

the margin of equivalence to 50% of the activity difference between ancestral and stop-

codon-containing variants; (C) classifying any active variant (weak or strong) as functional; 

(D) using the 80% mark of the range from stop-codon-containing to ancestral variants as a 

hard threshold rather than a null hypothesis for statistical testing; (E) defining functional 

variants as between 80% and 120% of the ancestral activity, so that extremely strong binders 

are classified as nonfunctional; (F) using predicted classifications for all variants, with 

experimental classifications used only to train predictive models; (G) using no predicted 

classifications, and labeling all undetermined genotypes as nonfunctional; (H) using for each 

variant the strongest functional class as predicted or determined by experiment; (I) using the 

experimental classification for a variant only if it was identical between replicates and 

predicting all others; (J) and using the per-variant estimates of the standard error of mean 

fluorescence based on coverage depth to calculate a P-value that a variant is inactive or 

weakly active given a normal distribution, rejecting each null hypothesis at a 5% FDR as 

above. When appropriate, ordinal logistic regression models were re-trained to predict 

missing genotypes under each scheme. These alterations made no qualitative differences to 

our conclusions (Extended Data Table 2).

Network construction and trajectories through sequence space.

Network representations of functional RH variants in the AncSR1 and AncSR1+11P 

backgrounds were constructed using the R package ‘rgexf’44 and the network visualization 

program Gephi45. Nodes representing RH variants were connected by edges if any genetic 

encoding of their protein-coding sequences could be interconverted with a single nucleotide 

mutation given the standard genetic code. The network was represented as a force-directed 

graph, which clusters nodes in two-dimensional space based on connectivity: nodes tend to 

repel each other, but each edge between connected nodes provides an attractive force; in the 

“equilibrium” layout, sets of densely interconnected nodes tend to cluster to the exclusion of 

less connected nodes. Force-directed graph layouts were constructed with the ForceAtlas2 

method in LinLog mode, Gravity 1.0 and Scaling 0.8 (AncSR1) or 0.125 (AncSR1+11P).

We used the ‘igraph’46 package in R to characterize the set of paths between functional 

nodes. A step was defined as a nonsynonymous nucleotide mutation between two functional 

variants; synonymous mutations within a single node were not considered as contributing to 

trajectory length. The graph was directed, so that trajectories can proceed from ERE to SRE 

specificity directly or via a promiscuous intermediate; nonfunctional intermediates2 and 
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functional reversions were not allowed, but “neutral” steps within a functional class were 

allowed. Epistasis was inferred when the shortest path between two nodes was longer than 

the minimum genetic distance between genotypes7,8; epistasis may arise because the state at 

one site specifically modulates the functional effect of some state at another site or because 

of nonlinearity in the genotype-phenotype map47, such as the threshold we used to classify 

variants as functional.

The distribution of shortest path length to SRE specificity from ERE-specific starting points 

in the AncSR1 and AncSR1+11P networks was compared via a Wilcoxon rank sum test with 

continuity correction, as observations were not normally distributed. The number of ERE-

specific starting points in each network that require permissive steps and/or promiscuous 

intermediates on their shortest path to SRE specificity was compared via a Chi-squared test. 

All categories had an expected value of 5 or greater.

To compare genotypic states among outcomes reached from different ERE-specific starting 

points, we calculated the frequency distribution of amino acid states at each sequence site 

for the set of outcomes reached from each starting point; we then calculated the Jensen-

Shannon (J-S) distance between these distributions for pairs of starting points. To capture a 

true amino acid state distribution across outcomes, we only considered ERE-specific starting 

points that access at least 15 outcomes (the median across all ERE-specific starting points). 

We compared these observed J-S distances to a null expectation of J-S distances in the 

absence of structure in sequence space, in which we randomly sampled two sets of variants 

from all possible SRE-specific outcomes according to the same sample sizes used in each 

real comparison, and calculated the J-S distance between these randomly sampled 

distributions.

We also considered a regime in which SRE-binding affinity is under strong selection, such 

that SRE-binding affinity is required to increase with each step; such a scenario has a strong 

potential to make evolution deterministically favor a single outcome. In this scheme, a step 

from one genotype to a neighbor was allowed only if the lower bound of the 90% confidence 

interval of the neighbor’s mean SRE fluorescence, estimated from its mean and SEM, was 

greater than the upper bound of the confidence interval of the starting genotype (indicating P 
< 0.02, ref. 48). We then calculated the probability of each accessible trajectory using two 

previously described models8: in the equal fixation model, any step that enhances SRE 

affinity from a particular node is equally likely to occur; in the correlated fixation model, the 

probability that an SRE-affinity-enhancing step occurs is directly proportional to the degree 

to which it increases SRE mean fluorescence, relative to the other SRE enhancing steps 

available from the given node.

Structural modeling and predictions of RE-binding affinity.

We used FoldX49 to predict the affinity to SRE of all RH variants that were 11P-dependent 

(SRE-specific in the AncSR1+11P background and nonfunctional in AncSR1), or 11P-

independent (SRE-specific in AncSR1; Extended Data Fig. 8a). For structure-based affinity 

prediction, we used the crystal structures of the AncSR1 DBD bound to ERE (PDB 4OLN) 

and the AncSR2 DBD bound to SRE (PDB 4OOR) as starting points, with crystallographic 

waters and non-zinc ions removed. We removed chains E, F, K and L from the 4OOR 
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structure. We used the RepairPDB function to optimize both DBD structures according to 

the FoldX force field, and we used the BuildModel function to mutate the AncSR1/ERE 

structure to AncSR1:GSKV/SRE. The BuildModel function was then used to model each 

SRE-specific RH variant in complex with SRE on each of the AncSR1 and AncSR2 DBD 

structures, and the AnalyzeComplex function was used to predict the total DNA-binding 

energy of each protein variant with SRE. The predicted binding energies of 11P-dependent 

and 11P-independent variants were compared using a nonparametric Wilcoxon rank sum test 

with continuity correction, as data were not normally distributed. This test was conducted 

independently for energies predicted using the AncSR1 and AncSR2 structures. To compare 

these same groups as directly estimated in FACS-seq, a Wilcoxon rank sum test with 

continuity correction was used, as data were not normally distributed.

To characterize the diversity in biochemical mechanisms of SRE specificity, we analyzed 

FoldX models of the 10 most active SRE-specific variants that were identified in our 

AncSR1+11P FACS-seq experiment. We modeled binding to SRE using the AncSR2/SRE 

structure as described above and binding to ERE using the crystal structure of the 

AncSR2:EGKA DBD bound to ERE (4OND), with water and non-zinc ions removed and 

optimized using the RepairPDB function. To illustrate protein-DNA contacts made in each 

structural model, we used NUCPLOT50 to identify all hydrogen bonds with distance ≤3.35Å 

between non-hydrogen atoms and non-bonded packing contacts ≤3.90Å. Summary figures 

display the union of contacts made by a residue in either of the half sites of the response 

element palindrome; we only illustrate residues whose contacts vary among the analyzed 

structures.

To ensure structural inferences converge, we built each SRE- and ERE-bound FoldX model 

a second time. We observed convergence in all polar contacts (and absence thereof in ERE 

structures) illustrated in Fig. 1 and Extended Data Fig. 4. Only several non-bonded contacts 

were not replicated: I29/T–4 in KAAI/SRE; Q29/A4 and Q29/T–4 in YGKQ/SRE; M29/T–3 

in KSAM/SRE; and K25/G2 and K25/T–3 in KASM/SRE. To determine whether 

electrostatic clashes in ERE-bound structures could be satisfied by bridged water 

molecules51, models were built again using the BuildModel function with predicted waters. 

In some cases (GGRT, YGKQ, DSKM, CGRV), but not all (GSKV, KAAI, PAKE, KSAM, 

DPKQ, SAKE, KASM), polar groups on ERE that were not satisfied by direct interaction 

with protein side chains are predicted to be satisfied by water bridges between protein and 

DNA.

Biochemical determinants of RE-binding specificity.

Logos illustrating the frequency with which each amino acid state is found at each position 

among variants of a functional class were constructed using WebLogo52. Since our sequence 

space is combinatorially complete (all 160,000 genotypes are classified, either by FACS-seq 

or via prediction), the logo plots do not need to be normalized by background input 

frequencies. To evaluate similarity of the frequency profiles between classes of variants, the 

frequency of each amino acid state in a class was centered logratio-transformed, the 

appropriate transformation before computing correlations among compositional data; a 

pseudocount of one was added to the number of observations of each amino acid to allow 
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log-transformation of states observed zero times. The Spearman rank correlation coefficient 

was computed for the correlation between functional classes.

To identify the biochemical properties of amino acids that contribute to DNA specificity, we 

developed a multiple logistic regression model that describes the probability that an RH 

variant specifically binds a response element as a function of the biochemical properties of 

the amino acid states at each of its four variable RH positions. The model includes four 

properties (hydrophobicity, volume, isoelectric point, and α-helix propensity), with the 

values for each amino acid’s properties from ref. 53, which we then centered and 

standardized; the effect of a unit change in each property at each site on the log-odds of 

being a specific binder is reflected in a model coefficient, which represent the model’s free 

parameters. We used R to find the values of these coefficients that best fit the observed 

classifications for each DBD/RE combination. Differences in the contribution of a property 

to specificity were identified if its associated coefficients in two models differed by a Z-test 

(P<0.05 with no correction for multiple testing)54.

Data and code availability.

Raw sequencing data were deposited to the NCBI SRA under BioProject number 

PRJNA362734. Processed data and scripts to reproduce analyses are available at github.com/

JoeThorntonLab/nature-2017_RH-scanning. A list of all RH sequences and their specificity 

classifications as used in the text is available in Supplementary Table 2.

Starr et al. Page 15

Nature. Author manuscript; available in PMC 2018 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/JoeThorntonLab/nature-2017_RH-scanning
http://github.com/JoeThorntonLab/nature-2017_RH-scanning


Extended Data

Extended Data Figure 1 |. Design and validation of a yeast FACS-seq assay for steroid receptor 
DNA-binding function.
a, GFP activation in ERE (purple) and SRE (green) yeast reporters correlates with 

previously measured protein-DNA binding11,12. Asterisk, stop-codon-containing variant. 

Dashed line, best fit segmented-linear relationship between GFP activation and log10(Ka,mac) 

b, Histogram of the per-cell green fluorescence for AncSR1 on ERE measured via flow 

cytometry, fit to a logistic distribution (dashed line). c, Distributions that provide the best fit 
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to flow cytometry data for isogenic cultures of 101 DBD variants, using Akaike Information 

Criterion (AIC). d, Comparisons of mean fluorescence estimates between FACS-seq 

replicates of each protein/response element combination. Black points, coding RH variants; 

light gray, stop-codon-containing variants. R2
pos, squared Pearson correlation coefficient for 

variants with mean fluorescence significantly higher than stop-codon-containing variants in 

either or both replicates. e, Comparisons between mean fluorescence as determined in 

FACS-seq and via flow cytometry analysis of isogenic cultures for a random selection of 

clones from each library. Dashed line, best-fit linear regression. f, Robustness of 

classification to sampling depth. Variants were binned according to the minimum number of 

cells with which they were sampled in either replicate. Below 15 cells sampled (dashed 

line), the probability that a variant called active in one replicate was also called active in the 

other is dependent on sampling depth; to minimize errors due to sampling depth, we 

eliminated as “undetermined” all variants with less than 15 cells sampled after pooling 

replicates. g, Standard error of mean fluorescence estimates (SEM) in each library as a 

function of sampling depth. Top plots show for each background, the relationship between 

SEM and sampling depth for ERE (purple) and SRE (green) libraries, as estimated from the 

sampling distribution of stop-codon-containing variants (dotted lines) or variability in mean 

fluorescence estimates between replicates (solid lines). Bottom panels show the cumulative 

fraction of coding variants in each library that have a certain number of cells sampled in the 

pooled data.
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Extended Data Figure 2 |. Representative FACS gates for library sorting.
a, A scatterplot of side-angle scattering (SSC-A) and forward-angle scattering (FSC-A) 

selects for a homogenous cell population (P1). b, A scatterplot of the height of the per-cell 

forward scatter peak (FSC-H) and the integrated area of this peak (FSC-A) excludes events 

where multiple cells pass through the detector simultaneously (P2). c, Final sort bins (P3 – 

P6) are drawn on the distribution of green fluorescence (FITC-A). d, Table showing the 

hierarchical parentage of sort gates and the percentage of events that fall in each bin.

Extended Data Figure 3 |. Models to predict the function of missing genotypes.
For each protein/response element combination, a continuation ratio ordinal logistic 

regression model was constructed to predict the functional class of a variant as a function of 

its four RH amino acid states, including possible first order main effects and second order 

pairwise epistatic effects. 10-fold cross-validation was used to select the penalization 

parameter λ and evaluate performance. a,b, True positive rate (left, TPR, the proportion of 

experimental positives that are predicted positive) and positive predictive value (right, PPV, 

the proportion of predicted positives that are experimentally positive) are shown as a 

function of λ for AncSR1+11P on ERE. Classifications were evaluated for (a) all active 

(weak and strong) versus inactive variants and (b) strong active versus weak active and 

inactive variants. Gray dotted lines, cross-validation replicates; solid line, mean. Dashed line 

shows the chosen value of λ = 10−5; as λ continues to decrease beyond λ = 10−5, TPR 

plateaus but PPV continues to decline. c, The number of non-zero parameters included in 

each model as a function of λ. Dashed line, λ = 10−5. d, Summary of performance metrics 

from 10-fold cross-validation for each model with λ = 10−5. Accuracy is the proportion of 

predicted classifications (strong, weak, and inactive) that match their experimentally 

determined classes.
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Extended Data Figure 4 |. Biophysical diversity in DNA recognition.
a,b, Diverse mechanisms for recognition of SRE (a) or ERE (b) by the historical RH 

genotypes (GSKV and EGKA) and alternative SRE-specific variants. Contacts from FoldX-

generated structural models are shown between RH residues (circles) and DNA bases 

(letters), backbone phosphates (small circles) and sugars (pentagons, numbered by position 

in the DNA motif; dashed numbers refer to the complementary strand). Hydrogen bonds are 

shown as dashed arrows from donor to acceptor; dotted lines, non-bonded contacts. Red 

squares, bases that form hydrogen bonds in the EGKA-ERE structure that are unsatisfied in 
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complex with an SRE-specific RH; red circles, side chains with polar groups that are not 

satisfied in complex with ERE. Only DNA contacts that vary among the analyzed structures 

are shown. c, Large side chains at position 29 correlate with the loss of a conserved R33 

hydrogen bond to ERE. For ERE-bound structural models, the distance of the Arg33 

guanidinium hydrogen to the ERE T4 carbonyl oxygen was measured and compared to the 

atomic volume of the residue at position 29 in that variant.

Extended Data Figure 5 |. The ancestral RH (EGKA) and derived RH (GSKV) can access many 
SRE-specific outcomes by short paths in AncSR1+11P.
a, Concentric rings contain RH genotypes of minimum path length 1, 2, or 3 steps from 

AncSR1+11P:EGKA (center). The historical outcome (GSKV, boxed, bottom) is accessible 

through a three-step path (EGKA – GGKA – GGKV – GSKV). Alternative SRE-specific 

outcomes accessible in three or fewer steps are in green. Lines connect genotypes separated 

by a single nonsynonymous nucleotide mutation; lines among genotypes in the outer ring are 

not shown for clarity. Orange arrows indicate paths of significantly increasing SRE mean 

fluorescence. b, For trajectories indicated by orange arrows in (a), SRE mean fluorescence is 

shown versus mutational distance from AncSR1+11P:EGKA (with x-axis jitter to avoid 

overplotting). Gray lines connect variants separated by single-nucleotide mutations. Error 

bars, 90% confidence intervals. Green dashed line, activity of AncSR1+11P:GSKV on SRE. 

c, For the SRE-specific outcomes accessed in orange paths in (a), the probability of each 

outcome under models where the probability of taking a step depends on the relative 

increase in SRE mean fluorescence (correlated fixation model), or where any SRE-

enhancing step is equally likely (equal fixation model)8. d, The historical outcome (GSKV) 

has SRE-specific single-mutant neighbors. Concentric rings contain SRE-specific RH 

genotypes of path length 1 or 2 steps from AncSR1+11P:GSKV (center). Lines connect 

genotypes separated by a single nonsynonymous nucleotide mutation; lines among 
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genotypes in the outer ring are not shown for clarity. e, The distribution of SRE mean 

fluorescence of SRE-specific neighbors of AncSR1+11P:GSKV illustrated in (d). Error 

bars, 90% confidence intervals.

Extended Data Figure 6 |. Evolvability of SRE specificity in an ancestral sequence space.
a, Alternative ERE-specific starting points reach SRE-specific outcomes with very different 

amino acid states. For each starting point accessing ≥15 outcomes (the median of all starting 

points), the frequency profile of amino acid states at each RH site was determined for the set 
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of SRE-specific outcomes reached in ≤ 3 steps; for each pair of starting points, the Jensen-

Shannon distance between profiles was calculated. Blue curve, distribution of pairs of 

starting points by Jensen-Shannon distances of the outcomes they reach; grey, distribution of 

Jensen-Shannon distances between profiles for randomly sampled sets of SRE-specific 

variants. In each modal peak, the amino acid frequency profiles for outcomes reached by a 

representative pair of ERE-specific starting points are shown. b-d, Contingency in the 

accessibility of individual SRE-specific outcomes remains when path lengths longer than the 

historical trajectory are considered. Plots are equivalent to Figs. 2b-d but for trajectories of 

increasing length.

Extended Data Figure 7 |. The historical starting point cannot access the derived function 
without permissive mutations.
a, AncSR1 RH functional network layout as in Fig. 3c, with the shortest paths from 

AncSR1:EGKA to SRE specificity highlighted. The ancestral RH (EGKA) can access SRE 

specificity. However, all trajectories are at least 5 steps long, require permissive RH changes 

that confer no SRE activity (e.g. K28R and G26A) and proceed through promiscuous 

intermediates. b, For paths highlighted in (a), SRE mean fluorescence is shown versus 

mutational distance from AncSR1:EGKA; gray lines connect variants separated by single-

nucleotide mutations. Error bars, 90% confidence intervals. Green dashed line, activity of 

AncSR1+11P:GSKV on SRE. AncSR1:EGKA was represented by only 7 cells in the SRE 

library, so its FACS-seq SRE mean fluorescence estimate is unreliable (and its classification 

was thus inferred by the predictive model). In isolated flow cytometry experiments, its SRE 

mean fluorescence was indistinguishable from null alleles; the decrease in SRE mean 

fluorescence from step 0 to step 1 suggested by this figure is therefore more likely a flat line 

(no change in SRE activity). c, Stochasticity and contingency in trajectories of functional 

change. Diagrams illustrate paths from a purple starting point (left) to possible green 
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outcomes (right). In a deterministic trajectory (i), a particular genotype encoding the green 

function will evolve deterministically if selection favors acquisition of the green function 

and only that genotype is accessible. The outcome of evolution is stochastic (ii) if multiple 

outcomes are accessible, so which one occurs is random. An outcome is contingent (iii) if its 

accessibility depends on the prior occurrence of some step that cannot be driven by selection 

for that outcome. Contingency and stochasticity can occur independently (ii and iii), or they 

can co-occur in serial (iv).
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Extended Data Figure 8 |. The effect of historical permissive substitutions is mediated by 
nonspecific increases in affinity.
a-d, 11P nonspecifically increase transcriptional activity as measured by FACS-seq, 

consistent with FoldX predictions of effects on binding affinity. a, Classification of SRE-

specific variants as 11P-dependent (orange) and 11P-independent (yellow) based on their 

functions in AncSR1 and AncSR1+11P backgrounds. Icons for individual variants 

specifically assessed in (b) and (c) are shown. b, FACS-seq mean fluorescence estimates for 

11P-dependent (orange) and 11P-independent (yellow) RH variants in the AncSR1 (left) and 

AncSR1+11P (right) backgrounds, shown as box-and-whisker plots as in Fig. 4a. Icons 

represent variants validated in (c). P-values, Wilcoxon rank sum test with continuity 

correction. The mean fluorescence of 11P-independent genotypes is significantly higher in 

the AncSR1 background but not in AncSR+11P. c, Validation of apparently restrictive effect 

of 11P on some genotypes. For three variants nonfunctional in AncSR1+11P but SRE-

specific in AncSR1 FACS-seq assays (×), we measured mean fluorescence of isogenic 

cultures by flow cytometry. We also assayed variants that are SRE-specific in AncSR1+11P 

and SRE-specific (square) or nonfunctional (open circle) in AncSR1, as validation controls. 

Isogenic mean fluorescence is represented as mean ± SEM from three replicate 

transformations and inductions analyzed via flow cytometry. All FACS-seq classifications 

were validated except for the three apparently restricted variants in AncSR1+11P 

(highlighted in red), which are in fact strong SRE-activators in this background. Each of 

these variants was predicted to be a strong SRE-binder based on its genotype, but had an 

artificially low FACS-seq mean fluorescence estimate, perhaps due to a strong growth defect 

in inducing conditions. d, After removing the three genotypes with inaccurate FACS-seq 

fluorescence measurements (×), 11P-independent genotypes have significantly higher mean 

fluorescence than 11P-dependent genotypes in the AncSR1+11P background, consistent 

with a nonspecific permissive mechanism via affinity. P-values, Wilcoxon rank sum test with 

continuity correction. e, 11P do not alter the genetic determinants of SRE specificity. Each 

plot shows, for a variable site in the library, the frequency of every amino acid state in two 

functionally defined sets of variants. Spearman’s rho for each correlation is shown. The top 

row shows that the determinants of SRE specificity are similar in AncSR1 and AncSR1+11P 

libraries; bottom row shows a much weaker relationship between the determinants of SRE 

and ERE specificity within the AncSR1+11P library. f, Biochemical determinants of ERE 

and SRE specificity in the AncSR1 (top) and AncSR1+11P (bottom) backgrounds. A 

multiple logistic regression model predicts the probability that a variant is RE-specific from 

the biochemical properties of its amino acid state at each of the four variable RH sites. The 

coefficients of this model represent the change in log-odds of being ERE-specific or SRE-

specific per unit change in each property. Asterisks indicate site-specific determinants that 

differ significantly between ERE and SRE specificity in each background (Z-test, P < 0.05).
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Figure 1 |. Diverse sequences and mechanisms can yield the derived DNA specificity.
a, The historical transition in DNA-binding specificity in steroid receptors occurred through 

3 changes in the recognition helix (RH), which required permissive substitutions (11P)11. 

We searched for other RH mutations (RH′) that could produce the derived function, before 

or after 11P. Each clade’s preferred DNA response element and RH protein sequence 

(residues 24–33) are shown; underlined, historically variable states. ERs, estrogen receptors; 

SRs, other steroid receptors. Reconstructed ancestral proteins are colored by response 

element preference. b, FACS-seq assay for steroid receptor DNA recognition. A library of 

160,000 RH variants was cloned into yeast with ERE- or SRE-driven GFP reporters. Each 

variant’s activity was estimated by FACS and deep sequencing. c, GFP activation on ERE 

and SRE by each variant in the AncSR1+11P background. Purple dots, ERE-specific 

variants; green, SRE-specific; blue, promiscuous; black, non-functional; gray, stop-codon 

variants. Purple line, activity of AncSR1:EGKA on ERE; green line, AncSR1+11P:GSKV 

on SRE. d, Frequency of residues at each variable position among ERE- and SRE-specific 

variants; n, number in each class. Red, acidic; blue, basic; magenta, polar uncharged; black, 

large nonpolar; green, small nonpolar. Residues and numbers in AncSR1 and AncSR2 are 

shown. e,f, Diverse biochemical mechanisms for recognition of SRE (e) or ERE (f) by the 

historical derived RH (GSKV) and an alternative SRE-specific variant (KAAI). Contacts in 

structural models are shown between RH residues (circles) and DNA. Arrows, hydrogen 

bonds from donor to acceptor; dotted lines, non-bonded contacts. Red squares, unsatisfied 

bases that hydrogen-bond in EGKA-ERE. Only variable RH-DNA contacts are shown (see 

Extended Data Figure 4).

Starr et al. Page 31

Nature. Author manuscript; available in PMC 2018 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2 |. Evolvability of SRE specificity in an ancestral sequence space.
a, Force-directed graph shows the functional topology of the RH sequence space in 

AncSR1+11P. Nodes, all functional RH variants, colored by specificity as in Fig. 1c; yellow, 

SRE-specific variants accessible from EGKA in ≤3 mutational steps (the length of the 

historical trajectory). Edges, single nonsynonymous nucleotide mutations. Clusters (grey 

arcs) are labeled by their defining genetic features; x, variable sites within a cluster. 

Historical ancestral and derived RH genotypes are indicated. b, Distribution of ERE-specific 

nodes (starting points) by number of SRE-specific nodes (outcomes) reached in ≤3 steps. 

Black, starting points that reach zero outcomes because epistasis results in nonfunctional 

intermediates7,8. c, Distribution of outcomes by number of starting points that reach it in ≤3 

steps. Black, outcomes reached from zero starting points because of epistasis; white, because 

all starting points are >3 nonsynonymous mutations away. d, Distribution of pairs of starting 

points by the fraction of outcomes within ≤3 steps that are shared. Black, pairs with zero 

shared outcomes because of epistasis; white, because starting points are too far apart to 

reach the same genotypes; hatched, because no mutually accessible genotypes are SRE-

specific.
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Figure 3 |. Historical permissive substitutions enhanced evolvability of SRE specificity.
a, GFP activation on ERE and SRE by each RH variant in the AncSR1 background; colors 

as in Fig. 1c. b, Variants by functional class in the AncSR1 and AncSR1+11P backgrounds. 

c, Functional topology of the RH sequence space in AncSR1, represented as in Fig. 2a. d, 

Distribution of ERE-specific starting points by length of the shortest path to an SRE-specific 

outcome in AncSR1 (left) and AncSR1+11P (right). 11P reduce the shortest path length (P 
<10−12, Wilcoxon rank-sum with continuity correction). e, For all connected starting points 

in AncSR1 (left) and AncSR1+11P (right), the shortest path(s) to SRE specificity classified 

by trajectory type: permissive (via ERE-specific intermediates), promiscuous (via 

promiscuous intermediates), both, or direct (one-step path without permissive or 

promiscuous intermediates). Starting points with paths in multiple categories contribute 

proportionally to each. Distributions differ between the networks (P <10−7, Chi-squared 

test).
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Figure 4 |. Effect of historical permissive substitutions is mediated by nonspecific increases in 
affinity.
a, Predicted SRE-binding affinity of SRE-specific variants that require 11P (orange, n=790) 

or do not (yellow, n=41) in AncSR1 (left) or AncSR2 (right). In each category, the median 

(bar), 95% confidence interval (notch), interquartile range (box), and range (whiskers) are 

shown. P-value, difference of medians (Wilcoxon rank-sum with continuity correction). b, 

Frequency of states at variable RH sites among SRE-specific variants in AncSR1 (left) or 

AncSR1+11P (right). Colors as in Fig. 1d. c, Biochemical determinants of SRE specificity in 

AncSR1 (top) and AncSR1+11P (bottom). A multiple logistic regression model predicts the 

probability that a variant is SRE-specific from the properties of the residues at each variable 

site: v, volume; h, hydrophobicity; i, isoelectric point; α, α-helix propensity. Colored boxes 

show best-fit model coefficients as the effect on classification odds per unit change in each 

property; *, significant difference between AncSR1 and AncSR1+11P (Z-test, P <0.05). d, 

The AncSR1+11P RH functional network. Yellow, variants that are functional without 11P; 

orange, variants that require 11P. e, For each RH genotype that does not require 11P, the 

number of single-mutant neighbors that became functional when 11P was introduced.
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