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A B S T R A C T

Concussion is associated with significant adverse effects within the first week post-injury, including physical
complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances
have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI) has
been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about
the relationship between functional connectivity and symptom assessments after a sport concussion. In this
study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70) university-level ath-
letes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that
greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and in-
sular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach
also extracted two components that showed reliable covariation with symptom severity: (1) a network of frontal,
temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating
the univariate findings); and (2) a network with anti-correlated elements of the default-mode network and
sensorimotor system, where connectivity was positively correlated with symptom severity. These findings
support the presence of connectomic signatures of symptom complaints following a sport-related concussion,
including both increased and decreased functional connectivity within distinct functional brain networks.

1. Introduction

Concussion is a form of mild traumatic brain injury (mTBI) which is
associated with transient behavioural disturbances, typically in the
absence of structural abnormalities for standard clinical neuroimaging
(McCrory et al., 2013; Yuh et al., 2014). Individuals with concussion
may present with a range of signs and symptoms, including somatic
complaints, impaired cognition and disturbances in mood and sleep
(Guskiewicz et al., 2001; McCrea et al., 2003). The clinical assessment
of sport-related concussion has been standardized with the develop-
ment of the Sport Concussion Assessment Tool (SCAT), which has
shown diagnostic utility for acute concussions (Guskiewicz et al., 2013;
McCrory et al., 2013; (Echemendia et al., 2017). The SCAT has evolved
over time, with the most recent versions, SCAT3 (Guskiewicz et al.,
2013) and SCAT5 (Echemendia et al., 2017), combining previously
separate assessments of symptoms, cognitive status, gross neurological

functioning and balance. Symptom evaluation is an integral element of
the clinical assessment and assists clinicians in identifying the type and
severity of functional disturbances. Furthermore, the utility of symptom
evaluation has been consistently demonstrated, as greater initial
symptom burden following concussion is associated with worse out-
comes (Iverson et al., 2017; Makdissi et al., 2010, 2013; Putukian et al.,
2015). Despite the critical role of symptom assessments in informing
clinical management and determining safe return-to-play in sport and
recreation, it is presently unknown whether these subjective measures
are associated with reliable, objective measures of brain physiology. To
better understand the etiology of behavioural disturbances after a sport-
related concussion, it is important to examine the link between brain
function at early injury and symptom endorsement.

Functional magnetic resonance imaging (fMRI) is a powerful tool
for investigating altered brain function in concussed athletes, by mea-
suring fluctuations in blood-oxygenation that are associated with neural

https://doi.org/10.1016/j.nicl.2018.02.011
Received 25 August 2017; Received in revised form 22 January 2018; Accepted 7 February 2018

⁎ Corresponding author at: 209 Victoria Street, Toronto, ON M5B 1M8, Canada.
E-mail address: ChurchillN@smh.ca (N.W. Churchill).

NeuroImage: Clinical 18 (2018) 518–526

Available online 17 February 2018
2213-1582/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2018.02.011
https://doi.org/10.1016/j.nicl.2018.02.011
mailto:ChurchillN@smh.ca
https://doi.org/10.1016/j.nicl.2018.02.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2018.02.011&domain=pdf


activity. Task-based fMRI studies have typically reported increased
activity in brain regions implicated in working memory tasks for ath-
letes with concussion, compared to uninjured controls (Slobounov
et al., 2012). Resting-state fMRI (rs-fMRI) has also been used to com-
pute functional connectivity, which provides a measure of functional
integration between brain regions (Van Den Heuvel and Pol, 2010).
Prior rs-fMRI studies have reported significantly altered functional
connectivity during the first week post-injury, when most athletes are
still symptomatic (Churchill et al., 2017; Zhu et al., 2015) and also
during the sub-acute phase from one week to one month post-injury,
when most athletes are asymptomatic at rest (Johnson et al., 2012;
Zhang et al., 2010; Zhu et al., 2015). Collectively, these studies have
identified significant alterations in brain function within the first month
following a sport-related concussion.

However, less is known about the relationship between resting brain
function and the severity of post-concussion symptoms in athletes.
Outside of the sport domain, rs-fMRI studies of mTBI have focused
mainly on dysfunction of the default mode network (DMN), which has
been reported to be a sensitive biomarker for disease and neurological
insult (Garrity et al., 2007; Greicius et al., 2004). Mayer and colleagues
scanned mTBI patients within 3 weeks post-injury (Mayer et al., 2011),
showing that reduced DMN connectivity and increased inferior parietal
connectivity were associated with more severe cognitive symptoms.
Similarly, (Zhou et al., 2012) found that reduced DMN connectivity was
associated with greater severity of endorsed symptoms (e.g., anxiety,
depression and fatigue), for patients imaged an average of 3 weeks post-
injury. More recently, (Messé et al., 2013) used rs-fMRI to study mTBI
patients with persistent post-concussion syndrome, by parcellating the
brain into 82 cortical and subcortical domains using an anatomical atlas
and assessing inter-regional connectivity. They found that elevated
symptoms were mainly correlated with reduced thalamic connectivity
within 1–3weeks post-injury and reduced frontal connectivity at
6months post-injury.

The present rs-fMRI study extends these analyses to sport-related
concussion, by examining a sample of university athletes with acute
concussion and a sample of individually-matched healthy controls. We
tested for associations between functional connectivity and SCAT3
symptom endorsements for concussed athletes within the first week
post-injury, and compared these values to uninjured controls. The
analyses were conducted using whole-brain techniques to avoid making
a priori assumptions about the brain regions that show greatest asso-
ciation with symptom severity. Two approaches were adopted: first, a
univariate analysis which tested for significant correlations between
symptom severity and connectivity strength, for every pair of grey
matter voxels in the brain; and second, a novel multivariate approach,
which identified distributed functional brain networks that have max-
imum covariance with symptom severity. The multivariate approach
was also used to compare functional network expression of athletes
with concussion relative to the uninjured control group.

2. Materials and methods

2.1. Study participants

A sample of seventy (70) athletes were recruited from university
level sport teams (volleyball, hockey, soccer, football, rugby, basketball
and lacrosse) from a single institution, through the Sport Medicine
Clinic. This included thirty-five (35) athletes with acute concussion and
35 matched control athletes. The concussed athletes (19/35 female;
mean ± SD age 20.3 ± 2.2 years; a median of 1 concussion prior to
the current injury, range 0 to 4) were recruited following a diagnosis of
acute concussion by the referring physician, and imaged a median of
5 days post-injury (range of 1 to 7 days). The diagnosis was made by a
staff physician, in accordance with Concussion in Sport Group guide-
lines (McCrory et al., 2013). Each athlete with concussion was matched
to a control that had no documented concussions in the 6months prior

to scanning. Controls (19/35 female, mean age 20.3 ± 1.7 years,
average history of 1 prior concussion, range 0 to 3) were individually
matched to concussed athletes based on sex and prior number of con-
cussions, as multiple concussions are associated with greater long-term
consequences (McCrory et al., 2013) and altered brain function
(Johnson et al., 2012). Matching was also performed with respect to age
(mean difference: 0.0 ± 1.2 years; p=0.94, paired Wilcoxon test) to
control for developmental differences.

Pre-season baseline symptoms were assessed for all participants as
part of standard clinical protocol, using the SCAT3 (Guskiewicz et al.,
2013), along with cognition, based on standardized assessment of
concussion (SAC) scores (McCrea et al., 1997) and balance, based on
modified Balance Error Scoring System (M-BESS) scores (Guskiewicz
et al., 2013). The SCAT3 scores (symptoms, SAC and M-BESS) were also
collected from athletes with acute concussion at the time of injury. This
study was carried out in accordance with the recommendations of the
Canadian Tri-Council Policy Statement 2 (TCPS2) and with approval of
the research ethics boards of the University of Toronto and St. Michael's
Hospital, with written informed consent from all subjects. All subjects
gave written informed consent in accordance with the Declaration of
Helsinki.

2.2. Magnetic resonance imaging

Athletes were imaged at St. Michael's Hospital using a research-
dedicated MRI system operating at 3 Tesla (Magnetom Skyra, Siemens,
Erlangen, Germany) with the standard 20-channel head receiver coil.
Structural imaging included three-dimensional (3D) T1-weighted
Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE:
inversion time (TI)/echo time (TE)/repetition time (TR)=1090/3.55/
2300ms, flip angle (FA)= 8°,192 sagittal slices with field of view
(FOV)=240×240 mm, 256×256 pixel matrix, 0.9 mm slice thick-
ness, 0.9× 0.9mm in-plane resolution, with bandwidth (BW) = 200
Hertz per pixel (Hz/px), fluid attenuated inversion recovery imaging
(FLAIR: TI/TE/TR=1800/387/5000 ms, 160 sagittal slices with
FOV=230×230 mm, 512×512 matrix, 0.9 mm slice thickness,
0.4× 0.4mm in-plane resolution, BW=751 Hz/px) and susceptibility-
weighted imaging (SWI: TE/TR=20/28ms, FA=15°, 112 axial slices
with FOV=193×220mm, 336×384 matrix, 1.2 mm slice thickness,
0.6× 0.6mm in-plane resolution, BW=120 Hz/px). Structural images
were reviewed in a 2-step procedure, consisting of initial inspection by
an MRI technologist during the imaging session and later review by a
neuroradiologist with clinical reporting, if any abnormalities were
identified. Statistical testing was also performed by obtaining mean,
variance and skew of voxel signal intensity distributions for masked
MPRAGE, FLAIR and SWI images, generating a Z-score for each imaging
sequence per athlete relative to the control distribution and identifying
statistically significant outliers at p < 0.05. No abnormalities (white
matter hyper-intensities, contusions, micro-hemorrhage, or statistical
outliers) were found for the concussed athletes and controls in this
study.

Resting-state fMRI was acquired via multi-slice T2*-weighted echo
planar imaging (EPI: TE/TR=30/2000ms, FA=70°, 32 oblique-axial
slices acquired interleaved ascending, with FOV=200×200mm,
64× 64 matrix, 4.0 mm slice thickness with 0.5mm gap,
3.125×3.125mm in-plane resolution, BW=2298 Hz/px), producing a
time-series of 195 images at each slice location. During acquisition,
athletes were instructed to lie still with their eyes closed and to not
focus on anything in particular. Processing and analysis were performed
using the Analysis of Functional Neuroimages (AFNI) package (afni.
nimh.nih.gov) and customized algorithms developed in the laboratory.
After discarding the first 4 volumes to allow scans to reach equilibrium,
this included rigid-body motion correction (AFNI 3dvolreg), removal of
outlier scan volumes using the SPIKECOR algorithm (nitrc.org/
projects/spikecor), slice-timing correction (AFNI 3dTshift), spatial
smoothing with a 6mm Full Width at Half Maximum (FWHM) isotropic
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3D Gaussian kernel (AFNI 3dmerge) and regression of motion para-
meters and linear-quadratic trends as nuisance covariates. For motion
parameter regression, Principal Component Analysis was performed on
the six rigid-body movement parameters, and the first two principal
components were used as nuisance regressors. To control for physio-
logical noise, the data-driven PHYCAA+ algorithm (nitrc.org/projects/
phycaa_plus) was used to spatially down-weight areas with non-neural
signal, followed by regression of white matter signal. The white matter
regression was performed after spatial normalization and the genera-
tion of probabilistic tissue maps (see paragraph below for details), by
regressing out the mean time-series computed over all white matter
voxels (p > 0.95).

To perform group-level connectivity analyses, the fMRI data were
co-registered to a common anatomical template using the FMRIB
Software Library (FSL) package (https://fsl.fmrib.ox.ac.uk). The FSL
flirt algorithm was used to compute the rigid-body transform of the
mean fMRI volume for each athlete to their T1-weighted anatomical
image, along with the 12-parameter affine transformation of the T1
image for each athlete to the MNI152 template. The transformation
matrices were then concatenated and the net transform applied to the
fMRI data, which was resampled to 4×4×4mm resolution to ensure
computational tractability for the univariate analyses. To ensure that
only grey matter brain regions were analyzed, voxels were retained that
intersected with both the MNI152 brain mask and a grey matter mask.
The latter was obtained by using the FSL fast algorithm (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FAST) to segment subject T1 images into
grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
maps. They were then transformed into MNI152 template space and
resampled to 4×4×4mm resolution before averaging across sub-
jects. A mask was chosen to include only regions where p(GM) > p
(WM)+ p(CSF), before eroding the resulting mask using a disk element
of diameter 3 voxels. Remaining voxels that overlapped with ventricles
on the MNI152 template image were also removed manually. This
procedure resulted in 18,401 voxels in the brain of each athlete that
were used in subsequent analyses.

2.3. Clinical and demographic data

Analyses of SCAT3 symptoms focused on symptom severity, which
was obtained by summing across a 22-item symptom scale, each with a
7-point Likert scale rating (Guskiewicz et al., 2013). Non-parametric
paired Wilcoxon tests were used to test whether symptom severity
scores and number of symptoms were elevated at acute concussion,
relative to baseline scores and matched controls. A second set of ana-
lyses examined whether symptom severity scores at acute injury were
correlated with demographic factors that included age, sex and number
of prior concussions. Correlations were estimated using non-parametric
Spearman correlations, along with bootstrapped 95% confidence in-
tervals (CIs) based on 1000 resampling iterations. Multiple comparison
correction was conducted at a False Discovery Rate (FDR) of 0.05.

2.4. Neuroimaging analysis and symptoms

2.4.1. Univariate analysis
An initial set of univariate analyses were conducted to identify pairs

of voxels where connectivity strength was reliably correlated with
symptom severity scores. For each pair of voxels (i, j), functional con-
nectivity ρ(i, j)s was calculated per athlete (s=1…35) based on the
Pearson correlation coefficient. The correlation was then measured
between connectivity strength values ρ(i, j)s and symptom severity
scores ys. Significance was assessed in a non-parametric bootstrap re-
sampling framework to minimize distributional assumptions. This was
done by computing an empirical p-value based on the fraction of re-
samples overlapping zero, with post-hoc correction for multiple com-
parisons at an FDR of 0.05. For these analyses, the ys values were rank-
normalized across subjects to avoid bias caused by heavy distribution

tails (kurtosis: 4.48, deviating from normality at p=0.025). The results
were then summarized as a pair of voxel-wise brain maps, which depict
(1) the fraction of functional connections to other voxels that had a
significant positive correlation with symptom scores; and (2) the frac-
tion of connections that had a significant negative correlation with
symptom scores. This was used to assess the relative sensitivity of in-
dividual brain regions to the effects of symptom severity.

2.4.2. Multivariate analysis
A novel multivariate approach was used to identify functional net-

works (i.e., distributed sets of brain regions) where intra-network
connectivity was most strongly associated with symptom severity
scores. The model was built within the widely-used partial least squares
(PLS) regression framework (Krishnan et al., 2011; Rosipal and Krämer,
2006). Given a vector of “input” variables xs and a “response” variable
ys, acquired for a set of subjects s=1…S, PLS estimates a latent vector
a of weightings on input data, which produces subject scores cs= aTxs
that have maximum covariance with ys. This approach has been ex-
tended to higher-order input data (i.e., matrices and higher-order ten-
sors) by (Bro, 1996), in an approach termed N-way partial least squares
(NPLS). For a set of 2D input data matrices Xs, NPLS identifies paired
latent vectors a, b, where the subject scores cs= aTXsb have maximum
covariance with response variable ys. The NPLS approach was extended
in the present work to analyze functional connectivity matrices in fMRI
data, using a model subsequently referred to as symmetric N-way par-
tial least squares (Sym-NPLS).

In the Sym-NPLS model, each subject has an fMRI data matrix Xs

consisting of (V voxels× T timepoints) and the input data are the set of
(V× V) whole-brain functional connectivity matrices, computed via
pairwise Pearson correlation between voxel timeseries. For vectors (i, j)
with zero mean and unit length, corr(i, j)= x(i) · x(j); hence, if each voxel
timeseries in Xs has the temporal mean subtracted and is rescaled to
unit length, then the (V× V) correlation matrix for subject s is X Xs s

T . A
latent pattern of voxel weightings a is then sought, which represents a
functional brain network where connectivity has maximum covariance
with the response variable ys. Within-network connectivity for subject s
is quantified by the bilinear projection of a onto their whole-brain
correlation matrix:

= a X X ac ( ) ,s
T

s s
T (1)

which produces a positive, scalar “subject score” cs, reflecting total
network connectivity for this subject. It is possible to solve for a by
maximizing the expression = ∑ − −cov c y c c y y( , ) ( )( )s s s . Substituting
Eq. (1) into this expression, this becomes:

∑ ∑ ∑= ⎛
⎝
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S
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s
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s s
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T

s s
T

s s s
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Expanding and centering the response variable of Eq. (2) (i.e., set-
ting =y 0) reduces to:

∑= ⎡⎣ ⎤⎦a X X acov c y y( , ) ( ) ,T
s s s

T
s (3)

This quadratic-form expression is maximized for a when it is an
eigenvector of ∑ X X y[ ( ) ]s s s

T
s . This matrix has a total rank of ∑ ∗Ts s,

where ≤∗T Ts denotes the rank of individual subject data matrices Xs.
Therefore, an eigen-decomposition of this matrix generates up to
k=1…K (K≤∑sTs) orthonormal components, or spatial weighting
vectors ak. These vectors are used to generate the subject scores cks that
have maximal covariance with symptom severity scores ys.

To confirm that Sym-NPLS extracts functional brain patterns of
maximum covariance with a response variable of interest, this model
was applied to synthetic data in Supplementary Text S1, showing robust
performance. Moreover, because Sym-NPLS analyses were conducted
on (V× V) whole-brain connectivity matrices, an initial data com-
pression step was essential for computational tractability. This was
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performed using sequential Principal Component Analysis (PCA) de-
compositions to reduce the rank of input data, described in further
detail in Supplementary Text S2, where a 97.42% reduction in di-
mensionality of the input data was obtained, without altering the ex-
tracted spatial patterns.

2.4.2.1. Statistical inference. Statistical testing of the spatial weighting
vectors ak was conducted in a non-parametric bootstrap resampling
framework. Subjects were resampled with replacement to obtain
bootstrapped estimates =a{ }b

k
K

k 1
( ) for the bth resampling iteration.

Because components of the eigen-decomposition may be arbitrarily
reordered between bootstrap samples, each set of a{ }k=

K
k

b
1

( ) were
matched to a fixed a{ }k=

K
k 1

(0) estimated from the whole dataset, using
restricted Procrustes matching to flip the sign and permute the order of
components. As this procedure has no closed-form solution, a “greedy
search” was conducted by successively matching the component pair
ak

b( ) and ak
(0) of highest correlation. The effect sizes for individual

voxel saliences were then computed as bootstrap ratios (i.e., the
bootstrapped mean/standard error) with significance estimated by
calculating an empirical p-value based on the normally-distributed
bootstrap ratio values. Adjustment for multiple comparisons was
performed at an FDR of 0.05. Confidence intervals of subject scores cs
were also obtained by calculating the scores at each bootstrap sample,

= a X X ac ( )b b
ks

b
k

T
s s

T
k

( ) ( ) ( ) and generating normal standard error bounds
on the cks

b( ) for each subject.
The Sym-NPLS model was also used to perform statistical compar-

ison of concussed athletes relative to the sample of uninjured, matched
controls. For each control, the bilinear projection was performed of
their functional connectivity matrix onto ak, generating the corre-
sponding subject scores cks

ctl( ) . This set of scores was then used to fit a
normal distribution, for the construction of 90% and 95% CIs. This
allowed the testing of whether individual concussed athlete scores cks
were significantly distinguishable from the set of cks

ctl( ) produced by
healthy, uninjured athletes.

3. Results

3.1. Clinical and demographic data

Table 1 summarizes participant demographics and clinical pre-
sentation. Prior to injury, symptom severity scores were comparable
between concussed athletes and controls (mean difference ± standard
error: 0.8 ± 1.6; p=0.38, paired Wilcoxon test). At acute injury,
concussed athletes had significantly higher symptom scores relative to
their baseline (mean change: 17.0 ± 3.9) and relative to the matched
controls (mean difference: 16.9 ± 4.2), both with p < 0.001, sig-
nificant at an FDR of 0.05. At acute injury, SAC and M-BESS subscales

were not significantly different from baseline or matched controls
(p > 0.23, all tests). In addition, the severity of acute symptoms was
not significantly correlated with age (Spearman rho ρ=0.05,
p=0.76), sex (ρ=0.19, p=0.27) or history of concussion
(ρ=−0.07, p=0.70). Acute symptom severity and the symptom
change (acute− baseline) were also highly correlated (ρ=0.89,
p < 0.001, significant at an FDR of 0.05).

3.2. Neuroimaging and symptoms

For univariate analyses, 2.07% of all pairwise connections were
significantly correlated with symptom severity scores at an FDR of 0.05.
Fig. 1 displays a voxel-wise map of the percentage of connections
showing significant correlations with symptom scores, thresholded to
display the top 10% of most affected voxels. A spatially distributed set
of brain regions showed decreased connectivity with greater symptom
severity (Fig. 1A), with peaks seen in the bilateral parahippocampal
gyri (slice 25), inferior orbitofrontal lobes (slices 25–30), along with the
temporal lobes and posterior insula (slices 35–40). More dorsally, peaks
were also seen in the posterior midcingulate (slice 60) and supple-
mentary motor area (slices 65–70). Conversely, fewer regions showed
increases in connectivity with greater symptom severity (Fig. 1B) with
peaks predominantly in the cerebellum (slices 20–30), but also ex-
tending into the visual cortex (slices 35, 45), cuneus (slices 50–55) and
superior frontal lobe (slice 70).

For multivariate analyses, bootstrap resampling produced two
components (k=1 and 2) with significant voxel saliences after ad-
justing for multiple comparisons at an FDR of 0.05. Results for the first
Sym-NPLS component are shown in Fig. 2. The spatial pattern a1 is
depicted in Fig. 2A, indicating an extensive pattern of significant brain
regions. This pattern also shows strong associations with the univariate
maps, exhibiting a Pearson correlation of 0.624 with the negative
connectivity map (Fig. 1A) and a Pearson correlation of −0.496 with
the positive connectivity map (Fig. 1B). Regions with significant posi-
tive bootstrap ratios include the inferior orbitofrontal lobes (slices
25–30), superior and middle temporal lobes (slices 30–45), posterior
insula (slices 35–45), inferior frontal lobes (slices 45–50), posterior
midcingulate (slice 60), supplementary motor area (slices 65–70) and
superior frontal regions (slices 65–75). In addition, negative bootstrap
ratios are seen in the cerebellum (slices 20–30), indicating anti-corre-
lations with positive brain regions. Fig. 2B plots concussed athlete
subject scores c1s against symptom severity scores, which has a negative
correlation (−0.427, 95%CI: −0.659, −0.312; p=0.010) indicating
that higher symptom severity is associated with reduced intra-network
connectivity. The mean, as well as 90% and 95% CIs of the scores for
healthy athlete controls are also shown for comparison, indicating that
only a few athletes with low symptom scores were significantly dif-
ferent from controls. Fig. 2C plots representative subject connectivity
maps for the top 10% of voxels in a1 with the highest bootstrap ratio
values. Confirming the interpretation of Fig. 2B, athletes with low
symptom severity scores and significantly elevated c1s scores relative to
controls (denoted L1, L2 and L3) had high functional connectivity,
compared to the athletes with high symptom scores and low c1s scores
(denoted H1, H2 and H3).

Results for the second Sym-NPLS component are depicted in Fig. 3.
The spatial pattern a2 is shown in Fig. 3A, with a much sparser set of
significant brain regions observed in comparison to a1. The pattern a2
shows little similarity with the univariate maps, with a Pearson corre-
lation of 0.004 with the negative connectivity map (Fig. 1A) and 0.104
with the positive connectivity map (Fig. 1B). Brain regions with positive
bootstrap values included the supramarginal gyri (slices 50–55), ante-
rior midcingulate (slice 60), supplementary motor area (slices 65–70),
left precentral gyrus (slice 65) and right superior frontal lobe (slice 70).
These regions were anti-correlated with areas having negative boot-
strap values, including medial orbitofrontal (slices 30–35), superior
medial frontal (slices 50–55), along with anterior cingulate (slices

Table 1
Athlete demographics. Age is reported as mean ± SD, all other distributions are reported
as median [min, max]. Symptom scores with ** denote significant difference at acute
injury, relative to both within-subject baseline and controls.

Control Concussion

Age (mean ± SD) 20.3 ± 1.7 20.3 ± 2.2
Female 19/35 19/35

Previous concussions 0 [0,3] 1 [0,4]
Baseline Acute

Symptoms
Severity 3 [0,29] 3 [0,24] 11 [0,90]**
Number of symptoms 2 [0,16] 3 [0,13] 8 [0,22]**

Cognition and balance
Orientation 5 [4,5] 5 [4,5] 5 [4,5]
Immediate memory 15 [9,15] 15 [13,15] 15 [13,15]
Concentration 3 [1,5] 4 [2,5] 4 [2,5]
Delayed memory 4 [1,5] 5 [0,5] 4 [1,5]
M-BESS total errors 1 [0,10] 3 [0,12] 3 [0,12]
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35–40) and posterior cingulate cortex (slices 50–55). Fig. 3B plots
concussed athlete subject scores c2s against symptom severity scores, for
which a positive correlation (0.580, 95%CI: 0.303, 0.677; p < 0.001)
indicates that greater symptom severity is associated with increased
intra-network connectivity. The mean as well as 90% and 95% CIs of
the scores for healthy athlete controls are again shown for comparison,
indicating that for this component, individuals with high symptom
scores were significantly distinct from controls. Fig. 3C plots re-
presentative athlete connectivity maps, shown for the top 10% of voxels
in a1 with highest bootstrap ratio values. Athletes with low symptom
severity scores (L1, L2 and L3) had positive functional connectivity
between most regions, whereas those with higher symptom severity
scores and significantly elevated c2s scores relative to controls (H1, H2
and H3) had strong anti-correlations between positive and negative
network nodes.

4. Discussion

This study examined the relationship between symptom severity
and resting brain function among recently concussed athletes.
Functional connectivity was investigated for the whole brain, rather
than among a set of predefined regions of interest, revealing significant
associations with symptom severity distributed throughout the brain.
This was evaluated using both univariate pairwise correlations and a
novel multivariate approach, termed Sym-NPLS, which extracted
functional networks that had maximal covariation with symptom
scores. Both models were able to detect robust functional connectomic
signatures of subjective symptom impairments during the sub-acute
phase of sport concussion.

The univariate results showed generally lower pairwise functional
connectivity, for athletes with concussion that had higher symptom
severity scores. These findings are consistent with studies of non-sport
mTBI that reported decreased functional connectivity for patients with
greater symptom severity (Mayer et al., 2011; Messé et al., 2013; Zhou
et al., 2012). The effects were most extensive in temporal and superior

frontal regions, which are critical to multiple aspects of cognition. The
frontal lobes are involved in executive function (Badre, 2008) and the
superior frontal gyri in particular are implicated in motor function,
working memory and attention (Li et al., 2013). The temporal lobes are
involved in language and auditory processing, but clinical studies have
also linked regional atrophy to impairments in memory and cognition
(Mummery et al., 2000; Pearlson, 1997; Shenton et al., 2001). Altered
connectivity was also seen in the parahippocampal gyri, which play a
key role in memory (Squire and Zola-Morgan, 1991) and, relevant to
sports, spatial memory (Burgess et al., 2002). Dysfunction in these brain
regions is important to consider, as impairments in cognition and
memory are common symptoms of concussion (McCrory et al., 2013).
Another affected area was the posterior midcingulate cortex, which
plays a role in bodily orientation in space (Vogt, 2016). This is relevant
to concussion, as issues of balance and dizziness are widely-reported
post-concussion symptoms. The insula also showed altered functional
connectivity and is involved in autonomic regulation (Critchley, 2005),
along with physiological response to salient stimuli (Menon and Uddin,
2010). Increases in functional connectivity were mainly limited to the
cerebellum, suggesting a distinct, potentially compensatory role for
athletes with greater symptom impairment. This is supported by studies
showing that the cerebellum is involved in domains beyond simple
motor function, including memory, attention and executive function
(Schweizer et al., 2007, 2008; Strick et al., 2009).

The multivariate Sym-NPLS model provided further insight into the
relationship between functional connectivity and post-concussion
symptoms, by extracting functional brain networks where within-net-
work connectivity was associated with symptom severity scores. The
first Sym-NPLS component was similar to the univariate map of affected
brain areas. This indicates that the univariate effects of symptom se-
verity may be largely attributably to decreased coherence within a
single distributed functional network that included temporal, insular,
frontal and midcingulate regions. The relationship between this net-
work and clinical presentation after injury is supported by studies of
head injury biomechanics, which have shown that frontotemporal brain

Fig. 1. Univariate whole-brain analysis of functional connectivity correlates with symptom severity. For each node (voxel), the color map indicates the percentage of all pairwise
connections to other nodes in which connectivity strength is significantly correlated with symptom severity scores (bootstrapped p-values, at an FDR of 0.05). The brain maps separately
show regions where greater symptom severity is correlated with (A) decreased connectivity and (B) increased connectivity. Maps are thresholded to show the top 10% of voxels with the
greatest number of significant connections. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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regions are vulnerable to direct impact against bony ridges of the skull
(Graham et al., 2002; Guskiewicz and Mihalik, 2006) and symptoms of
dizziness are correlated with high levels of orbitofrontal and temporal
strain during impact (Viano et al., 2005). Similarly, sub-cortical grey
matter may be vulnerable to the delayed effects of strain propagating
through the brain after a collision (Viano et al., 2005).

For the first Sym-NPLS component, a comparison of subject scores
between athletes with concussion and matched controls also showed
that only the athletes with lowest symptom scores had significantly
different intra-network connectivity, relative to healthy controls. These
results expand our understanding of the relationship between brain
function and symptom severity, as connectivity values that exceed the
“normal” range for this functional network are associated with a better
initial clinical presentation. One interpretation of this finding is that
elevated functional connectivity is an adaptive response following acute
injury. This has been discussed in a review by (Hillary et al., 2015),
which suggests that hyper-connectivity of the brain is a common out-
come of mild neurological injury and may be an adaptive response to
network disruption. However, in the absence of baseline neuroimaging,
it is equally plausible that the athletes with lower symptom scores had
elevated pre-injury functional connectivity, which then remained ele-
vated after their injury. In this case, greater intrinsic connectivity be-
tween frontal, temporal and insular regions would serve as a protective
role. The results of this study require further research with prospective
scanning of athletes to determine whether they constitute a pre- or post-
injury marker for acute symptom burden.

The second component identified by Sym-NPLS showed a sparser
pattern of brain regions, which was spatially uncorrelated with uni-
variate results. As shown in the connectivity plots of Fig. 3C, partici-
pants with higher symptoms have greater anti-correlation between
positive and negative nodes of the functional network. Therefore, ele-
vated connectivity cannot be considered a uniform marker of better
clinical presentation following brain injury, as the relationship with
symptoms depends on anatomical regions being investigated. These
findings also highlight the advantage of a multivariate approach, as
univariate analyses were unable to detect this more complex relation-
ship between brain function and symptoms. For this component,
symptom severity scores were related to connectivity strength between
medial nodes of the DMN (posterior and ventral anterior cingulate) and
other regions generally active during task engagement, including su-
pramarginal gyri, supplementary motor area, midcingulate cortex,
along with precentral and superior frontal gyri. Hence, anti-correlation
of sensorimotor regions with the DMN may be a marker of elevated
symptom severity. It has been previously shown that network anti-
correlations with the DMN can be modulated by changes in physiolo-
gical state, including caffeine consumption (Wong et al., 2012). The
present results may reflect a more taxed mental state, as greater anti-
correlation of task-positive networks with DMN has been related to task
difficulty and the stability of behavioural performance (Kelly et al.,
2008; Sala-Llonch et al., 2012); increased anti-correlation has also been
observed in some mental disorders (Broyd et al., 2009). As with the first
component, due to a lack of baseline imaging, it is not clear whether
anti-correlation between these brain regions is a consequence of func-
tional network disturbances after a concussion, or whether individuals
with greater pre-injury network anti-correlation are more vulnerable to
the effects of acute concussion. Nonetheless, compared to matched
controls, this component showed that individuals with high symptoms
had network connectivity that was significantly different from healthy
individuals. Based on these findings, markers specifically distinguishing
highly symptomatic athletes with concussion from controls maybe in-
volve a set of reliable but spatially sparse brain regions.

Functional connectivity effects were greatest in brain regions that
are consistent with typical post-concussion symptoms, e.g., cognition,
memory and physical orientation. However, it is important to note that
the SCAT3 findings were limited to self-reported symptoms. The par-
ticipants in this study had no significant impairments in tests of

cognition (i.e., SAC) or balance (i.e., M-BESS), possibly because they
are designed as brief screening tools and may be insensitive to subtle
changes in cognition and visual-motor function. For the SAC, significant
ceiling effects are widely reported (Echemendia et al., 2017), while the
BESS has good specificity but low-to-moderate sensitivity (Giza et al.,
2013). The present study was also limited to the modified version of
BESS and the full protocol may have yielded different results. The
sample of athletes with concussion in this study did not experience
gross disturbances in brain function associated in cognition and bal-
ance, which is consistent with most of the athlete scores for functional
brain networks that fell within “normal” bounds defined by uninjured
controls (Figs. 2B, 3B). Additional tests pertaining to cognition (e.g.,
computerized neurocognitive testing), balance (e.g., postural sway), or
oculomotor function, may provide better sensitivity and specificity
when assessing patient outcome. At present, more detailed testing and
follow-up is needed to definitively establish whether objective func-
tional deficits underlie the identified relationships between brain
function and symptoms.

This study showed reliable associations between symptom severity
and functional connectivity, however, there are limitations which
should be addressed in future research. This study had a cross-sectional
design and it is therefore unknown how the brain function of concussed
athletes compared to pre-injury brain function. Further research with
prospective baseline scanning of athletes (see, e.g., (Bazarian et al.,
2012)) is required to determine whether the findings of this study re-
flect functional disturbances caused by concussion, or differences in
brain function that precede injury. Similarly, early symptom burden is
related to prolonged recovery time (Makdissi et al., 2010, 2013;
Putukian et al., 2015), however, future longitudinal studies are re-
quired to establish whether the observed functional markers of acute
symptom severity are correlated with long-term clinical recovery. Fi-
nally, the present analyses focused on symptom assessments, which
despite being a cornerstone of clinical management (Echemendia et al.,
2017; Guskiewicz et al., 2013), are inherently subjective. While the
present findings support a robust relationship between brain function
and symptoms, future neuroimaging research may benefit from com-
bining symptom reports with neurocognitive tests, along with assess-
ments of psychological and environmental factors that may affect how
athletes perceive and disclose symptoms after a concussion.

The multivariate analyses in this study were based on Sym-NPLS,
which is an extension of partial least square (PLS) that is able to detect
whole-brain functional networks associated with symptom scores. As a
variant of PLS, it has similar model properties, including stability in the
presence of high-dimensional input data. Although PCA-based di-
mensionality reduction was performed prior to analysis, this was done
to reduce computational burden during resampling, as PLS-based
models do not require regularization or parameter tuning to obtain
reliable brain patterns associated with behaviour (Krishnan et al.,
2011). However, Sym-NPLS maximizes covariance between brain
function and behaviour, and will therefore tend to identify functional
networks that account for both correlation with behaviour and variance
within the rs-fMRI data (Rosipal and Krämer, 2006). If one is only in-
terested in maximizing prediction of behaviour, an alternative cost
function, such as least-squares regression, may be more appropriate.
Nonetheless, to our knowledge, this is the first multivariate model to
directly identify whole-brain connectivity patterns of greatest covar-
iance with a behavioural outcome, in an efficient, computationally
tractable manner.

This study has helped to extend our understanding of the relation-
ship between initial symptom presentation and resting brain function
following sport-related concussion. A combination of univariate and
multivariate methods has shown that elevated frontotemporal con-
nectivity is a marker of low symptom impairment following acute in-
jury, while multivariate methods also revealed that anti-correlation
between DMN and sensorimotor regions constitutes a specific marker of
higher symptom severity. These results provide promising evidence that
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reliable connectomic markers may be identified relating to the
symptom burden after sport-related concussion.
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