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Introduction
Fungi are associated with a wide spectrum of diseases in humans, with increasing morbidity
and mortality [1]. Therefore, it is of great importance to elucidate the genetic and immunologi-
cal mechanisms underlying the susceptibility to fungal infections. Recent studies of primary
immunodeficiencies (PIDs)—a group of hereditary immune disorders with increased suscepti-
bility to infection—have led to significant breakthroughs in our understanding of cellular and
molecular mechanisms that predispose to both invasive and mucocutaneous fungal infections.
This knowledge will pave the way for developing novel immunotherapeutic strategies in the
near future.

Identifying the Cause of PIDs
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent Can-
dida infections of the skin, nails, and mucosal membranes. CMCmay generally present as a
distinct clinical entity, in which CMC is the only or main manifestation (called isolated CMC
or CMC disease). CMC could also present as one of the manifestations in a syndrome (called
syndromic CMC). Moreover, CMC can be observed in patients with acquired or inherited
immunodeficiencies in addition to other infections [2]. By combining functional assays and
focused genetic screening, causative mutations in two PIDs associated with CMC were discov-
ered, namely in autosomal dominant hyper IgE syndrome (AD-HIES) and autosomal domi-
nant CMC (AD-CMC). AD-HIES is a PID characterized by CMC, elevated serum IgE,
eosinophilia, eczema, skeletal abnormalities, and recurrent staphylococcal infections; it was
first described as Job’s syndrome in 1966 [3]. Minegishi et al. hypothesized that since a Tyk2
mutation had been found in a patient with a similar clinical syndrome to hyper IgE syndrome
(HIES), cytokine signaling pathways that are dependent on Tyk2 might be deficient in
AD-HIES [4]. They identified defective interleukin (IL)-10 signaling and IL-6 signaling and
explored mutations in signal transducer and activator of transcription 3 (STAT3), which is a
critical component in these signaling pathways. Eight out of 15 patients were found to have a
loss of function (LOF) mutation in STAT3, which is now known to be responsible for the cause
of disease in 60%–70% of patients with AD-HIES [4,5]. STAT3, activated by IL-6, IL-21, and
IL-23, is essential for T helper (Th) 17 cell development because it provides signal transduction
that induces transcription of RORγt, which in turn is crucial for the induction of Th17 cells.
Indeed, patients harboring the dominant-negative STAT3 mutation have impaired Th17 cell
responses to fungal infections [4,5]. This was the first observation linking deficient Th17
responses to CMC in patients.

In a similar way, mutations in STAT1 were found to underlie AD-CMC. The defective Th
responses observed in AD-CMC were further explored by investigating cytokine-signaling
pathways that drive Th1 and Th17 responses. IL-12 signaling, which is important for the
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induction of Th1 responses, and IL-23 signaling, which drives Th17 responses, were both
found to be defective [6]. Molecules shared by these two pathways, such as receptor units and
downstream molecules including STATs, were sequenced in five families with AD-CMC by
next generation sequencing. All patients carried a mutation in the coiled-coil domain of
STAT1. These mutations were found to be gain-of-function (GOF), which leads to hyperpho-
sphorylation of STAT1 and accumulation of phosphorylated STAT1 in the nucleus [6,7].
Although the exact mechanism that is responsible for deficient Th17 responses remains to be
elucidated, it is hypothesized that this is the result of an increased function of cytokines that
dampen the Th17 response or due to less availability of STAT1 molecules to form heterodimers
with other STAT molecules [7]. STAT1 GOF mutation is the most common hereditary cause
of isolated CMC [6–8], and these mutations are associated with a spectrum of fungal infections,
such as cutaneous fusariosis, disseminated coccidioidomycosis and histoplasmosis, Penicillium
marneffei infections, and disseminated mucormycosis [9–12], underscoring the importance of
STAT1-dependent responses in antifungal host defense.

The Importance of the IL-17 Pathway in Antifungal Host Defense
Defective Th17 responses associated with the above two PIDs provided evidence that mucosal
antifungal host responses are critically dependent on Th17 responses. IL-17A and IL-17F are
key members of the IL-17 family and are produced predominantly by Th17 cells, although neu-
trophils and innate lymphoid cells can also produce these cytokines. IL-17 cytokines can recruit
neutrophils and activate epithelial cells to produce defensins. To elicit their functions, IL-17A
and IL-17F bind to IL-17RA/RC heterodimer complex, which subsequently triggers Act1-de-
pendent NF-κB activation [13]. Mutations in IL-17F and its signaling pathway cause CMC,
providing proof that the predominant pathway in mucosal antifungal host defense is the IL-17
pathway. One study reported autosomal recessive (AR) deficiency in IL-17RA and AD defi-
ciency of IL-17F in CMC patients. IL-17RA deficiency was shown to be complete, abolishing
cellular responses to IL-17A and IL-17F signaling. On the contrary, IL-17F deficiency was par-
tial, with mutant IL-17F displaying impaired activity [14]. Recently, three patients from unre-
lated kindreds of CMC were reported to have AR IL-17RC deficiency. The patients were
homozygous for different nonsense alleles that abolish the expression of IL-17RC, which pre-
vented IL-17A and IL-17F signaling [15]. Moreover, IL-17R signaling is dependent on Act1
and a family with missense mutations in Act1, leading to defective IL-17 signaling and CMC,
which again highlights the importance of the IL-17 pathway [16].

The syndrome of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
(APECED), or autoimmune polyendocrine syndrome 1 (APS-1), is a rare AR PID character-
ized by CMC that is often its earliest manifestation, in addition to multiple autoimmune endo-
crinopathies, hypoparathyroidism, and adrenal insufficiency. The genetic cause of APECED
are mutations in the autoimmune regulator (AIRE) gene [17]. Loss of function of AIRE in
patients leads to impaired central T cell tolerance, with the generation of neutralizing autoanti-
bodies against IL-17A, IL-17F, and/or IL-22, which might account for CMC [18,19]. These
immunodeficiencies collectively point to a fundamental role for IL-17 signaling in the protec-
tion against mucosal Candida infection in humans.

Essential Host Mechanisms for Preventing Invasive Fungal Disease
In addition to well-known risk factors for invasive fungal infection, such as neutropenia and
corticosteroid therapy, PIDs have provided more insight into other mechanisms that protect us
against invasive fungal disease. The first PID that directly provided a crucial mechanistic
insight was chronic granulomatous disease (CGD). CGD is a disease with the highest incidence
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of invasive Aspergillus infection, and is even associated with invasive infections caused by non-
pathogenic fungi, such as A. nidulans [20]. CGD is caused by mutations in one of the subunits
of the phagocyte NADPH oxidase complex, which is composed of flavocytochrome b in plasma
membrane (subunit gp91phox and p22phox) and other cytosolic proteins (subunit p47phox,
p67phox, p40phox, and small G-protein Rac1/2) [21,22]. Loss or functional inactivation of the
NADPH oxidase complex results in the inability to produce reactive oxygen species (ROS),
which are crucial for phagocytic killing of pathogens. Despite the ROS deficiency, CGD
patients exhibit a hyperinflammatory state that leads to the formation of granulomas and
inflammatory colitis. It was recently discovered that NADPH-dependent ROS deficiency
results in autophagic dysfunction in monocyte/macrophages. As a result, autophagy-depen-
dent IL-1β inhibition is impaired, with increased activation of IL-1β inflammasome, which
may contribute to IL-1-mediated inflammation in CGD patients [23]. The defect of autophagy
observed in monocytes from CGD patients is a form of noncanonical autophagy, called
LC3-associated phagocytosis (LAP), which is important for killing Aspergillus [24,25].

The more recently discovered caspase recruitment domain-containing protein 9 (CARD9)
deficiency provided novel insights in the role of this protein in invasive fungal infection and
CMC. CARD9 is a key adaptor molecule expressed in myeloid cells downstream of the pattern
recognition receptors (PRRs), Dectin-1, Dectin-2, and Mincle, which all recognize fungal cell
wall components and subsequently activate spleen tyrosine kinase (SYK), which then engages
CARD9 [26]. AR deficiencies were discovered to cause both CMC and Candidameningoen-
cephalitis [27–30]. In addition, patients with idiopathic deep dermatophytosis, subcutaneous
pheohyphomycosis, and invasive Exophiala infections were also reported to have AR CARD9
deficiency [31–33]. CARD9 deficiency not only results in an insufficient Candida-induced
Th17 response [27] but neutrophils isolated from these patients also display a selective Can-
dida albicans killing defect [28], which explains the susceptibility to both mucocutaneous and
invasive antifungal host defense. These two PIDs underscore two crucial mechanisms to con-
trol severe invasive fungal infection, namely the NADPH oxidase complex and CARD9-depen-
dent signaling.

Designing Novel Targeted Therapeutic Strategies
The main mechanisms in fungal infections discovered via PIDs are summarized in Table 1 and
Fig 1. With this knowledge comes the challenge of translating these findings into therapeutic
strategies that can improve morbidity and mortality in PID patients with fungal infection.
Decreasing STAT1 activity in patients with a STAT1 GOF function mutation would be a ratio-
nale for targeted therapy in these patients. Recent findings suggest that direct STAT1 inhibition
with fludarabine can reverse the reduced STAT3-dependent gene transcription that is observed
in CMC cells in vitro; however, whether this treatment would be beneficial in CMC is currently
unknown [34]. What supports this strategy is that inhibition of cytokine-induced STAT1 activ-
ity by a JAK1/JAK2 inhibitor was beneficial in a patient with AD-CMC [35].

The autoantibodies against IL-17 and IL-22 observed in APECEDmight be targeted by B
cell or plasma cell-depletion strategies, since this has also been observed to be helpful in
patients suffering from nonmycobacterial disease due to autoantibodies against IFNγ. Interest-
ingly, neutralizing autoantibodies against IFNγ and granulocyte macrophage colony-stimulat-
ing factor (GM-CSF) have also been associated with invasive penicilliosis [36] and
cryptococcal meningitis [37], respectively, providing a rationale to explore B cell depleting
therapies in these circumstances. The recognition of autoantibodies against cytokines causing
fungal disease not only opens up new treatment strategies in these rare diseases, but also dem-
onstrates the importance of these cytokines in antifungal host defense. Indeed,
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immunomodulatory therapies with these recombinant cytokines, in addition to antifungal
treatment in patients with PIDs, have been used with success. Patients with CGD can have ben-
efits from recombinant IFNγ therapy: A patient with a Candidameningoencephalitis due to
CARD9 deficiency was successfully treated with GM-CSF, and one patient with STAT1 GOF
mutation was successfully treated with GM-CSF initially and later G-CSF [29,38]. Also, block-
ing cytokines in CGD has been explored, which has led to the observation that IL-1Ra is not
only able to dampen IL-1β-mediated inflammation in CGD, but it also restores defective LAP-
mediated Aspergillus clearing, suggesting that anakinra might serve as a promising adjunctive
treatment option in CGD patients during fungal infection [23].

System Biology Approach and Future Directions
By performing transcriptomics on human cells exposed to various stimuli, it was discovered
that Candida induces a strong type I IFN signature, which is typically associated with antiviral
host responses [39]. The importance of this finding was reflected by the association of poly-
morphisms in genes regulating the IFN pathway with susceptibility to candidemia (such as
MDA5, which is a viral PRR [40]). This approach led to exploring novel pathways that would
otherwise not be so logical to investigate in patients with fungal infection. This system biology
approach might also help to understand several observations made in patients with PIDs in
recent years. There is the observation that AR-HIES can be caused by mutations in the

Table 1. Summary of genes involved in PIDs with fungal infections.

Gene Mode of
inheritance

Disease Associated fungal
pathogens

Immunological phenotype Refs.

STAT3 AD AD-HIES Candida Impaired Th17 differentiation [4,5]

STAT1 AD AD-CMC, cutaneous fusariosis,
disseminated coccidioidomycosis and
histoplasmosis, Penicillium marneffei

infections, and disseminated mucormycosis

Candida, Fusarium,
Coccidioides, Histoplasma,

Penicillium marneffei,
Apophysomyces

Hyperphosphorylation of STAT1,
deficient Th17 responses

[6–12]

IL17F AD CMC Candida Defective IL-17F bioactivity [14]

IL17RA/C AR CMC Candida Lack of cellular responses to IL-
17A and IL-17F

[14,15]

ACT1 AR CMC Candida Impaired IL-17 signaling [16]

AIRE AR APECED Candida Autoantibodies against IL-17 and
IL-22

[17]

CYBB X-linked CGD Candida, Aspergillus NADPH oxidase complex
deficiency

[21]

NCF1,
NCF2,
NCF4,
CYBA

AR CGD Candida, Aspergillus NADPH oxidase complex
deficiency

[21]

CARD9 AR CMC, Candida Meningoencephalitis, deep
dermatophytosis, subcutaneous

pheohyphomycosis, and invasive Exophiala
infections

Candida, Trichophyton,
Phialophora, Exophiala

Reduced TNF-α production and
circulating IL-17-producing T cells,

killing defect of neutrophils

[27–
33]

DOCK8 AR AR-HIES Candida Impaired Th17 differentiation [41]

RORC AR Candidiasis and mycobacteriosis Candida Absence of IL-17A/F-producing T
cells

[42]

IL-12RB1 AR CMC, Mycobacterial and Salmonella
infections

Candida Loss of function of IL-12 and IL-23
receptor, diminished IFN-γ and IL-
17

[43]

TYK2 AR HIES, mycobacterial and viral infections Candida Reduced Th1 and type I IFN
responses

[44]

doi:10.1371/journal.ppat.1005400.t001
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dedicator of cytokinesis 8 (DOCK8) gene, which results in both increased susceptibility to
recurrent viral infections and CMC [41]. Moreover, it is striking that genes that are associated
with susceptibility to nonmycobacterial disease are also associated with fungal infection.

Fig 1. Schematic overview of crucial mechanisms in antifungal host defense. (A) NADPH oxidase: This protein complex is responsible for reactive
oxygen species (ROS) production as well as LC3-associated phagocytosis (LAP), which both play a role in fungal clearance. (B) CARD9-dependent PRR
pathways: After pattern recognition, downstream signaling passes through adaptor molecule CARD9, forming a complex with BCL-10 and MALT1, which
drives NF-κB responses. Proinflammatory cytokines, such as IL-1β, IL-6, IL-23, and TGF-β, are secreted. (C) STAT1 and STAT3: Proinflammatory cytokines
signal through STAT3, which induces transcription of RORγt, leading to differentiation of naive T cells towards Th17 cell lineage. STAT1 gain-of-function may
shift the cellular response from STAT3-mediated Th17 cell-activating cytokines toward hyper-responses of Th17 inhibiting cytokines, such as IL-27,
interferon (IFN)-γ, and IFN-α. (D) IL-17 and IL-17 signaling: As key adaptive cytokines in host defense against fungi, IL-17A and IL-17F signal through the
IL-17RA/RC heterodimer complex, forming IL-17R-Act1-TRAF6 complex to trigger NF-κB activation. Therefore, patients with IL-17F, IL-17RA, IL-17RC, or
Act1 deficiencies have either impaired IL-17 function or impaired IL-17 signaling responses. (E) Autoantibodies against cytokines: Patients with AIRE
deficiency develop high levels of neutralizing autoantibodies against IL-17A, IL-17F, and/or IL-22, which directly antagonize IL-17 and IL-22 responses. DC,
dendritic cell; TLR, toll-like receptor; MR, mannose receptor; FcγR, Fcγ receptor; CARD9, caspase recruitment domain-containing protein 9; Syk, spleen
tyrosine kinase; BCL-10, B cell lymphoma/leukemia 10; MALT1, mucosa-associated lymphoid tissue lymphoma translocation protein 1; NF-κB, nuclear
factor-κB; STAT, signal transducer and activator of transcription; MHC II, major histocompatibility complex class II; TCR, T cell receptor; IL, interleukin; IFN,
interferon; RORγt, retinoic acid-related orphan receptor gamma t; Th17 cell, T helper 17 cell; RA, receptor A; TRAF6, tumor necrosis factor (TNF) receptor-
associated factor 6.

doi:10.1371/journal.ppat.1005400.g001
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Recently, homozygous loss-of-function mutations in RORC, which encodes RORγ that is
important for the induction of Th17 cells, have been described to cause increased susceptibility
to mycobacterial infection and Candida infections [42]. Mutations of IL12RB1 and tyrosine
kinase 2 (Tyk2) genes, impairing the IL-12/IFNγ axis, also predisposes to both CMC and
increased susceptibility to mycobacterial disease [43,44]. In light of these observations, STAT1
mutations are the most intriguing. A loss of function of STAT1 leads to increased susceptibility
to mycobacterial disease [45], whereas a GOF mutation leads to CMC and invasive endemic
fungal infection. These observations reflect how important a well-balanced IFN pathway and
STAT1 activity is to preventing viral, mycobacterial, and fungal infections, and they open up a
new field to explore in patients with fungal infection.

Conclusion
In the past decade, studies of PIDs have hugely promoted our understanding of the immuno-
logical pathways involved in human antifungal immunity. This knowledge helped to elucidate
mechanisms that play a crucial role in antifungal host defense and offered unique opportunities
to link clinical phenotypes to immunological function. We have learned from the described
immunodeficiencies that the IL-17 pathway is fundamental for mucosal antifungal host
defense, while neutrophil function and IFNγ and GM-CSF are essential for preventing invasive
fungal infection. Of course, our present knowledge is still limited, and there are a large number
of fungal infections for which the environmental and genetic background has yet to be deci-
phered. We believe that a joint effort from the field of immunology, genetics, microbiology,
and systems biology will provide new insight into host immune response against fungi, which
will facilitate the development of personalized immunotherapeutic strategies in fungal
infection.
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