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Simple Summary: Bactrocera dorsalis fat body protein 1 (Bdfbp1) cDNA was cloned. The deduced
amino acid sequence contains three motifs: hemocyanin N, high molecular weight glutenin (gultenin
hmw), and hemocyanin C from N to C termini. The glutenin hmw allows Bdfbp1 to fold into a
compact form for storage. Bdfbp1 was highly expressed in the late third instar larvae and day 0 pupae.
This suggests that Bdfbp1 is stored during larval stages as a storage protein for construction of adult
tissues during pupal stages, and may be associated with adult eclosion.

Abstract: Bactrocera dorsails fat body protein 1 (Bdfbp1) cDNA was cloned (GenBank accession no.
MT514270), and the complete 3,749-bp cDNA encoded a 1,152-amino acid protein. The phylogenetic
relationship of dipteran fbp1s was analyzed. The sequence XP_028900815 from the insect genome
project for Zeugodacus cucurbitae (LOC105219342) was proposed that two fbp1 genes were present in
the sequence. The developmental transcriptional expression profiles were determined. In the larval
stages, Bdfbp1 mRNA had significantly higher expression in the late third instar larvae compared
with first, second, and early third instar larvae. In the pupal stages, the highest expression of Bdfbp1
mRNA was found in the newly pupated pupae and then decreased with age. In the fat body of
female adults, Bdfbp1 was highly expressed in newly emerged samples and decreased rapidly over
the following three days. In the fat body of male adults, Bdfbp1 was highly expressed in newly eclosed
samples. RNAi treatment decreased the expression level of Bdfbp1 without statistical difference.
However, RNAi treatment significantly decreased the rate of eclosion. These results suggest that
Bdfbp1 may function as a storage protein and be associated with adult eclosion.

Keywords: Bactrocera dorsalis; fat body protein 1; transcriptional expression; eclosion

1. Introduction

The fat body, an essential tissue for insect metabolism, provides energy and synthesizes
proteins for insect development and reproduction. As the developmental stages change,
the function of the fat body changes accordingly. At the pupal stage, insects require large
amounts of energy and materials for adult development. Because pupae do not ingest any
food, all substances for adult development are stored during the larval stages, especially
the late larval stage.

The oriental fruit fly, Bactrocera dorsalis, is one of the most disastrous pests, leading to
damages of about 450 plant species throughout the world [1]. Their high fecundity makes
them preeminent, with 1000 eggs laid over the entire life-span of females [2]. Females
deposit their eggs into fruit where the larvae hatch and feed. Until the late third instar,
larvae drill out the fruit and enter the soil to pupate. Pesticides are most frequently
employed to control B. dorsalis. The tendency to develop resistance to different types of
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insecticides has been reported [3–5]. It is necessary to develop new strategies to control
B. dorsalis.

There are two forms of fat body in the B. dorsalis adult abdomen: the white, nodule-like
larval-form fat body and the thin, sheet-like adult-form fat body [6]. A comparison of gene
expression between the larval- and adult-form fat body in B. dorsalis adults reveals that the
arylphorin receptor is expressed more abundantly in the larval form [6]. The nomenclature
of the arylphorin receptor (accession no. JZ476873) was changed to fat body protein 1 (fbp1)
after the release of B. dorsalis genome annotation.

The fbp1 gene of Drosophila melanogaster has long served as a model for the study of
20-hydroxyecdysone regulation. The transcriptional expression of fbp1 is the tissue specific
in the fat body, and temporally specific at the end of the third instar [7,8]. A ligand binding
assay and Western blot analyses demonstrated that the product of fbp1 of D. melanogaster is
a larval serum protein (LSP) receptor [9]. LSPs are storage proteins generally referred to as
hexamerins, which are involved in pupation and metamorphosis [10,11].

In B. dorsalis, the storage protein, hexamerin gene BdAr is expressed in third instar
larvae, pupae, and adults, with especially high expression levels in late third instar larvae
and day 0 adults [12]. The form of fat body is larval form in third instar larvae and day
0 adults. Because B. dorsalis fbp1 (Bdfbp1) is highly expressed in larval-form fat body
as BdAr is [6], this makes us to hypothesize that fbp1 functions as a storage protein.
The developmental transcription profiles of Bdfbp1 were determined through real-time
quantitative polymerase chain reaction, and the function of Bdfbp1 related to adult eclosion
was explored through RNA interference.

2. Materials and Methods
2.1. Insects

Colonies of the oriental fruit fly, B. dorsalis, were maintained as described else-
where [12]. Larvae were fed on an artificial diet containing 1800 mL of water, 20 mL
of HCl, 5 g of benzoic acid, 240 g of sugar, 140 g of yeast extract, and 480 g of wheat
bran [13].

2.2. cDNA Cloning of fbp1 through Rapid Amplification of cDNA Ends and Sequence Analyses

A 641-bp cDNA fragment encoding partial Bdfbp1 was obtained from the day 0 (D0)
fat body cDNA library [6]. The 5′ and 3′ end of the Bdfbp1 cDNA fragments were produced
using the GeneRacerTM Kit (Thermal, Carlsbad, CA, USA). The total RNA was extracted
from the D0 female fat body using TRIZOL® Reagent (Thermal, Carlsbad, CA, USA)
according to the manufacturer’s instructions. Bdfbp1-specific primers were designed based
on the sequence of the 641-bp fragment. The PCR parameters were as follows: 94 ◦C for
2 min; 35 cycles of 94 ◦C for 30 s, 56–62 ◦C (based on the Tm of the primers, Table 1) for 30 s,
and 72 ◦C for 1–3 min (based on the expected size of the fragment); and 72 ◦C for 10 min.
The PCR products were purified, cloned, and sequenced as described elsewhere [12].

Table 1. Sequences of specific primers used for the rapid amplification of cDNA ends (RACE).

3′ RACE Primer Sequence of Primer Tm

BdAr 640-01 GGTCACCTATACTGAGGTTGTGGACGTG 60 ◦C
BdAr 640-03 GAACGCCAACAATCTGCAACAACTTGGC 60 ◦C

5′ RACE Primer Sequence of Primer Tm
BdAr 640-02 GACTTCCCTGTTGTATCCATTGAATTGGCG 58 ◦C
BdAr 640-06 GCTCAGTTGACTGCTGGTGTATGGTTGC 60 ◦C
BdArR5’-08 GCCAGCTCACGATATTGTTCGGCATTG 58 ◦C
BdArR5’-10 GCGGTCCATAGGGGAGTACACGATAG 60 ◦C
BdArR5’-12 GAGATCCCTGATTCTGTTGACGCCCATAG 58 ◦C
BdArR5’-14 GTCCCTGTTTCTGTTGACGCCCGTAG 60 ◦C



Insects 2021, 12, 319 3 of 10

To prevent errors during assembly, the entire open reading frame in one fragment was
cloned using two specific primers designed in the 5′ and 3′ untranslated regions. The se-
quences of sense and antisense primers were: Bdfbp1-full-01 5′-GACATTGATTGGTAGAGT-
CCAGCGGATAC-3′ and Bdfbp1-full-02 5′-GCTTCGGCTAATGCAACTAGCAGTGAG-3′,
respectively. The PCR parameters were as follows: 94 ◦C for 2 min; 40 cycles of 94 ◦C for
30 s, 60 ◦C for 30 s, and 72 ◦C for 4 min; and 72 ◦C for 10 min.

The signal peptide was predicted using the SignalP 4.1 Server [14] (http://www.cbs.
dtu.dk/services/SignalP4.1/). The Conserved Domains Database (CDD, http://www.ncbi.
nlm.nih.gov/Structure/cdd/wrpsb.cgi) (accessed on 25 May 2020) on the NCBI website
was used to identify the conserved motifs [15]. Lalign program [16] was applied to align
amino acid sequences of MT514270 and XP_029405180.

2.3. Identification of the fbp1 from the Melon Fly, Zeugodacus Cucurbitae

The blastn and blastp search algorithms in NCBI searches indicated that the sequence
cloned in this study had high identity to the B. dorsalis fat body protein 1 (accession num-
bers: XM_029549320 and XP_029405180, respectively). The blast searches also revealed
one uncharacterized gene product from the genome of the melon fly, Zeugodacus cucur-
bitae, (GeneID: LOC105219342; protein accession number: XP_028900815). A protein of
2380 amino acids was identified from XP_028900815. Blast results revealed that the amino
acid sequence 1–1225 of XP_028900815 was highly similar to that of the Bdfbp1 cloned in
this study. However, a melon fly fbp1 (accession number: JAD03259) was found in a survey
of the GenBank protein database and its sequence was same as the amino acid sequence
130–2380 of XP_028900815 from LOC105219342.

2.4. Phylogenetic Analysis

Amino acid sequences of 11 fbp1s from the blast results and GenBank were used
for the phylogenetic analysis. Sequences were aligned using the MUSCLE program
(http://www.ebi.ac.uk/Tools/msa/muscle/) (accessed on 20 July 2020). Phylogenetic
relationships were analyzed using neighbor-joining (NJ). The Poisson model was used as
substitution model to construct an NJ tree using MEGA 7.0 software [17]. Bootstrapping
analyses of 1000 replications were applied.

2.5. Real-Time Quantitative PCR (qPCR)

Developmental regulation of Bdfbp1 transcription was performed in larvae, pupae,
and adult fat body tissues through qPCR. The sample collection of different developmental
stages and qPCR were conducted [12]. Briefly, larvae were collected from the first, second,
early third, and late third instars. Pupae were collected separately from days 0 to 8 after
pupation. Fat bodies from 0- to 10-day-old females and males were separately isolated.
Glyceraldehyde-3-phosphate dehydrogenase (gapdh) was used as the reference gene for
adult samples [18]. 18S ribosomal RNA genes were used as the reference genes for larval
and pupal samples. The sequences of specific primers used in the qPCR are listed in Table 2.
The PCR parameters were as follows: 50 ◦C for 2 min; 95 ◦C for 8.5 min; and 40 cycles of 95
◦C for 15 s and 60–65 ◦C (based on the Tm of the primers, Table 2) for 1 min. A melting
curve analysis was carried out for each test to determine the specificity of the amplification.
Three independent biological replicates of each developmental stage were performed. The
expression data were collected via the Bio-Rad iQ5 2.0 Standard Edition Optical System
Software V2.0. The expression data were applied for quantification data analyses. The
statistical analyses, ANOVA followed by a Tukey multiple comparison were performed
using Prism™ 5.0 (GraphPad Software, San Diego, CA, USA). P < 0.05 was considered
statistically significant.

http://www.cbs.dtu.dk/services/SignalP4.1/
http://www.cbs.dtu.dk/services/SignalP4.1/
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ebi.ac.uk/Tools/msa/muscle/
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Table 2. Sequences of specific primers used in the real-time quantitative PCR.

Gene. Forward Primer Reverse Primer Tm

fbp1 CGTGGCTCTGCTAATGGAGGTTTGC GTCTACACCGACAGCAGCGATTCC 65 ◦C
gapdh GATGACCACTGTACATGCAACCACTG GGTCAGCTTGCCGTTCAATTCAGG 62 ◦C

18s CTTAGTTCGTGGAGTGATTTGTCTG CCAACAGGTACGACTCCACTTATATAAAC 60 ◦C

2.6. RNA Interference

Synthesis of double-stranded Bdfbp1 (dsBdfbp1) RNA was conducted using MEGAscript®

RNAi Kit (Thermal) following the manufacturer’s instructions. A plasmid containing the
full-length cDNA of Bdfbp1 was used as the template. The two pairs of primers used to
synthesize the dsRNA are listed in Table 3. The dsRNA products were electrophoresed on
1% agarose gel to confirm the size and integrity. For the feeding treatment, 40–60 eggs were
placed into a Petri dish (15 cm in diameter) containing 55 g of larval artificial diet. In total,
50 µg of two fragments of dsRNA (25 µg of each) in 10 mL of water was added to the Petri
dish on day 3 after egg collection. At this time, the larvae were in the early third instar. Ten
mL of water was added to the Petri dish for the controls. After five days of continuous
feeding (250 µg of dsRNAs or water), late third instar larvae started to jump out the artifi-
cial diet for pupation. Ten late third instar larvae were collected from each treatment and
control groups for RNA extraction, and one µg of RNA was reverse-transcribed as cDNA
for qPCR. The others were left for pupation. Pupae were then moved to observe the rate of
eclosion. The rate of eclosion was analyzed using Student’s t test. P < 0.05 was considered
statistically significant.

Table 3. Sequences of specific primers used for the synthesis of dsBdfbp1 RNA.

Primer Name Sequence of Primer

BdArR-dsRNA-05 TAATACGACTCACTATAGGGAGATGACGTAGTGGTGATTGGTCGTG
BdArR-dsRNA-06 TAATACGACTCACTATAGGGAGATCCACGTCCACAACCTCAGTATAGG

BdArR-dsRNA-07 TAATACGACTCACTATAGGGATTGTTGTGCCGGTAGAAGG
BdArR-dsRNA-08 TAATACGACTCACTATAGGGGTTGACGCCCGTAGGAATAA

3. Results
3.1. cDNA Cloning and Sequence Analyses

The five cDNA fragments encompassing the entire coding region of the Bdfbp1 cDNA
were cloned, sequenced, and analyzed (Figure 1). The assembled 3749-bp cDNA sequence
revealed an open reading frame of 3459 bp encoding a protein of 1152 amino acid residues
(GenBank accession no. MT514270). Signal 4.1 predicted that the first 17 amino acids at
the N-terminus produced a signal peptide and no transmembrane domain was predicted.
The CDD search for the Bdfbp1 revealed that the N (amino acid sequence 50–167) and C
(amino acid sequence 899–1145) termini belonged to hemocyanins N and C, respectively.
The conserved motif between hemocyanins N and C was a high-molecular-weight glutenin
subunit (glutenin hmw, amino acid sequence 361–618) (Figure 2).

Figure 1. Assembly of the fragments of the fbp1 cDNA cloning in B. dorsalis.
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Figure 2. Deduced amino acid sequences of the fat body protein 1 cDNA from B. dorsalis (GenBank accession number
MT514270). The cleavage site of the putative signal peptide sequence is indicated by a vertical arrow. The hemocyanin
N domain is underlined, the hemocyanin C domain is indicated with double underlines, and the high molecular weight
glutenin subunit is marked in gray.
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A survey of the GenBank protein database identified two Bdfbp1s (accession num-
bers XP_029405180 and XP_029405169). The identity between the protein cloned in this
study, MT514270, and the protein from GenBank, XP_029405180, was 94%. The align-
ment between MT514270 and XP029405180 indicated that MT514270 was almost identical
to XP_029405180, except that MT514270 was 66 amino acids shorter than XP_029405180
(amino acid sequence 522–587) (Figure 3). These 66 amino acids belong to the glutenin
hmw motif. The identity between MT514270 and XP029405169 was 23.7%. No glutenin
hmw motif was found in XP_029405169 (Figure 4).

Figure 3. Alignment between Bdfbp1 MT514207 (amino acid sequence 421–594) and Bdfpb1
XP029405180 (amino acid sequence 421–660) shows that MT514207 is 66 amino acids shorter
than XP029405180.

Figure 4. The phylogenetic tree of 11 versions of insect fat body protein 1 (fbp1) was constructed
by neighbor joining. Numbers at nodes are based on bootstrapping statistical support. Scale
bar = 0.1 substitution/site. Conserved domains in parentheses are preceded by the scientific name,
and the accession number. N: hemocyanin N; M: hemocyanin M; C: hemocyanin C; ghmw: high
molecular weight glutenin subunit.

Eleven amino acid sequences from the GenBank protein database were applied to
the phylogenetic analysis, including the Z. cucurbitae sequence XP_028900815, which was
separated into two sequences (amino acid sequences 1–1225 and 1230–2380). We found
that Z. cucurbitae JAD03259 was 100% identical to the sequence 1230–2380 of XP_028900815
from the genome of Z. cucurbitae. A phylogenetic analysis revealed that XP_028900815
contained two genes (Figure 4). The results also showed that all fbp1s were grouped into
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two clades. One clade contained only Tephritidae and the other contained Drosophilidae,
Tephritidae, and Muscidae (Figure 4). The conserved motifs of the distinct Tephritidae
clade were hemocyanin N, glutenin hmw, and hemocyanin C from the N to C termini.
Ceratitis capitata fbp1 was an exception; it contained only hemocyanins N and C. The other
clade contained two types of conserved motifs: hemocyanins N and C; and hemocyanins
N, M, and C from the N to C termini (Figure 4). The difference between the two clades is
that the glutenin hmw.

3.2. Expression Profiles of Bdfbp1

The developmental transcriptional expression profiles of Bdfbp1 were determined
through qPCR. In the larval stages, Bdfbp1 transcripts were expressed at significantly
higher levels in the late third instar compared with the first, second, and early third instar
(Figure 5a). The expression level for day 0 pupae was the highest, followed by day 1 pupae,
and these differences in expression levels were statistically significant (Figure 5b). After
eclosion, Bdfbp1 transcripts were detected in the female fat body from day 0 to day 10. The
expression level was highest on days 0 and 1 with significantly higher expression levels
than on day 2 to day 10 (Figure 5c). Although the expression levels of Bdfbp1 were high in
the day 0- and day 1-female fat body, they were still lower than the expression levels in the
day 7 and day 8 pupae (data not shown). In the male fat body, Bdfbp1 transcripts were also
detected from day 0 to day 10. However, Bdfbp1 had significantly higher expression levels
on day 0 (Figure 5d).

Figure 5. Developmental profiles of Bdfbp1 transcription were determined through qPCR. (a) larval stage: first, second,
early third, and late third instar; (b) pupal stage: 0–8 days after pupation; (c) adult female fat body, and (d) adult male
fat body: 0–10 days after eclosion. Statistical analyses using ANOVA followed by a Tukey multiple comparison test were
performed to identify differences between individual means. The same letters indicate no significant difference (p > 0.05).
Standard deviation of three independent biological replicates is indicated by error bars in (a–d).



Insects 2021, 12, 319 8 of 10

3.3. Functional Studies of Bdfbp1

In this study, RNAi was applied to investigate the function of Bdfbp1 as a storage
protein for metamorphosis. After 5 continuous days of larval feeding of dsBdfbp1 RNA
or water, both treatment and control larvae were able to pupate normally. However, the
eclosion rate of pupae was 72.2% in the treatment group compared with 93.2% in the control
group. The difference was statistically significant (p = 0.0041; Figure 6a). The expression of
Bdfbp1 was 25% lower than that of the control after dsBdfbp1 RNA application, although
this difference was not statistically significant (p = 0.2240; Figure 6b).

Figure 6. (a) The eclosion rate of B. dorsalis after RNAi treatment of larvae; (b) Bdfbp1 relative
transcriptional expression in B. dorsalis late third instar larvae after RNAi treatment. Statistical
analyses were performed using Student’s t test. The asterisk indicates significant difference (p < 0.05).
The standard deviation of each triplicate is shown by error bars in (a,b).

4. Discussion

The present studies were undertaken to clone fbp1 cDNA from B. dorsalis as a first step
in investigating the transcriptional expression profiles and the function of Bdfbp1. The de-
duced amino acid sequence of Bdfbp1 indicated that it secretes into the hemolymph because
there was a signal peptide predicted at the N terminus and no transmembrane domain was
predicted (Figure 2). Bdfbp1 contained the hemocyanin N, glutenin hmw, and hemocyanin
C domains from N to C termini. Glutenin hmw has an extensive central elastomeric domain
flanked by two nonelastic domains. The central elastomeric domain is characterized by
three repeated motifs, namely PGQGQQ, GYYPTSPQQ, and GQQ [19]. These motifs confer
elasticity to the fbp1, allowing it to fold into a more compact storage protein.

In the GenBank protein database, all fbp1s are from insects and most of them are from
Brachycera, Diptera. The nomenclature for fbp1 is rather disordered. We found that two
fbp1 genes were included in Z. cucurbitae sequence XP_028900815. One contains glutenin
hmw motif, and the other does not (Figure 4). The one without the glutenin hmw motif is
also assigned as another accession number JAD03259. There are two Bdfbp1s found in the
GenBank, XP_029405180 and XP_029405169. Based on the phylogenetic analysis, these two
Bdfbp1s are belonged to different clades (Figure 4). Bdfbp1 cloned in this study, MT514270,
is more related to or same as XP_029405180 than it is to XP_029405169 (Figure 4). The
aforementioned results suggest that the phylogeny, nomenclature, and evolution of these
molecules are complex. It would be difficult to correctly summarize the characteristics of
fbp1 without further studies being conducted.

Bdfbp1 transcriptional expression is developmentally regulated (Figure 5). The tran-
scriptional expression of Bdfbp1 in the first, second, and early third instar was difficult
to detect but the expression level was the highest in the late third instar. This expression
profile was similar to that of Drosophila [7,8]. During the pupal stages, Bdfbp1 transcripts
were expressed constantly from day 0 to day 8 after pupation, showing a trend to decrease
with age. To date, no studies have reported transcriptional expression of fbp1 in the pupal
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stages. On the basis of expression profiles of larvae and pupae, it has been suggested that
Bdfbp1 is stored during larval stages as a storage protein and used during pupal stages
for metamorphosis [9,20,21]. In both females and males, on days 0 and 1, the fat body in
adults is the larval-form fat body [6]. The high expression levels of Bdfbp1 in adults were
consistent with the appearance of the larval-form fat body. The developmental transcrip-
tional expression profiles suggest that Bdfbp1 is mainly synthesized from the larval-form
fat body for energy storage [6].

The study of fbp1 has mainly focused on the ecdysone regulation of fbp1 expres-
sion [7,8]. In this study, knockdown of Bdfbp1 using RNAi was performed to understand
the possible function of Bdfbp1. There are three main methods to apply double strand
RNA: injection, topical application, and feeding [22]. Topical application and feeding were
applied in this study since larvae were immersed in and digested the artificial diet mixed
with dsBdfbp1 RNA. DsBdfbp1 RNA was added to the artificial diet at the time before the
expression of Bdfbp1 (Figure 5a). At this time larvae were in the early third instar which
were sensitive to RNAi treatment [23]. After RNAi treatment, the expression level of Bdfbp1
was decreased without statistical difference (Figure 6b). It is possible that the concentration
of dsBdfbp1 RNA applied is not enough. The eclosion rate was significantly decreased after
RNAi treatment. The results suggest that Bdfbp1 may be associated with the eclosion rate.
Knockdown of larval storage proteins should result in a shortage of materials for adult
tissue formation, and this further inhibits adult development. The larval storage proteins
are mostly hexamerin [11,24–26]. In Riptortus pedestris, hexmerin-β is highly expressed
in the last instar nymphs. Knockdown of hexmerin-β by RNAi in second instar nymphs
delays adult emergence time [27].

Microinjection of dsRNA is useful to investigate the function of a gene. Most studies
of gene functions in B. dorsalis larvae are performed in microinjection [23,28–30]. However,
microinjection methods are not applicable for pest control. RNAi by feeding in B. dorsalis
larvae is spare. Li et al. (2017) [31] fed B. dorsalis larvae dsBdTrys RNA on solid artificial
diets, which was inconvenient for dsRNA. In this study, wet artificial diets were applied.
It was easy to operate but the concentration of dsRNA would be higher to achieve the
knockdown effect. Mixed dsBdTrys RNA treatment significantly decreased the size of
B. dorsalis larvae [31]. Effect of mixed of larval storage protein dsRNA on adult development
could be the future study. This should be a useful candidate for pest control based on RNAi.
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