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Abstract: We used brightfield and epifluorescence micro-
scopy, as well as permeability tests, to investigate the

apoplastic histochemical features of plant roots associated
with ion hyperaccumulation, invasion, and tolerance of oli-
gotrophic conditions. In hyperaccumulator species with a
hypodermis (exodermis absent), ions penetrated the root
apex, including the root cap. By contrast, in non-hyper-
accumulator species possessing an exodermis, ions did not
penetrate the root cap. In vivo, the lignified hypodermis
blocked the entry of ions into the cortex, while root exo-
dermis absorbed ions and restricted them to the cortex.
The roots of the hyperaccumulators Pteris vittata and
Cardamine hupingshanensis, as well as the aquatic inva-
sives Alternanthera philoxeroides, Eichhornia crassipes,
and Pistia stratiotes, contained lignin and pectins. These
compounds may trap and store ions before hypodermis
maturation, facilitating ion hyperaccumulation and reten-
tion in the apoplastic spaces of the roots. These apoplastic
histochemical features were consistent with certain spe-
cies-specific characters, including ion hyperaccumulation,
invasive behaviors in aquatic environments, or tolerance
of oligotrophic conditions. We suggest that apoplastic
histochemical features of the root may act as invasion
mechanisms, allowing these invasive aquatic plants to
outcompete indigenous plants for ions.

Keywords: ions hyperaccumulator, histochemistry, oligo-
trophic environment, phytoremediation

1 Introduction

Several species in the genus Pteris (Pteridaceae), including
Pteris vittata, hyperaccumulate ions such as arsenic (As)
and chromium (Cr) [1–4]. The uptake, transport, trans-
location, and detoxification of heavy metals in the roots
and fronds of these species have been well studied [2–4].
Pteris species have also evolved various anatomical features
and hyperaccumulator functions to adapt to terrestrial, xeric,
epiphytic, and rupicolous environments [3–7]. Cardamine
hupingshanensis (Brassicaceae), which is found in Selenium
(Se)-rich environments, is another well-known hyperaccu-
mulator of ions, including Se and cadmium (Cd) [8–10].
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Some invasive aquatic plants, including Alternanthera philo-
xeroides (Amaranthaceae), Eichhornia crassipes (Pontederia-
ceae), and Pistia stratiotes (Araceae), also hyperaccumulate
ions: these species purify eutrophic water bodies and tend to
outcompete indigenous plants in similar hostile environ-
ments [11–20]. Similarly, plants in the Proteaceae have
evolved cluster roots with lignified or phenol-rich cortical
walls to adapt to environments deficient in phosphorus
and other nutrients [21–23]. Plants with cluster roots poten-
tially facilitate alterations in plant community structure [24]
and outcompete species without cluster roots [25]. Thus,
cluster roots are highly desirable in crop breeding [26]. Pas-
palum distichum (Poaceae), a typical amphibious plant, is a
non-hyperaccumulator with an endodermis and an exo-
dermis in its roots [27].

In vascular plants, the lignified, suberized endodermis
and exodermis act as apoplastic barriers, restricting water-
solute exchange, reducing oxygen loss after submersion,
and supporting adaptation to terrestrial environments
[10,27–37]. The exodermis has Casparian bands in the pri-
mary walls and has suberin lamellae and/or lignin in the
secondarywalls [27–30,32–35,38]. Permeability tests showed
that the lignified cortex and the hypodermis block ion
exchange in Alternanthera philoxeroides and brassicas
[18,39–44]. The cortical walls of the cluster roots in the
Proteaceae contain soluble phenolic or lignin-like com-
pounds that retain fluorescent agents (e.g., fluorol yellow
088); the presence of these compounds reflects an adapta-
tion to nutrient deprivation [21,45–52]. In addition, the
velamen, rhizodermis, and hairs of epiphytic orchids have
pectins, which also facilitate ion uptake [53–55]. The sur-
faces of the mucilage hairs of Brasenia schreberi (Cabomba-
ceae) have polysaccharides in various patterns that absorb
berberine during different development stages in vivo [31,56].

In this study, we aimed to identify the apoplastic his-
tochemical features of the root cortical walls that facilitate
ion uptake and retention, leading to ion hyperaccumula-
tion and reflecting an adaptation to nutrient-deprived
environments. To identify these features, we investigated
the roots of seven representative hyperaccumulator, inva-
sive, and/or oligotrophic plants: the aerial species, Pteris
vittata and Chlorophytum comosum; the wetland species,
Cardamine hupingshanensis and Paspalum distichum; and
the aquatic species, Alternanthera philoxeroides, Eichhornia
crassipes, and Pistia stratiotes. We also tested the apoplastic
permeability of Pteris vittata and Paspalum distichum. An
improved understanding of these plant roots’ apoplastic
histochemical features might help explain how these plants
become invasive, tolerate oligotrophic conditions, and hyper-
accumulate ions [4,5,8,10–12,19,20,22,23,25,26]. These data
will support the development of plants that can be used for

the phytoremediation of ion-contaminated soils and oligo-
trophic water. Our results will also provide suggestions for
the breeding of crops that can outcompete weed species
[3,8,11,12,14,19,23,25,26].

2 Materials and methods

2.1 Plant sourcing and collection

Mature specimens of Pteris vittata, Paspalum distichum,
Chlorophytum comosum, Cardamine hupingshanensis,
Alternanthera philoxeroides, Eichhornia crassipes, and
Pistia stratiotes were identified in the Testing Ground
of Yangtze University (Jingzhou City, Hubei Province,
China) in October 2020. We collected samples of the
adventitious aerial roots of Pteris vittata, which grow on
walls in the cracks between bricks, and of Chlorophytum
comosum, which propagate via shoots with adventitious
aerial roots. We collected the roots of Cardamine huping-
shanensis and Paspalum distichum from a wetland area.
We collected the roots of Alternanthera philoxeroides,
Eichhornia crassipes, and Pistia stratiotes from ponds.
Ten roots were collected from each species of five plants
and immediately fixed in formaldehyde-alcohol-acetic acid
[57]. Eight fresh, intact specimens of Pteris vittata and Pas-
palum distichum were used for the apoplastic permeability
tests [18,30,33–35].

2.2 Microstructure and histochemistry

Root tissues were sectioned freehand, using a two-sided
razor blade, under a stereoscope (JNOEC JSZ6, China).
Root sections were cut at 10 and 20mm from the root
tip, as well as at the point where the cortex began to
slough off. Sections were divided into three sets, such
that each set included sections of each plant and at
same distance from the root tip. Each set of sections was
then stained with one of three stains: 0.1% (w/v) berberine
hemisulfate-aniline blue (BAB) to test for Casparian bands
and lignin in the cell walls [38,58], phloroglucinol-HCl to
test for lignin in the cell walls [59], and 0.02% (w/v) ruthe-
nium red to test for pectin in the cell walls [55,60].

All sections were washed 2–3 times with sterile water,
mounted with sterile water, and examined using brightfield
microscopy under a Leica DME microscope (Germany).
Specimens were photographed with a digital camera and
amicrometer (Nikon E5400, Japan). Specimens stainedwith
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BAB were viewed under ultraviolet light on an Olympus
IX71 epifluorescence microscope with excitation filter G
365 nm, absorption filter barriers U-WB (blue light), dichro-
matic mirror DM 500, compensation excitation filter BP
450–480, and compensation absorption filter BA 515. BAB-
stained specimenswere photographed using a digital camera
and a micrometer (RZ200C-21, Ruizhi Cop., China) [27].

2.3 Apoplastic permeability

We tested the apoplastic permeability of whole fresh spe-
cimens of Pteris vittata and Paspalum distichum. We
tested ion uptake using the apoplastic permeability tests
of Seago et al., Meyer et al., and Meyer and Peterson
[38,61,62], with modifications. In brief, we immersed
the roots of the whole plants in the berberine solution
without separating the roots from the plants; the plants
remained intact. This modification allowed us to use the
permeability tests to assess how the plants absorbed ions.
Three intact plant roots were left unstained as the nega-
tive control. Three additional intact plants roots (tracer
control) were immersed in 100mL of 0.05% berberine
hemisulfate for 1 h and washed with sterile water. The
final three intact plant roots were immersed in 100mL
of 0.05% berberine hemisulfate for 1 h, washed with
sterile water, immersed in 0.05 M potassium thiocyanate
for 0.5 h, and washed again with sterile water. Roots were
sectioned freehand and viewed under UV light as described
by Seago et al. [38].

3 Results and discussion

At 10mm from the tips of the adventitious aerial roots of
Pteris vittata, the root wall contained pectins from the
endodermis to the rhizodermis and hairs (Figure 1a);
the inner cortex had lignin-rich sclerenchyma layers and
retained berberine around the endodermis (Figure 1b);
and the surfaces of the rhizodermis and hairs accumu-
lated substantial amounts of berberine or berberine thio-
cyanate crystals (Figure 1b–d). Berberine penetrated to
the cortex of the Pteris vittata roots close to the root
tips (Figure 1c and d), as indicated by the intense yellow
fluorescence from the rhizodermis to the cortex. Simi-
larly, intense yellow fluorescence was observed close to
the tips of the roots of Paspalum distichum (Figure 1e), but
berberine did not penetrate the root cap of this species.
The walls of the adventitious aerial roots of Chlorophytum

comosum also contained pectins from the endodermis to
the rhizodermis and hairs (Figure 1f). Similar to Pteris
vittata, the surfaces of the rhizodermis and hairs accumu-
lated large amounts of berberine before metaxylem devel-
opment (Figure 1g). After metaxylem development, the
hairs were nearly sloughed off, but the exodermis and
the rhizodermis surface continued to retain berberine
(Figure 1h).

Before the cortex sloughed off, the adventitious roots
of Cardamine hupingshanensis had pectins and lignin
with even and Φ thickenings from the endodermis to the
rhizodermis walls (Figure 2a–c). Similarly, pectins and lig-
nified even thickenings were found from the endodermis
to the rhizodermis walls in the adventitious roots of the
aquatic plants Alternanthera philoxeroides (Figure 2d–f),
Eichhornia crassipes (Figure 3a–c), and Pistia stratiotes
(Figure 3d–f). In the adventitious roots of Alternanthera
philoxeroides (Figure 2d–f) and Pistia stratiotes (Figure 3d–f),
the cortex had typical radial schizogenous aerenchyma,
while in the adventitious roots of Cardamine hupingsha-
nensis (Figure 2a–c) and Eichhornia crassipes (Figure 3a–c),
the cortex had radial lysigenous aerenchyma. The hypo-
dermis of Eichhornia crassipes had lignified sclerenchyma
layers (Figure 3a and c).

The endodermis and the exodermis are key imperme-
able apoplastic barriers that are common in vascular
plant roots [28,29,36,37,63–68]. Apoplastic barriers can
be histochemically characterized by the presence of Cas-
parian bands, suberin lamellae, and lignin; these barriers
protect tissues from oxygen shortages and inhibit water-
solute exchanges [18,23,30,34,35,69–74]. All the species
examined in this study had roots with an endodermis, but
only the roots of Paspalum distichum and Chlorophytum
comosum had an exodermis [27,75]. The roots of the other
species included in this study (Pteris vittata, Cardamine
hupingshanensis, Alternanthera philoxeroides, Eichhornia
crassipes, and Pistia stratiotes) lacked an exodermis but
possessed a hypodermis with lignin, as has been described
in a variety of other plants, including Adiantum reniforme
var. sinense, Brassica sp., Oenanthe javanica, Lycopodium
obscurum, Pelargonium hortorum, Platycerium bifurcatum,
and Selaginella sp. [10,37,39–44,66,76–79]. The cluster
roots of various genera in the Proteaceae (e.g., Banksia,
Grevillea, andHakea) have a hypodermis containing soluble
phenolic or lignin-like compounds, which have similar histo-
chemical features with lignin of hypodermis in this studied
species [21,49–52].

Lignified Φ and even thickenings that are distributed
between the endodermis and the hypodermis of the cortical
walls are typical of roots in the Brassicaceae, including in
the genera Brassica, Noccaea, and Cardamine [10,39–44].
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These thickenings act as barriers to ion transport. Unlike
plants in the Brassicaceae, Pelargonium hortorum has larger
Φ thickenings at the hypodermis [77]. The roots of Platy-
cerium bifurcatum, Pleopeltis sp., and Doryopteris triphylla
have lignified sclerenchyma layers around the endodermis
[78,79,82–84], while the roots of Selaginella sp. have an
exodermis [79]. In the heavy metal hyperaccumulator Noc-
caea caerulescens, the inner cortical walls of roots contain
pectins and lignin [43]. Here lignified cortical thickenings
were found in the roots of Pteris vittata [85], Cardamine
hupingshanensis [10], Alternanthera philoxeroides [18], Eich-
hornia crassipes, and Pistia stratiotes.

In Pteris vittata and Chlorophytum comosum, the rhizo-
dermis and hair walls contained pectins and accumu-
lated a large amount of berberine. Similarly, the orchid
root velamen also contains pectins and accumulates ions
[53–55]. The root rhizodermis and hair walls of the hyper-
accumulating ecotype of Sedum alfredii accumulated sub-
stantial LeadmiumGreen AM dye [80]; roots in this species
also have thin inner cortical walls that contain large
amounts of highly methylated pectin [81]. The root surfaces
of Chlorophytum comosum retained berberine, similar to
retention of polysaccharides by the smooth, immature muci-
lage hairs of Brasenia schreberi; the retention of berberine

Figure 1: Photomicrographs of the adventitious roots of (a–d) Pteris vittata, (e) Paspalum distichum, and (f–h) Chlorophytum comosum.
Scale bars = 50 μm. (a) Sectioned at 10 mm from root tip. Endodermis (arrowhead), cortex, rhizodermis, and hairs. Stain: ruthenium red.
(b) Sectioned at 10mm from root tip. Protoxylem, endodermis (arrowhead), lignified cortex (*), cortex, rhizodermis, and hairs. Stain: BAB.
(c) Sectioned at 10 mm from root tip. Protoxylem, lignified thickened cortex (*), hypodermis, rhizodermis, and hairs, showing heavy
accumulation of berberine thiocyanate. Stain: berberine (apoplastic tracer) and potassium thiocyanate. (d) Root tip showing root cap
and entrance of berberine thiocyanate (arrowhead) close to the root tip; rhizodermis and hairs showing berberine thiocyanate accumulation
(*). Stain: berberine (apoplastic tracer) and potassium thiocyanate. (e) Root tip showing root cap and entrance of berberine thiocyanate
(arrowhead) close to the root tip; rhizodermis with limited berberine thiocyanate accumulation (*). Stain: berberine (apoplastic tracer) and
potassium thiocyanate. (f) Sectioned at 10 mm from root tip. Pith, endodermis (arrowhead), cortex, hypodermis, rhizodermis, and hairs.
Stain: ruthenium red. (g) Sectioned at 10mm from root tip. Protoxylem, endodermis (arrowhead), cortex, exodermis (arrow), rhizodermis,
and hairs. Stain: BAB. (h) Sectioned at 20mm from root tip. Protoxylem, metaxylem, endodermis (arrowhead), cortex, exodermis (arrow),
rhizodermis, and hairs. Stain: BAB. Abbreviations: ae, aerenchyma; co, cortex; h, hairs; hy, hypodermis; ic, intercellular space; mx,
metaxylem; pa, parenchyma; pi, pith; px, protoxylem; rc, root cap; rh, rhizodermis; sc, sclerenchyma layer; sx, secondary xylem.
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thiocyanate grains by the Pteris vittata root surfaces was
similar to that of the mature mucilage hairs of Brasenia
schreberi in vivo [31,56]. The rhizodermis surface retains
little berberine in Adiantum reniforme var. sinense [37]
and retains none in Metasequoia glyptostroboides [32],
Cardamine hupingshanensis [10], and Alternanthera philox-
eroides [18]. By contrast, our results showed that the surface
of the root rhizodermis in Pteris vittata and Chlorophytum
comosum retained substantial berberine. Pectins were
present from the endodermis to the rhizodermis walls in
Cardamine hupingshanensis, Alternanthera philoxeroides,
Eichhornia crassipes, and Pistia stratiotes. However, pec-
tins are only found in the peri-endodermal thickenings of
Noccaea caerulescens [39,43].

In the apoplastic permeability test, the berberine
tracer penetrated to the cortex of both Pteris vittata (exo-
dermis absent) and Paspalum distichum (exodermis pre-
sent) near the root tips [27,75], similar to what has been
shown in Iris germanica (exodermis present) [61,86]. The
berberine tracer also penetrated the root caps of Pteris

vittata, similar to the results in Vicia faba (exodermis
absent) [86]. However, the berberine tracer was unable to
penetrate the root cap of Paspalum distichum, similar to
what has been shown in Zea mays (exodermis present)
and Iris germanica (exodermis present) [61,86]. Many ber-
berine thiocyanate grains adhered to themature hypodermis
of Pteris vittata. By contrast, few berberine thiocyanate
grains adhered to the mature exodermis of Paspalum disti-
chum at the root surface [27,75]. The lignified hypodermis of
Alternanthera philoxeroides blocks the entrance of ions into
the cortex [18]. The root exodermis has only been shown to
absorb berberine in vivo in Phalaris arundinacea, Zizania
latifolia, and Artemisia spp. [30,34,35].

Based on the apoplastic histochemical features of
the roots and their permeability, we hypothesize that
the root hairs of Pteris vittata and Chlorophytum comosum
have pectins that capture ions from the atmosphere,
which helps these plants to survive in an oligotrophic
aerial environment. Like Pteris vittata and Chlorophytum
comosum, the epiphytic Orchidaceae use pectins to

Figure 2: Photomicrographs of the adventitious roots of (a–c) Cardamine hupingshanensis and (d–f) Alternanthera philoxeroides. Scale
bars = 50 μm. (a) Sectioned at 10 mm from root tip. Protoxylem, metaxylem, endodermis (arrowhead), cortex, aerenchyma, hypodermis, and
rhizodermis. Stain: ruthenium red. (b) Sectioned at 10mm from root tip. Protoxylem, metaxylem, endodermis (arrowhead), cortex, lignified
cortex (*), cortical lignifiedΦ thickenings (arrows), intercellular space, hypodermis, and rhizodermis. Stain: BAB. Image from [10] used with
the permission of Open Life Sciences. (c) Sectioned at 50 mm from root tip. Secondary xylem, parenchyma, endodermis (white arrowhead),
cortex, inner cortical lignified Φ thickening (black arrowhead), outer cortical lignified Φ thickenings (black arrows), lignified cortex (*),
intercellular space, and hypodermis. Stain: phloroglucinol-HCl. Image from [10] used with the permission of Open Life Sciences.
(d) Sectioned at 10 mm from root tip. Protoxylem, endodermis (arrowhead), cortex, aerenchyma, hypodermis, and rhizodermis. Stain:
ruthenium red. (e) Sectioned at 10mm from root tip. Protoxylem, endodermis (arrowhead), cortex, aerenchyma, lignified cortex (*),
hypodermis, and rhizodermis. Stain: BAB. Image from [18] used with the permission of Flora. (f) Sectioned at 10 mm from root tip.
Protoxylem, endodermis (arrowhead), cortex, aerenchyma, lignified cortex (*), and hypodermis. Stain: phloroglucinol-HCl.
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capture ions from the atmosphere [53–55]. Similarly,
Brasenia schreberi uses polysaccharides to capture ions
[7,31,39,53–56]. The carpet-like root system of Pteris vit-
tata has many adventitious roots that absorb captured
ions, leading to the hyperaccumulation of ions such as
As and Cr [1–4,7,31,39,53–56,80,81,86,87]. We suggest
that the lignified thickenings and pectins in the roots of
Cardamine hupingshanensis, Alternanthera philoxeroides,
Eichhornia crassipes, and Pistia stratiotes may trap ions
before the hypodermis matures. These ions are then
retained in the lignified walls, giving these species a com-
petitive advantage over indigenous plants, particularly
in oligotrophic environments [8–26,39–44]. Finally, the
dense, fine roots of Cardamine hupingshanensis may
allow the plant to hyperaccumulate Se in a manner
that is similar to the hyperaccumulation of Cd in the
dense root hairs of certain Arabidopsis thaliana geno-
types [10,88] and in the phenol-rich cluster roots of
species in the Proteaceae [21–25,49–52]. This ability to
hyperaccumulate ions supports the adaptation of these
plants to phosphorus deprivation and/or nutrient-poor
environments [22,23,26,50,52].

4 Conclusion

Histochemical analyses indicate that pectins and lignin are
present in several parts of the plant root walls, including the
cortex, endodermis, exodermis or hypodermis, rhizodermis,
and hairs [8–20,31,39–44,52–56,80,81,86]. These compounds,
including the polysaccharides and phenolics, may facilitate
ion uptake and retention in plants [8–31,34,35,39–44,52–56,
61,66,75,80,81,86]. In hyperaccumulator species without an
exodermis (hypodermis), ions penetrate the root apex as
well as the root cap [66,86]. By contrast, ions do not penetrate
the root cap in non-hyperaccumulator species possessing
an exodermis [27,61,66,75,86]. It has been shown in vivo
that the lignified hypodermis of the root blocks the entry of
ions into the cortex [18,86], while the root exodermis
absorbs ions, trapping them within the exodermis walls
[30,34,35,61,75,86]. The root hairs of Pteris vittata and Chloro-
phytum comosum are pectin-rich, reflecting an adaptation to
the oligotrophic aerial environment [31,39,43,53–56,80,81].
The roots of the hyperaccumulators Pteris vittata and Carda-
mine hupingshanensis, as well as those of the invasive aquatic
plants Alternanthera philoxeroides, Eichhornia crassipes, and

Figure 3: Photomicrographs of the adventitious roots of (a–c) Eichhornia crassipes and (d–f) Pistia stratiotes. Scale bars = 50 μm. (a)
Sectioned at 10 mm from root tip. Pith, protoxylem, metaxylem, endodermis (arrowhead), cortex, aerenchyma, hypodermis, sclerenchyma
layer, and rhizodermis. Stain: ruthenium red. (b) Sectioned at 10 mm from root tip. Pith, protoxylem, metaxylem, endodermis (arrowhead),
cortex, aerenchyma, lignified cortex (*), hypodermis, and rhizodermis. Stain: BAB. (c) Sectioned at 10mm from root tip. Pith, protoxylem,
metaxylem, endodermis (white arrowhead), cortex, aerenchyma, lignified cortex (*), hypodermis, sclerenchyma layer, and rhizodermis.
Stain: phloroglucinol-HCl. (d) Sectioned at 10mm from root tip. Pith, protoxylem, metaxylem, endodermis (arrowhead), cortex, aer-
enchyma, hypodermis, and rhizodermis. Stain: ruthenium red. (e) Sectioned at 10mm from root tip. Metaxylem, endodermis (arrowhead),
cortex, aerenchyma, lignified cortex (*), hypodermis, and rhizodermis. Stain: BAB. (f) Sectioned at 10mm from root tip. Pith, protoxylem,
metaxylem, endodermis (arrowhead), cortex, aerenchyma, lignified cortex (*), hypodermis, and rhizodermis. Stain: phloroglucinol-HCl.
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Pistia stratiotes, have lignin and pectins in the cortex and
rhizodermis; these structures may trap and store ions before
hypodermis maturation. This hyperaccumulation of ions
supports the survival of these plants in oligotrophic envir-
onments [8–26,39–44,52]. We suggest that the apoplastic
histochemical features of invasive aquatic plant roots may
allow such plants to acquire ions more efficiently than
indigenous plants, and these features can thus be con-
sidered invasive mechanisms [11–20]. The histochemical
features associated with hyperaccumulation are highly
desirable for crop improvement, as well as when designing
plants for the phytoremediation of ion-contaminated
soils and for the population of eutrophic environments
[11–20,26,50–52,89–94].
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