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Abstract
Environmental enrichment (EE) conditions have beneficial effects for reinstating cognitive

ability in neuropathological disorders like Alzheimer’s disease (AD). While EE benefits

involve epigenetic gene control mechanisms that comprise histone acetylation, the histone

acetyltransferases (HATs) involved remain largely unknown. Here, we examine a role for

Tip60 HAT action in mediating activity- dependent beneficial neuroadaptations to EE using

the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We

show that flies raised under EE conditions display enhanced MB axonal outgrowth, synap-

tic marker protein production, histone acetylation induction and transcriptional activation

of cognition linked genes when compared to their genotypically identical siblings raised

under isolated conditions. Further, these beneficial changes are impaired in both Tip60

HAT mutant flies and APP neurodegenerative flies. While EE conditions provide some

beneficial neuroadaptive changes in the APP neurodegenerative fly MB, such positive

changes are significantly enhanced by increasing MB Tip60 HAT levels. Our results impli-

cate Tip60 as a critical mediator of EE-induced benefits, and provide broad insights into

synergistic behavioral and epigenetic based therapeutic approaches for treatment of cog-

nitive disorder.

Introduction
Alzheimer’s disease (AD) is the most common form of dementia in the aging population and
its progression is tightly associated with cognitive impairments that involve learning and mem-
ory deficits. The pathology of AD has been linked to neuronal cell death and disrupted synaptic
plasticity in various brain regions that specifically include the hippocampus and the cortex.
Increasing compelling evidence demonstrates that AD progression is influenced by a complex
interplay between genetic and environmental risk factors, and that such gene-environmental
interactions play a major role in triggering pathways that can either slow or exacerbate disease
progression. Environmental stimuli provide neurons in the brain with instructive information
that shapes synaptic connections to impact cognitive ability. As such, environmental enrich-
ment (EE) conditions have beneficial effects for reinstating cognitive ability in neuropathologi-
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cal conditions such as AD. EE has been shown to enhance hippocampal neurogenesis and
reverse learning and memory deficits by inducing structural changes in the neuronal network
to enhance synaptic efficacy. While a substantial body of evidence demonstrates that EE bene-
fits involve epigenetic gene control mechanisms that comprise histone acetylation induction,
the select HATs involved and their mechanisms of action underlying this process remain
largely unknown.

We previously demonstrated that Tip60 HAT action controls activity-dependent cognition-
linked neuronal processes that include synaptic plasticity, axonal transport and outgrowth,
learning and memory and epigenetically regulates transcriptional profiles of genes enriched for
these functions. Consistent with a role for Tip60 in nervous system function, our laboratory
[1–10] and others [2, 3, 11–13] have demonstrated that Tip60 is implicated in Alzheimer’s dis-
ease (AD) based on its role in epigenetic neuronal gene control via its formation of a transcrip-
tionally active complex with the processed C- terminal amyloid precursor protein (APP)
intracellular domain (AICD) [2, 11, 12, 14] [7, 15–19]. We further made the exciting discovery
that increasing in vivo Tip60 HAT levels in the Drosophila nervous system under APP induced
neurodegenerative conditions rescues AD associated neuronal impairments such as apoptotic
neurodegeneration in the central nervous system (CNS) [7], axonal outgrowth [5, 6] and syn-
aptic vesicle transport in motor neurons[2]. Excess Tip60 also restores associated disrupted
complex functional abilities impaired in AD that include sleep cycles[5, 6], locomotor function
[2] and learning and memory[10] defects with concomitant induction of some genes critical
for the function of these neural processes [2, 7]. In direct contrast, loss of Tip60 HAT function
in the fly nervous system causes gene misregulation and exacerbates such AD associated
impaired phenotypes [2, 5–7, 10] Together, our findings demonstrate that Tip60 plays a neuro-
protective role in an array of cognition associated neuronal processes that are impaired during
the early stages of the AD pathological process.

Environmental enrichment (EE) conditions comprising positive social reinforcements has
also been shown to have neuroprotective benefits under neuropathological conditions such as
AD [20–23]. While experimental EE conditions may vary between studies exploring EE neu-
roadaptative benefits, one critical and non-variable EE component widely conserved amongst
species is social environmental enrichment [24, 25]. Well established studies using Drosophila
show that similar to mammals, social EE promotes significant beneficial structural changes in
regions throughout the fly brain that include the mushroom body (MB) that regulates a variety
of behavioral and physiological functions ranging from olfactory learning and memory to deci-
sion making under uncertain conditions[26–30]. Social EE promotes enhanced MB axon and
dendrite formation, synaptic plasticity and neuronal MB Kenyon cell growth[24, 31]. Recent
studies demonstrate that EE benefits require epigenetic gene regulation involving induction of
specific histone acetylation profiles [21, 32–34]. Nevertheless, how specific HATs mediate cog-
nitive gene expression programs in response to changing environmental cues and the select
HATs involved in this process remain largely unknown.

Here, we exploit the power of Drosophila genetics and the behavioral and physiological con-
servation between flies and mammals in terms of their positive neuroadaptive response to ask
whether Tip60 HAT action is required for an EE induced beneficial neuroadaptative response.
We use the MB as our well characterized cognitive model as this neural circuit in the adult fly
brain is where Tip60 is robustly produced. As the central for learning and memory, MB exhib-
its beneficial morphological changes in response to EE similar to mammalian systems[25, 35–
37]. Our findings implicate Tip60 as a critical mediator of EE-induced benefits, and provide
broad insights into non-invasive synergistic behavioral and epigenetic approaches for treat-
ment of cognitive deficits in neurological disorders.
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Results

Tip60 HAT action restores EE mediated neuroadaptative benefits under
APP neurodegenerative conditions
We previously demonstrated that Tip60 is required for both MB morphology and function in
learning and memory[10, 38]. Thus, we first asked whether EE promotes beneficial changes on
MB structural morphology and whether this response is dependent upon Tip60 HAT action.
To test this, we crossed flies carrying a UAS-mCD8-GFP marker in conjunction with the MB
specific OK107-GAL4 driver to control w1118 flies to mark MB cells with GFP for enhanced
visualization. The MB GAL4 driver OK107 expressed GAL4 in discrete neuronal populations
in the adult fly brain that includes high expression in the Kenyon cells, the intrinsic neurons of
the MB as well as in the pars intercerebralis, suboesophageal ganglion and optic lobes [26]. To
assess MB response to EE, newly eclosed adult fly progeny were exposed to environmental
enrichment conditions (EE) or isolation conditions (ISO) following established protocols[24,
39, 40]. Briefly, newly eclosed flies were either exposed to a group of 30 flies (1:1 sex ratio) (EE)
or housed individually (ISO) for 5 days (Fig 1A). MBs from dissected conditioned brains were
stained with antibodies to GFP to delineate the MB, counterstained with axonal marker FasII
antibody that exhibits weak expression in the γ lobe while strongly labeling a/ß lobes, and MB
area was quantitated for each genotype (Fig 1B–1D, 1B’–1D’ and 1E). Quantification analysis
on MB area reveals the EE conditioned MB structure is significantly larger than MB from ISO

Fig 1. Tip60 HAT activity restores EEmediated neuroadaptive benefits on MBmorphology under APP neurodegenerative conditions. (A)
Experimental paradigm for flies exposed to isolation (ISO) or environmental enrichment (EE) conditions. Newly eclosed adult fly progeny were exposed to
a group of 30 flies (1:1 sex ratio) (EE), or housed individually (ISO) for 5 days. (B-D) Representative confocal images of adult MB visualized by
mCD8-GFP and stained with axonal marker Fascillin II (Fas II) antibody from 5-day old adult fly expressing indicated transgenes driven by GFP;;
OK107-Gal4 under ISO or EE condition. Anti-GFP staining used as marker to delineate MB in the adult brains. Anti-Fas II staining shows a/ß and r lobes
in wild-type, APP and APP;dTip60WT flies under ISO condition. (B’-D’) Same genotype flies in EE condition. (E) Quantification of area in the different
genotypes and housing conditions in adult flies. Data represent the mean of 15 replicates with error bars depicting 95% confidence interval. Student t-test
was used to determine statistical significance between different housing conditions within the same genotype. APP;dTip60E431Q flies exhibited severely
malformed MB structure and lack of structural consistency, and therefore are labeled as ND (non-determined) in the quantification. ** P < 0.01, *P < 0.05.

doi:10.1371/journal.pone.0159623.g001
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siblings that were housed individually (Fig 1B and 1B’; P<0.01), consistent with previous stud-
ies [23, 32, 41] [36, 37]showing that the MB undergoes an EE induced beneficial neuroadaptive
response. To assess the role of Tip60 HAT activity in this MB EE neuroadaptative response,
we first asked whether modulating Tip60 HAT levels in the MB would alter the EE response
we observe in control w1118 flies. To test this, we used our laboratory’s previously generated
GAL4-responsive transgenic fly lines carrying a membrane-bound mCD8-GFP construct with
either Tip60 dominant negative HAT mutant (UAS-mCD8-GFP;dTip60E431Q) or wild-type
Tip60 (UAS-mCD8-GFP;dTip60WT)[5] and crossed them to MB driver OK107. Newly eclosed
adult fly progeny for each genotype were exposed to EE or ISO conditions (Fig 1A) [24, 39, 40]
and MBs from dissected conditioned brains were stained with antibodies to GFP to delineate
the MB, counterstained with axonal marker FasII, and MB area was quantitated for each geno-
type (Fig 1E). Quantitation analysis demonstrated that, consistent with our previous findings,
dTip60E431Q flies showed a significant reduction in MB total area when compared to control
w1118 flies while dTip60WT flies display a less severe reduction in MB total area (S1 Fig). Addi-
tionally, both loss and gain of Tip60 HAT levels in the fly MB resulted in a lack of response to
EE (Fig 1E and S1 Fig). Our results suggest that appropriate levels of Tip60 HAT activity are
required for EE mediated neuroadaptative morphological benefits.

EE has been shown to enhance cognitive ability under neuropathological conditions such as
Alzheimer’s disease (AD) [20–23] via induction of histone acetylation, yet the full array of
HATs involved remain to be identified[12, 42, 43]. Thus, we wished to ask whether EE promotes
beneficial changes on MBmorphology under AD associated APP neurodegenerative conditions
and whether this response is dependent upon Tip60 HAT action. To examine the effects of EE
on MBmorphological changes under APP induced neurodegenerative conditions, we used
unique UAS-responsive transgenic fly lines generated in our laboratory[7] that co-express wild
type Tip60 (dTip60WT) and human APP driven by GFP;OK107-Gal4. This system allows us to
manipulate Tip60 HAT levels in an APP neurodegenerative background, while simultaneously
marking and visualizing the MB neurons using GFP. Flies from each cross were housed in ISO
or EE conditions and the conditioned brains of 5-day-old adult animals were dissected, stained
with antibodies to GFP to delineate the MB, counterstained with axonal marker FasII, and the
MB area was quantitated for each genotype (Fig 1B–1E). This analysis revealed that while the
overall stereotypical morphology of MB lobes was detected in APP expressing fly lines, both a/ß
and a’/ß’ lobes were significantly thinner and shorter in both EE and ISO conditioned APPMB
when compared to control flies (OK107-GAL4/UAS-GFP) (Fig 1C–1C’). Quantitative analysis
of the MB lobe area revealed a non-significant increase in MB area in APP flies under EE condi-
tions, indicating that the EE induced beneficial neuroadaptative response we observe in control
flies (Fig 1B–1B’ and 1E) is compromised under APP neurodegenerative conditions.

Given our previous findings that increased levels of Tip60 rescues multiple neural circuits
impaired under APP induced neurodegenerative conditions while Tip60 HAT loss exacerbates
APP defects [5, 7, 10], we asked whether increased Tip60 HAT levels could also restore the
impaired EE response we observe in APP MB. To test this, we crossed flies carrying a UAS-
mCD8-GFP marker in conjunction with MB specific OK107-GAL4 driver to either control
w1118, APP;Tip60WT or APP;Tip60E431Q flies to simultaneously tag MB cells with GFP while
increasing or decreasing Tip60 HAT levels in the MB under APP neurodegenerative condi-
tions. We found that adult brains from APP;dTip60WT fly showed no observable MB structural
defects as assessed by GFP and Fas II labeling of a/ß and a’/ß’ and r lobes, indicating increasing
Tip60 HAT levels restored APP induced MB axonal growth defects (Fig 1D–1D’). Moreover,
quantification analysis using FasII staining revealed a marked increase in the area of all 3 MB
lobes in the APP;dTip60WT flies in EE versus ISO conditions. In direct contrast, adult APP;dTi-
p60E431Q flies exhibited severe axonal defects in all three lobes and did not respond to EE
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conditions (Fig 1 and S1 Fig). Taken together, our result suggest that appropriate levels of
Tip60 HAT activity are required for EE mediated neuroadaptative morphological benefits, and
that excess Tip60 alleviates impairment of an EE response in APP flies.

Tip60 restores EE induced positive changes in synaptic marker protein
production
Our finding that increasing Tip60 HAT levels in the MB restores EE neuroadaptative benefits
under APP neurodegenerative conditions prompted us to ask whether the beneficial MB struc-
tural changes we observed were accompanied by positive synaptic changes. To test this, we
crossed flies carrying a UAS-mCD8-GFP marker in conjunction with MB specific OK107-
GAL4 driver to either control w1118, APP or APP;Tip60WT flies and assessed pre- and post-syn-
aptic protein production using whole-brain homogenates from EE or ISO conditioned adult fly
brains for each genotype.

To investigate pre-synaptic protein changes, we focused on Bruchpilot (BRP) (Fig 2A). BRP
is a critical component in regulating the clustering of voltage gated calcium channels (VGCC)

Fig 2. Tip60 restore EE induction of synaptic markers under APP neurodegenerative conditions. (A) The schematic of key synaptic maker
components of Drosophila synapse. BRP, Bruchpilot; CSP, cysteine string protein; DLG, Discs-large; Syx, syntaxin. (B) Structural synaptic marker BRP
and DLG protein production remained the same under different housing conditions under APP neurodegenerative conditions. (C) Structural marker
protein production were induced under EE condition with enhanced Tip60 HAT activity. (D-E) Secretary marker protein Syx and CSP production were
induced under EE conditions in both APP and APP;dTip60WT fly brains. Data represent the mean of 3 replicates with error bars depicting 95% confidence
interval. Student t-test was used to determine statistical significance between different housing conditions within the same genotype. ** P < 0.01,
*P < 0.05.

doi:10.1371/journal.pone.0159623.g002
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at the pre-synaptic active zone of all synapses, and as such, is commonly used as a marker for
both synapse number and functionality in synaptic transmission [44–46]. Wild type w1118,
APP and APP;dTip60WT flies were subjected to EE and ISO conditioning. At the end of the 5
days, conditioned brains were dissected and BRP protein levels were assessed using quantita-
tive analysis of Western blots. Consistent with our MB structural findings (Fig 1C–1E),
APP;dTip60WT flies exhibited enhanced BRP levels under EE conditions relative to ISO condi-
tion, while APP flies showed a non-significant change in BRP levels in response to EE (Fig 2B
and 2F).

To assess post-synaptic protein changes, we focused on density marker Disc-large (DLG)
that is primarily produced post-synaptically (Fig 2A). DLG is the Drosophila homolog of the
post-synaptic mammalian density protein PSD-95/SAP-90 and is robustly produced in the
CNS neuropil, where its protein localization pattern overlaps with that of BRP[47] [48]. DLG is
involved in neurotransmitter release by regulating the post-synaptic clustering of glutamate
receptors and controls glutamate release and post-synaptic structure [49–51]. Consistent with
our MB structural and BRP findings (Figs 1C–1C’, 2B and 2F), APP;dTip60WT flies exhibited
enhanced DLG levels under EE conditions relative to ISO condition, while APP flies showed a
non-significant change in DLG levels in response to EE (Fig 2C and 2F).

To assess levels of additional secretory machinery components, we analyzed the presence
and distribution of two pre-synaptic vesicle associated proteins essential for synaptic transmis-
sion function: the cysteine string protein (csp) that regulates the activity of presynaptic Ca2+

channels to control exocytosis[52], and syntaxin (syx) a neuronal representative of a large fam-
ily of proteins that promotes synaptic vesicle fusion and endocytosis mediated vesicle recycling,
thus functionally “marking” both sides of the vesicle cycle (Fig 2A)[53, 54]. After EE condition-
ing, both CSP and SYX protein levels were found to increase (Fig 2D, 2E and 2F) in both APP
and APP;dTip60WT flies similar to that of wild-type w1118 flies, suggesting that unlike DLG
and BRP, EE promotes secretary protein production in a Tip60 independent manner under
APP induced neurodegenerative conditions. Taken together, these data suggest that Tip60
mediated enhancement of EE induced neuroadapative benefits under APP neurodegenerative
conditions is due at least in part, to an increase in certain pre- and post-synaptic functional
protein components.

Tip60 promotes EE beneficial neuroadaptative transcriptional changes
in genes enriched for cognitive function
EE has been shown to positively impact gene expression profiles in the mouse brain that are
enriched in functions such as neuronal structure, synaptic plasticity and neurotransmission.
Thus, we asked whether the EE induced beneficial MB structural and synaptic changes we
observe are accompanied by neuroadaptive transcriptional benefits in the DrosophilaMB, and
if so, is Tip60 HAT action required for this process. To address this question, we crossed our
UAS-mCD8-GFP;Tip60E431Q flies or control UAS-mCD8-GFP flies to MB GAL4 OK-107 to
simultaneously induce Tip60 HAT loss in the MB while tagging MB cells with GFP (Fig 3B).
Adult progeny were exposed to EE or ISO conditions. After conditioning, the GFP tagged MB
Kenyon neurons were FACs purified from conditioned fly brains from each genotype to enrich
for detection of an EE induced MB transcriptional response. RNA was isolated from the puri-
fied Kenyon MB neurons and transcriptional changes for each genotype were assessed using
microarray analysis (Fig 3A).

Bioinformatics comparative analysis of microarray data for EE versus ISO conditions for
identical genotypic control wild type flies revealed significant differential expression for 220
genes, indicative of a neuroadaptative transcriptional response to EE (Fig 3B). Functional gene
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analysis revealed the top five enriched gene ontology (GO) groups that the EE responsive genes
clustered to included processes known to be responsive to external stimuli such as circadian
rhythm, neuron development and L&M, lending credibility to our analysis (Fig 3C). In con-
trast, when we directly compared EE versus ISO conditions for Tip60 HAT mutant flies, we
found that only 43 genes exhibited differential expression, indicative of a lack of neuroadaptive
response as a result of Tip60 HAT loss (Fig 3B and 3D).

Comparative analysis of microarray data from control w1118 flies versus Tip60 HAT mutant
flies for EE data sets revealed transcriptional misregulation of 219 genes within the Tip60 HAT
mutant flies. GO functional analysis on this subset of genes revealed that they are enriched for
cellular processes such as methyltransferase activity, zinc protein finger DNA binding and
nucleosomal organization. Of note, while these genes encode proteins known to function in
epigenetic gene regulation, which is consistent with Tip60’s role in this process, these functions
are not known to be directly responsive to external stimuli. In direct contrast, GO analysis of
genes that are not misregulated in response to Tip60 HAT loss, but are impaired in their
response to EE conditioning when compared to their ISO counterpart data sets, demonstrate

Fig 3. Tip60 promotes EE neuroadaptative transcriptional benefits under APP induced neurodegenerative conditions. (A) Experiment schematic
for the microarray analysis. (B) The hierarchical cluster of the 220 genes differentially regulated in response to EE in the wild-type control flies (corrected
P-value < 0.05, FC> 1.3) reveals an impaired transcriptional response in Tip60 HATmutant flies. (C) Pie diagram showing GO term associated
enrichment in each of the major function categories identified in the analysis. (D) Number of genes that are up-regulated (dark gray) and down-regulated
(light gray) in response to EE in control and Tip60 HATmutant fly MB neurons with FC>1.1. (E) Function analysis on the selected gene group (highlighted
on heatmap). This subset of genes is not significantly misregulated in comparison to WT under ISO condition, and is not responsive to EE induced
neuroadaptive transcriptional benefits. (F) Quantitative RT-PCR validation of representative gene targets in control, APP and APP;dTip60WT flies under
ISO and EE conditions for EE-mediated transcriptional regulation on the representative genes. qPCRwas performed using RNA isolated from fly heads.
Histogram represents fold change in gene expression using ΔΔCt method with RP49 as the internal control. Student t-test was used to determine
statistical significance between different housing conditions within the same genotype. ** P < 0.01, *P < 0.05. Error bars indicate SEM.

doi:10.1371/journal.pone.0159623.g003

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 7 / 26



that this subset of genes is enriched in processes known to be responsive to external stimuli
that include olfactory learning and memory, sensory perception and signaling (Fig 3E). Taken
together, these results suggest that Tip60 HAT action plays a role in mediating a beneficial
activity dependent transcriptional neuroadaptive response to EE.

Our findings showed that EE induced beneficial MB structural and synaptic changes are
compromised under APP neurodegenerative conditions and rescued by Tip60. As transcrip-
tional regulation is a key mechanism by which HATs exert their action, we asked whether an
EE neuroadaptative transcriptional response is compromised under APP neurodegenerative
conditions and whether this impairment is relieved by increasing Tip60 HAT levels. To address
this question, we selected six cognition associated EE responsive genes (Table 1) from our
microarray analysis that did not display overall misregulation upon Tip60 HAT loss, but did
display impairment in a transcriptional EE response when compared to their control w1118

counterparts. The genes we selected are as follows: Pka-R1 (cAMP-dependent protein kinase
R1) is a direct Tip60 gene targets selected from our published ChIP-seq analysis[10] and its
absence leads to olfactory learning defect that are observed in adult fly [55]. Mbm (mushroom
body miniature) is essential in supporting the maintenance of MB Kenyon cell fibers in the lar-
val stage and metamorphosis. Its loss leads to MB structural and cognitive function deficits[56]
[57]. Fruitless (fru) mutant flies exhibit defects in axonal projections [58]. Jing, a zinc finger
transcription factor, is involved in regulating neuronal and glial differentiation and survival in
the developing brain [59]. Obp99a (Ordorant-binding protein 99a) is essential for olfactory
perception of stimulus[60] and response to pheromone[61]. P (Pink) deficiency impairs synap-
tic function by blocking synaptic vesicle mobility during rapid neurotic stimulation[62]. We
then carried out quantitative RT-PCR (qPCR) to assess their gene expression levels in EE ver-
sus ISO conditioned MB from control w1118, APP and APP;Tip60WT fly genotypes. These
qPCR results validated microarray results (Fig 3A) by demonstrating that the selected genes
are upregulated in response to EE, and this EE response is compromised under APP neurode-
generative conditions in four out of the six genes tested and restored by Tip60 (Fig 3F). Taken
together, these findings suggest that in adult fly MB neurons, a subset of genes undergo a bene-
ficial neuroadaptive transcriptional response to EE and that Tip60 HAT activity plays a role in
this process. Additionally, we show that this EE response is impaired under APP neurodegen-
erative conditions and rescued by Tip60, further implicating Tip60 HAT action in the EE
response.

Table 1. Tip60 HAT activity is required to mediate EE induced neuroadaptive benefits.

Gene
Symbol

Gene Name Inferred Function

Obp99a Ordorant-binding protein
99a

Olfactory perception of stimulus and response to
pheromone

Pka-R1 cAMP-dependent protein
kinase R1

Olfactory learning

mbm mushroom body
miniature

Maintenance of MB Kenyon cell fibers in the larval stage
and metamorphosis

fru fruitless Axonal projection

jing jing Neuronal and glial differentiation and survival in the
developing brain

P pink Synaptic function by blocking synaptic vesicle mobility
during rapid neurotic stimulation

List of selected cognitive linked genes and their functions that are identified in Microarray analysis and

validated in adult head tissue using quantitative RT-PCR.

doi:10.1371/journal.pone.0159623.t001
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EE neuroadaptative transcriptional benefits in cognition associated gene
expression involves Tip60 mediated histone acetylation induction at
both promoter and gene-coding regions
EE mediated beneficial neuroadaptative changes have been shown to correlate with an induc-
tion of specific histone acetylation marks within the hippocampus and cortex regions of the
mouse brain [41, 63, 64]. Our findings that increasing Tip60 HAT levels in the MB enhances
EE neuroadaptative transcriptional benefits of cognition associated genes under APP neurode-
generative conditions prompted us to ask whether such expression changes are accompanied
by histone acetylation induction. To test this, we crossed flies carrying a UAS-mCD8-GFP
marker in conjunction with MB specific OK107-GAL4 driver to either control w1118, APP or
Tip60WT;APP flies and assessed bulk levels of specific histone acetylation marks using western
blotting of protein homogenates from EE or ISO conditioned adult whole fly brains for each
genotype. We chose to measure the levels of histone H3 proteins acetylated at sites K9 and
K14, and H4 proteins acetylated at sites K5, K12 and K16 as they are each associated with pro-
moting cognition associated gene expression. Previously, H3K9, K14 and H4K5, K12 have
been shown to be responsive to EE in the mouse brain [41]. Our results showed that control
w1118 fly brains display a significant increase in H3K14ac, H4K5ac, H4K12ac and H4K16ac
under EE conditions in comparison to ISO conditions. In direct contrast, APP flies only dis-
played a significant increase in H3K14ac in response to EE. We further found that increased
Tip60 HAT levels under APP neurodegenerative conditions reinstates an EE induced induction
response for histone acetylation marks H4K5ac and H4K12ac. Taken together, our results indi-
cate that induction of H4K5 and H4K12 acetylation levels in response to EE requires Tip60
HAT action in APP neurodegenerative flies.

Regulation of acetylation levels on specific histone lysine residues at distinct gene loci is a
key mechanism by which Tip60 exerts epigenetic control over transcriptional activity. Thus,
we asked whether the Tip60 mediated EE increase in bulk histone acetylation we observed (Fig
4A) affects the acetylation status of the promoter and gene-coding regions at some of the EE
responsive genes we identified in the MB. We further asked whether this response is compro-
mised under APP neurodegenerative conditions and restored by an increase of Tip60 HAT lev-
els. To address these questions, we performed chromatin immunoprecipitation (ChIP-qPCR)
on chromatin isolated from adult fly heads from control w1118, APP and APP;Tip60WT fly
genotypes to assess acetylation levels. We chose EE responsive histone H4K5 and H4K12
marks at select EE responsive genes (Jing, fru, P, Pka-R1; Fig 3F) we identified by MB FACs/
microarray analysis. To understand how acetylation regulates activity-dependent gene tran-
scription, we chose two different loci to assess acetylation levels at these gene targets. For the
gene-coding region, we chose a site 1kb downstream of the transcriptional start site (TSS),
which marks the beginning of the transcriptional initiation. To identify a potential Tip60 bind-
ing site at the promoter region, we focused on a genomic site 1kb up-stream of the TSS (S2A
Fig). As Tip60 is thought to be recruited to gene promoters via promoter bound transcription
factors (TFs), we focused on first identifying TF binding consensus sequences among our activ-
ity-dependent gene targets using bioinformatics tool MEME-ChIP. Within this region, we
found a specific consensus site for the TF br (broad), known to play an important role in den-
dritic morphogenesis and CNS development in fly nervous system[65]. Therefore, we chose
this specific region to assess promoter acetylation enrichment (S2A and S2B Fig). In control
w1118 flies, we found enrichment for H4k5ac and H4K12ac at both the promoter and gene-cod-
ing regions for each of the selected EE responsive cognition associated genes, supporting a role
of H4K5ac and H4K12ac in their transcriptional activation (Fig 5). Further, consistent with
our prior transcriptional analysis of these genes (Fig 3F), we observed a significant reduction of
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histone acetylation at H4K5 and H4K12 marks under APP neurodegenerative conditions in
APP flies that was restored by increasing Tip60 HAT levels. Of note, when comparing acetyla-
tion enrichment levels between gene-coding and promoter regions, we observed that enrich-
ment levels at the promoter sites were significantly lower than at the gene-coding region,
suggesting different acetylation based mechanisms of action at these discrete promoter versus
gene-coding regions.

Fig 4. Restoration of H4K5 and H4K12 acetylation levels in response to EE requires Tip60 HAT action in APP flies. The indicated
transgene was expressed in the fly MB using GFP;;OK107-Gal4 driver. Expression of human APP in MB results no significant acetylation
change in response to EE, while increased Tip60 HAT activity restores such response in acetylation of H4K5 and H4K12. (A) Representative
immunoblot showing histone acetylation in WT, APP and APP;dTip60WT flies under ISO and EE conditions. (B) Quantification of (A).
Independent (unpaired) Student t-test was used to determine statistical significance between EE versus ISO conditions within the same
genotype for each histone acetyl marks. Each blot was repeated at least three times. Each histone sample was extracted from fly heads.
Proteins were extracted from at least two independent pooled tissue samples (30 heads for each extract). Each sample was run at least three
times for statistic analysis. ** P < 0.01, *P < 0.05. Error bars indicate SEM.

doi:10.1371/journal.pone.0159623.g004
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Given our finding that histone acetylation enrichment at EE responsive genes was signifi-
cantly reduced under APP neurodegenerative conditions and restored by Tip60, we speculated
that the acetylation reduction we observed in APP flies was caused by impairment of recruit-
ment of Tip60 to both promoter and gene-coding regions. To test this, we again carried out
ChIP, this time to assess Tip60 enrichment at the EE responsive gene-coding and promoter
regions using chromatin isolated from adult fly heads of control w1118, APP and APP;Tip60WT

genotypes. Similar to the histone acetylation enrichment pattern we observed in these geno-
types (Fig 5A–5D), we found that with the exception of gene Pka-R1, levels of Tip60 were
enriched in control w1118 flies, significantly reduced in APP flies, and restored in APP;
dTip60WT flies under EE conditions. Interestingly, enrichment levels for Tip60 were signifi-
cantly higher within the gene-coding region when compared with the promoter region

Fig 5. Tip60 HAT activity restores reduced histone acetylation at both promoter and gene coding regions of EE responsive genes under APP
neurodegenerative conditions. H4K5ac (A) and H4K12ac (B) enrichment at gene coding region of selected EE responsive genes. H4K5ac (C) and
H4K12ac (D) enrichment at the promoter region of same EE responsive genes. Enhanced acetylation levels were observed in wild-type flies, while such
EE induced response was reduced in APP flies, and restored with excess Tip60. Excess Tip60 increased EE-induced H4K5 and H4K12 acetylation at
both promoter and gene coding regions of selected EE responsive genes (A)H4K5ac ChIP of coding region. (B)H4K12ac ChIP of coding region. (C)
H4K5ac ChIP of selected promoter region. (D)H4K12ac ChIP of selected promoter region. Newly eclosed adult fly progeny were exposed to a group of 30
flies (1:1 sex ratio) to generate EE conditions as previously described. Fold enrichment was compared among control, APP and APP;dTip60WT flies as
follows: one-way ANOVA analysis was used to determine the probability that there were differences between the variants. In the cases that ANOVA
indicated that there was a significant difference between variants (p<0.05), we performed post hoc pair-wise comparisons using the Bonferroni correction
to determine the significance between each genotype. ** P < 0.01, *P < 0.05. Fly heads (n >1000) were collected for ChIP experiments. Error bars
indicate SEM.

doi:10.1371/journal.pone.0159623.g005
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(Fig 6A), similar to what we observed for histone acetylation enrichment at H4K5 and H4K12
(Fig 5A and 5B). These findings suggest that Tip60 mediates histone H4K5 and H4K12 acetyla-
tion at both the promoter and within the gene-coding region under EE conditions to regulate
activity-dependent gene expression and that mechanisms underlying this mode of transcrip-
tional control might differ between these two sites.

Extracellular stimulation of rat hippocampal neurons induces nuclear
import of Tip60
We next sought to investigate a potential mechanism for how Tip60 carries out its transcrip-
tional role in the nucleus in response to external stimuli. Studies have shown that neural activ-
ity modulates chromatin acetylation by influencing certain HDACs to shuttle in and out of the
nucleus[66, 67]. We previously reported that Tip60 displays a nuclear-cytoplasmic distribution
in fly neural circuits such as the MB [10] and neural muscular junction (NMJ) [8]. Consistent
with our findings, Tip60 also contains both a nuclear localization signal (NLS) and nuclear
export signal (NES)[18]. Thus, we asked whether Tip60 has nuclear-cytoplasmic shuttling

Fig 6. Tip60 restores reduced histone acetylation levels under EE conditions by directly binding at both promoter and gene coding regions
of cognition gene loci under APP induced neurodegenerative conditions. Tip60 displays similar enrichment pattern as histone acetylation on
wild-type, APP flies and APP;Tip60 fly. (A)Tip60 ChIP at coding region. (B)Tip60 ChIP at selected promoter region. Newly enclosed adult fly progeny
were exposed to a group of 30 flies (1:1 sex ratio) to generate EE conditions as previously described. Fold enrichment was compared among control,
APP and APP;dTip60WT flies as follows: one-way ANOVA analysis was used to determine the probability that there were differences between the
variants. In the cases that ANOVA indicated that there was a significant difference between variants (p<0.05), post hoc pair-wise comparisons were
then performed using the Bonferroni correction, to test the significance between genotypes. ** P < 0.01, *P < 0.05. Fly heads (n >1000) were
collected for ChIP experiments. Error bars indicate SEM.

doi:10.1371/journal.pone.0159623.g006
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capabilities, and whether neuronal activity would modulate such Tip60 cellular distribution.
To address this question, we chose to utilize primary rat hippocampal neurons as these neurons
are substantially larger than the fly MB Kenyon cells, thus enabling us to carry out higher reso-
lution analysis on Tip60 cellular distribution in response to external stimulus. Further, we
wished to confirm that the Tip60 nuclear/cytoplasmic cellular distribution pattern we observed
in fly neural circuits is conserved in the mammalian brain. To address these questions, we
first used immunohistochemistry staining with antibodies against Tip60, cytoplasmic marker
MAP2 and nuclear neuronal marker DAPI to visualize Tip60 distribution in hippocampal
neurons of day in vitro (DIV) 6 (Fig 7A–7C). Our data revealed a nuclear and cytoplasmic dis-
tribution pattern for Tip60 in primary rat hippocampal neurons (S3 Fig), similar to what we
observe in the fly neuronal circuits[8].

We next asked whether Tip60 shuttles between the nucleus and cytoplasm. To address this
question, we tested whether blocking nuclear export of proteins by leptomycin B (LMB) in pri-
mary rat hippocampal neurons results in an increase in Tip60 nuclear accumulation. LMB
blocks chromosome region maintenance 1 (CRM1) that mediates nuclear export. Our results
demonstrate that Tip60 is retained in the nucleus upon exposure to LMB, indicating that Tip60

Fig 7. Extracellular stimulation of hippocampal neurons induces Tip60 nuclear import. (A, A’) Tip60 distribution in
nucleus and cytoplasm under resting conditions. (B-D; B’-D’) Rat Hippocampal neurons (DIV6) treated with depolarizing agent
NMDA immunostained with Abs to Tip60, Tau(cytoplasm) and DAPI(nucleus). (E)Quantification of fluorescent signal intensity
for nuclear Tip60 in neurons treated with Leptomycin B(LMB) that blocks nuclear export, or depolarizing agents NMDA or KCl.
Neurons (n = 50) were analyzed per treatment. Data represents the mean of 50 replicates. One-way ANOVA was used to
determine statistical significance between control and each of treatment conditions. ** P < 0.01, *P < 0.05. Error bars indicate
SEM.

doi:10.1371/journal.pone.0159623.g007
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undergoes continuous shuttling between nuclear-cytoplasmic compartments in the rat hippo-
campal neuronal cells. To ask whether this shuttling mechanism responds to external stimuli,
we stimulated the rat hippocampal DIV6 neurons with either NMDA or KCl for 30 minutes
and assessed the cellular distribution of Tip60 using immunohistochemistry staining with
antibodies to Tip60 and nuclear marker DAPI (Fig 7A–7C, 7A’–7C’). We selected NMDA
because it is a well-characterized glutamate receptor agonist involved in learning and memory
function[68] and Drosophila has NMDA receptor homologs (dNR1,dNR2,dNR3) that have
been implicated in MB function in learning and memory [69]. We also chose to use KCl as its
depolarization triggers presynaptic release of glutamate and subsequently activates postsynap-
tic glutamate receptors[70] involved in learning and memory. After a thirty-minute treatment,
neurons were fixed and subjected to immunochemistry staining (Fig 7A–7D and 7A’–7D’).
Quantification on Tip60 distribution revealed a significantly stronger Tip60 signal in the
nucleus (Fig 7E), suggesting activation of NMDARs induced Tip60 shuttling into the nucleus.
Together, our findings suggest that Tip60 responds to extracellular cues via its nuclear import
to mediate nuclear epigenetic control of activity-dependent cognition associated gene expres-
sion profiles.

Discussion
In the present study, we investigate whether EE mediates neuroadaptative benefits by promot-
ing Tip60 HAT action in cognition linked gene control. Using a well-established social EE
paradigm in Drosophila we show that EE conditions induce significant beneficial structural
changes that include axonal outgrowth in the mushroom body (MB) of control w1118 flies
when compared to their genetically identical siblings housed in isolated (ISO) conditions. Fur-
ther, we find that loss or gain of Tip60 HAT levels specifically in the MB results in a loss of this
beneficial EE mediated MB axonal outgrowth response, indicating that appropriate levels of
Tip60 are required for EE neuroadaptative structural MB benefits. Consistent with our find-
ings, elegant work has shown that CBP HAT deficient mice are also impaired in responding to
positive EE effects that include enhancement of hippocampal neurogenesis, synaptic transmis-
sion and promoting histone acetylation dependent transcription of CBP target genes required
for these processes, supporting a critical role for CBP as a mediator of EE-induced benefits[32].
Thus, our findings add Tip60 to the small repertoire of cognition linked specific HATs shown
to respond to external cues.

Increasing compelling evidence supports the premise that the severity of AD pathology can
be influenced by a complex interplay between genetic and environmental risk factors that can
either slow or exacerbate AD progression. Accordingly, EE conditions comprising positive
social reinforcements are beneficial for reinstating long-term cognitive ability in neuropatho-
logical conditions such as AD even after significant brain impairment, including atrophy, has
occurred[20–23, 32]. For example, Dong et al show that EE conditions restore long-term learn-
ing and memory function in a mouse model for neurodegeneration that has undergone synap-
tic and neuronal loss by promoting hippocampal neurogenesis, dendrite sprouting and
synaptic connections [22, 32]. In direct contrast, stressful isolation conditions exacerbated
neurodegenerative pathology [71]. Here we show that while positive EE conditions do not sig-
nificantly alleviate APP induced MB morphological defects in the fly, EE conditions do induce
positive changes that include an induction of synaptic vesicle protein markers CSP and SYX in
the fly brain. Of note, Jankowsky et al showed that EE mitigates cognitive deficits in two types
of AD mouse models using a complex social EE paradigm involving social interaction in com-
bination with novel objects, nesting materials and exercise wheels. Interestingly, the AD mouse
model overproducing amyloid–β used in this study exhibited less significant EE induced
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neuroadaptative benefits when compared to an APP Swedish mutation AD mouse model.
These data, in conjunction with our findings here, indicate that different EE paradigms and
AD models in varying species can elicit varied but still beneficial positive effects. Interestingly,
we show that both loss and gain of Tip60 HAT levels in the fly MB result in a reduction of MB
outgrowth and lack of response to EE in 5 day old flies, suggesting that appropriate levels of
Tip60 HAT activity are required for general MB morphology as well as EE mediated neuroa-
daptative morphological benefits. Of note, the reduction in MB outgrowth in response to
excess Tip60 is in contrast to our previous studies demonstrating that in 2–3 day old adult flies
excess Tip60 leads to no observable detrimental effect on MB morphology [2, 5–7, 10]. We
speculate that this difference is likely due to the older adult flies used here as well as the distinct
EE and ISO housing conditions utilized in the present study versus the standard housing con-
ditions we used in our previous study in which hundreds of flies are housed together in large
bottles. Remarkably, we found that increasing Tip60 HAT levels specifically in the MB, fully
restored a beneficial EE response under APP neurodegenerative conditions in terms of enhanc-
ing axonal outgrowth and restoring induction of DLG and BRP synaptic markers. Based on
our findings, we speculate that Tip60 serves as a positive mediator in translating external EE
conditions into positive hard wiring changes in the brain and that this function is compro-
mised under APP neurodegenerative conditions.

During development and in adult animals, neurons in the brain respond to changes in envi-
ronment in large part via changes in gene expression. One of the most critical experience-
driven behavioral change is learning and memory formation, as it directly impacts cognitive
ability [20, 72–74] and numerous studies support a critical role for the transcription of DNA in
the memory formation process[75]. Indeed, mice raised under EE conditions show changes in
the expression of genes in the brain involved in formation of new synapses, strengthening of
existing synapses, neurotransmission as well as cytoskeletal changes involved in promoting
neurogenesis[76]. Specific HATs play a key role in epigenetic regulation of gene expression
profiles essential for maintaining neuronal health and mediating higher order brain functions
[3, 4, 66, 77–79]. These studies support the premise that HATs may also play a role in mediat-
ing EE transcriptional control in learning and memory. Although the full repertoire of cogni-
tion-linked HATs that respond to external cues remains largely unknown, elegant work by
Kim et al [80] support a critical role for CBP as a mediator of EE-induced neurotranscriptional
benefits. These studies reveal that CBP utilizes distinct activity-dependent receptors and Ca2
+ signaling pathways to link its action in triggering plasticity associated gene transcription pro-
files in response to external cues[81]. Accordingly, our bioinformatics analysis of microarray
data from FACs sorted MB Kenyon cells in EE vs. ISO conditioned wild-type control flies
revealed significant differential expression for 220 genes, indicative of a neuroadaptative tran-
scriptional response to EE. Functional analysis revealed the top 5 enriched gene ontology (GO)
groups that the EE responsive genes clustered to included processes known to be responsive to
external stimuli such as circadian rhythm, neuron development and L&M, lending credibility
to our analysis. In direct contrast, only 43 EE responsive genes revealed differential expression
in Tip60 HAT mutant MB, indicative of impairment of the neuroadaptative response as a
result of Tip60 HAT loss (Fig 3D). GO analysis of genes that are not misregulated in response
to Tip60 HAT loss, but are impaired in an EE response reveal that this subset of genes is
enriched in processes known to be responsive to external stimuli that include olfactory learning
and memory, sensory perception and signaling (Fig 3E). Based on these findings, we speculate
that Tip60 HAT action plays a role in mediating a beneficial activity dependent transcriptional
neuroadaptive response to EE to promote beneficial MB morphological changes and function.
Of note, our microarray analysis also reveals a fraction of genes that are misregulated in the
Tip60 HAT mutant MB that function in general neural development. Moreover, while we
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observe no defects in third instar larval MB in response to loss or gain of Tip60, we do observe
axonal outgrowth defects in the Tip60 HAT mutant adult MB. Therefore, we do not rule out
the possibility that loss of Tip60 also causes transcriptional defects in genes required for general
adult MB development, thereby contributing to the compromising MB response to EE we
observe.

Dynamic epigenetic regulation of activity-dependent neuronal gene expression profiles is
emerging as a fundamental mechanism by which neurons adapt and fine-tune their transcrip-
tional responses to environmental cues to promote sustained neural plasticity and higher order
brain function[3, 21, 66, 77]. In support of this concept, Fischer et al demonstrated that EE
conditions trigger hippocampal induction of histone acetylation specifically at marks H3 (K9,
K14) and H4 (K5, K8, K12) [22]. Our analysis of EE impacted histone acetylation marks in the
fly MB show remarkable similarity to these mouse studies in that control w1118 fly brains dis-
play a significant increase in H3K14ac, H4K5ac, H4K12ac under EE condition, suggesting that
the EE induced histone acetylation induction response is tightly conserved in both flies and
mouse. Of note, we also observed a significant induction in H4K16ac in response to EE in the
fly MB that was not shown in mice, suggesting that different EE paradigms and species can
elicit varied but still beneficial positive effects. Consistent with numerous studies showing
decreased histone acetylation levels in the brain a variety of mouse AD models [82, 83] and in
the temporal lobes of human patients with AD [84, 85], here we show that the EE histone acet-
ylation induction response was dampened in APP neurodegenerative fly brains. Remarkably,
increasing Tip60 HAT levels in the APP neurodegenerative MB brain restored an EE induction
response for histone H4K5ac and H4K12ac marks. These results suggest that Tip60 HAT
action is important in the EE histone acetylation induction response and that histone H4K5ac
and H4K12ac are putative EE mediated Tip60 HAT targets. Further, ChIP analysis of 4 cogni-
tion linked genes impaired in EE response in the Tip60 HAT mutant MB revealed enrichment
for Tip60 and histone acetylation at these putative Tip60 histone lysine targets. Notably, we
found that enrichment levels for Tip60 and histone acetylation at marks H4K5 and H4K12
were significantly higher within the gene-coding region when compared with the promoter
region. Our findings are not unprecedented as Fischer et al[22]showed in mouse brain that
acetylation at mark H4K12 is selectively associated with the coding regions of genes normally
transcriptionally activated during the learning processes [20, 22, 32] and was not observed for
other genomic regions including the transcriptional start site (TSS). Moreover, such H4K12
gene coding region acetylation spread was impaired in the aged mouse brain with concomitant
disruption of transcriptional activation. Other groups have also shown gene coding enrichment
for certain HATs and their acetylation profiles in various model organisms. For example,
Johnsson et al[86] show in yeast that the HAT Gcn5 is predominantly localized to the coding
regions of highly transcripted genes to modulate H3K14ac levels and transcriptional elongation
in response to environmental conditions such as stress. Moreover, the human Elongator com-
plex that contains the HAT Elp3 was shown to be essential for neuronal function[87] and was
found to complex with RNA pol II to facilitate transcription through chromatin in a acetyl-
CoA dependent fashion. Based on these data, we speculate that Tip60 functions to mediate
activity dependent gene expression by promoting gene coding histone acetylation spread to
maintain genes in a state well poised for rapid and robust transcriptional induction in response
to changing external cues, and that such Tip60 mechanisms are compromised in the neurode-
generative brain.

An important question to consider is how does Tip60 respond to external environmental
stimuli to mediate a transcriptional response in neurons? Neural activity has been shown to
modulate chromatin acetylation in hippocampal neurons in part, by controlling shuttling of
certain HDACs in and out of the nucleus that influence their activity in gene control[66, 67].
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Intriguingly, we observe both cytoplasmic and nuclear localization for Tip60 in activity depen-
dent fly neuronal circuits that include the NMJ synaptic boutons and MB Kenyon cells[8, 10].
Additionally, Tip60 contains a nuclear localization (NLS) and nuclear export (NES) sequence
that we predicted might mediate its shuttling between nucleus and cytoplasm[18]. Accordingly,
here we are the first to show a cytoplasmic and nuclear distribution pattern for Tip60 in pri-
mary rat hippocampal neurons and that treatment of these neurons with depolarization induc-
ing extracellular factors promote uptake of Tip60 into the nucleus (Fig 3C–3E). Based on these
findings, we propose a model by which external stimuli that is read as synaptic input induces
Tip60 shuttling into the nucleus that in turn, influences the neural epigenetic acetylation land-
scape and gene activity.

The histone acetylation status of chromatin and concomitant activity dependent gene con-
trol in the brain have been shown to become impaired during the lifetime of a neuron via
mechanisms involving loss of certain HAT function and a decrease in histone acetylation[88–
92]. Accordingly, these changes are tightly linked to a variety of age related neurological disor-
ders[3, 4, 41, 84, 85, 93] that include Parkinson’s, Alzheimer’s [2, 7, 64] and Huntington’s dis-
eases[94]. Moreover, epigenetic misregulation of activity dependent genes is also tightly linked
to early developmental neurological disorders such as autism and Rubinstein Taybi syndrome
[95]. Cognitive behavioral intervention approaches are gaining credibility as important non-
invasive ways to slow the progression of age related neurodegenerative disorders [96, 97] as
well as to reverse cognitive deficits in early childhood disorders such as autism[98]. In support
of these studies, here we show that EE conditions provides some beneficial changes in the APP
neurodegenerative fly brain, and that these positive changes can be significantly enhanced by
increasing Tip60 HAT levels. Accordingly, pharmacological treatments aimed at increasing
global acetylation levels through the use of non-selective pan-HDAC inhibitors have shown
promising effects in reversing cognitive deficits in a variety of neurodegenerative animal mod-
els [99] making this a powerful therapeutic strategy [100–103]. However, many currently used
HDAC inhibitors (HDACi) lack target specificity[2, 104–109] and act by increasing global
acetylation levels in the brain with potential detrimental effects, raising concerns about their
applicability. Unlike some HDACs [105, 106], select HATs like Tip60 have non-redundant
neural functions that may not only restore general acetylation balance, but also modulate par-
ticular gene expression programs that work together to promote neuronal health. Thus, our
findings implicate Tip60 as a critical mediator of EE-induced benefits and provide new insights
into HAT based drug design that could compliment non-invasive behavioral strategies for
early therapeutic intervention of cognitive disorders.

Materials and Methods

Fly stocks and maintenance
Flies were reared on standard medium (cornmeal/sugar/ yeast) at 25°C with a 12-hr light/dark
(LD) cycle. W1118 flies were used as wild-type controls. OK107-GAL4 and UAS- GFP stocks
were obtained from the Bloomington Drosophila Stock Center (Indiana University). UAS-
CD8::GFP;; OK107-GAL4 stock was gifted by Dr. Steven Robinow from University of Hawaii.
The generation and characterization of UAS-dTip60E431Q and UAS-dTip60WT flies are
described in Lorbeck et al[1]. Generation and characterization of the double-transgenic
UAS-APP;Tip60WT fly lines are described in Pirooznia et al. All of the UAS-dTip60 fly lines
described here are contained within a w1118 genetic background. Additionally, for all experi-
ments, transgene expression levels for each of the UAS fly lines were assessed as described
(Lorbeck et al. 2011; Pirooznia et al. 2012a,b; Johnson et al. 2013) to ensure that the different
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transgenic lines used for phenotype comparisons show equivalent dTip60E431Q, dTip60WT,
and APP expression levels.

Immunohistochemistry and antibodies
Adult Drosophila brains were dissected in PBS, fixed in 4% paraformaldehyde in PBS, washed
three times in PBS containing 0.1% Triton X-100, blocked for 1 hr at room temperature (RT)
in PBT containing 5% normal goat serum, and incubated with primary antibodies in blocking
solution overnight at 4°C. Anti-Tip60 (1:400) was obtained from Abcam, anti-Fasciclin
(mAb1D4; 1:10) was obtained from the Developmental Studies Hybridoma Bank (University
of Iowa). Anti-GFP (1:100) was obtained fromMillipore. Samples were washed three times in
PBST at RT, and secondary antibodies (Jackson Immunoresearch) were applied in blocking
solution for 2 hr at RT. After washing three times in PBS, samples were mounted in Vectashield
(Vector Laboratories).

Imaging and quantification
Adult brain preparations were imaged using the appropriate secondary antibodies. Anti-GFP
and anti-Fasciclin immunostaining were visualized using Alexa-Fluor 488 and Alexa-Fluor
568. Confocal microscopy was performed using an Olympus microscope with fluoview acquisi-
tion software (Olympus, Center Valley, PA). Images were displayed as projections of 1-mM
serial Z-sections. Consecutive subsets of the Z-stacks were utilized for the final projection.
Images were adjusted for brightness and contrast using the ImageJ program to more clearly
define MBs. Area of the MB lobes in the different genotypes was measured using National
Institutes of Health ImageJ software.

Quantitative western blotting
All western blots were carried on protein extracts from dissected entire heads. Flies from each
housing condition were dissected and homogenized in groups of 30. All antibodies were
obtained from the Developmental Studies Hybridoma Bank (University of Iowa): nc82 (a-
BRP) 1:1000; 4F3 (a-DLG) 1:2500; 1G12 (a-CSP) 1:1000; 8C3 (a-Syx1A) 1:1000; JLA20 (β-
actin) 1:300.

Histones were extracted from 50 fly heads from each genotypes and housing conditions
using the EpiQuik™ total histone extraction kit (Epigentek Group Inc.) according to the manu-
facturer's protocol. Equal amounts of protein as quantitated by using a BCA protein assay kit
(Thermo Scientific) were loaded onto a 16% SDS PAGE gel (29:1 acrylamide/bisacrylamide).
Protein samples were denatured at 95°C for 15 min prior to loading. The fractionated proteins
were electro-blotted onto nitrocellulose membrane (Biorad). The membrane was blocked with
3% BSA for 2 h at room temperature and then incubated overnight at 4°C with antibodies
(Active motif) that recognizes four acetylated lysine residues (H3K9, H3K14, H4K5, H4K12
and H4K16) of histone H3 and H4. The membrane was washed three times with 0.1% TBST
(50 mM Tris-Hcl (pH 7.4), 150 mMNaCl, 0.3% Tween 20) and incubated with secondary anti-
body for 1 h at room temperature. The membrane was washed three times with 0.1% TBST.

Western detection was done using chemiluminiscence (ECL kit, Thermo Scientific). Signals
were quantitated using a Fluorchem imager (Alpha Innotech). To ensure signals were in the
linear range, Alpha Ease FC software (Alpha Innotech, San Leandro, CA) was used according
to the manufacturer’s instructions to select exposure times such that there was no saturation
detected. Western analysis was repeated three separate times with two independent tissue
extractions. Western blots and quantifications were performed as previously described[1]. Spe-
cifically, ECL signal intensities were quantified using ImageJ and normalized by dividing the
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within-lane actin signal (used as loading control). Statistical analysis was done fitting the nor-
malized protein/actin ratios using Student's t-test for two-groups comparisons.

Quantitative RT–PCR and ChIP assays
Total RNA was isolated from adult fly heads using the RNeasy Plus Mini Kit (QIAGEN). Com-
plementary DNA (cDNA) was prepared using the SuperScript II reverse transcriptase kit (Invi-
trogen) according to the manufacturer’s instructions with 1 mg total RNA and 0.2 mg/ml
random hexamer primers (Roche Applied Science). PCRs were performed in a 20ul reaction
volume containing cDNA, 1 mM Power SYBR Green PCRMaster Mix (Applied Biosystems),
and 10 mM of both forward and reverse primers (primer pairs available upon request). PCR
was performed using an ABI 7500 Real-Time PCR system (Applied Biosystems) following the
manufacturer’s instructions. Fold change in messenger RNA expression was determined by the
ΔΔCt method.

Chromatin precipitation assays were performed using truChIPTM Chromatin Shearing Kit
from Covaris, following the manufacturer’s instructions. Briefly, chromatin immunoprecipita-
tion (ChIP) was carried out with 50 mg of sheared chromatin using three different antibodies:
(i) 1 ug of RNA Pol II antibody (Abcam, Cambridge, MA); (ii) 1 ug of Tip60 antibody (Abcam);
and (iii) 1ug H4K5ac and H4K12ac antibodies (Active motif). A mock reaction containing all
reagents except the antibody was also set up as a control. The chromatin was immunoprecipi-
tated using the EZ-Magna ChIP™ A—Chromatin Immunoprecipitation Kit (Millipore) exactly
following the manufacturer’s specifications. The eluted material from the immunoprecipitation
was then purified using a QIAquick PCR purification kit (Qiagen) and was directly used for
real-time PCR. Primer sets designed by NCBI/ Primer-BLAST (www.ncbi.nlm.nih.gov/tools/
primer-blast/). Primers are available upon request.

Dissociation of Brain Neurons and FACS Analysis
Homozygous females from the Gal4 enhancer trap line OK107 were crossed to homozygous
males from the reporter strain GFP, and GFP;dTip60E431Q. Approximately 100 male and
female brains from the progeny of this cross were dissected and dissociated. The brains were
removed from the head capsule with two fine-tip forceps and placed in Schneider’s medium
(IM-009-B, Specialty Media) without serum. The medium was carefully removed, with enough
left behind to cover the brains. Five hundred microliters of D-PBS without Ca2+ and Mg2+

(BSS-1006, Specialty Media) was added to gently wash the tissue, and the medium was
removed again. This wash was repeated twice. After the last wash, 200 ml D-PBS without
Ca2+and Mg2+ (room temperature) and 200 ml Low Trypsin–High EDTA solution (SM-
2004-C, Specialty Media) were added, and the solution was mixed gently with a micropipette.
After 2–3 min, the brains were sucked into the pipette with FluoroPel pipette tips (Ulster Scien-
tific), first just to loosen the tissue and then to dissociate the brains gradually into single cells or
small cell clusters. Two hundred microliters of Schneider’s medium with 10% FBS was added,
and the cell suspension was then transferred into a 1.5 ml microcentrifuge tube The dish was
rinsed twice with 500 ml Schneider’s medium without serum to recover remaining cells. The
tube was kept on ice for a few minutes to allow the clearly visible pieces of tissue to settle to
the bottom of the tube. The cell suspension was then transferred into a new tube and used for
FACS analysis. GFP-positive cells were sorted in a flow cytometer by monitoring.

Microarray analysis
Total RNA was extracted from the sorted MB neurons and subjected to microarray analysis.
RNA samples were hybridized to GeneChips Drosophila Gene 2.0 Arrays according to the
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manufacturer’s protocol (Affymetrix, Santa Clara, CA). ISO conditions for control flies serve
as expression level baseline. The microarray data were then analyzed using R. RMA (Robust
Multichip Average) algorithm was used for data normalization. Correlation matrix analysis
was also performed using R, validating significant consistency of the microarray data for each
of the three genotypes analyzed. Student T-test function was used to identify genes whose
expression differed significantly (p<0.05) and these genes were then filtered to select for those
that showed a 1.3-fold or greater change and a 95% confidence bound of fold change. Genes
were annotated and biological processes were analyzed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (http://www.david.abcc.ncifcrf.gov) [110,
111]. Promoter and gene coding region sequence was extracted from UCSC genome browser.
Meme-ChIP was used for transcription factor binding site discovery [112].

Cell culture
Cultures of rat hippocampal neurons[113] were grown at a cell density of 8000/cm2 on cover-
slips. Hippocampal neurons of DIV 6 were harvested on DIV 6 for imaging. On the day of har-
vest, the concentrations of reagents used to treat neurons were: 50mMNMDA, 30 mM KCl, 5
ng/ml leptomycin B.

Supporting Information
S1 Fig. Representative confocal images of adult MB.MBs were visualized by mCD8-GFP
and stained with axonal marker Fascillin II (Fas II) antibody from 5-day old adult fly express-
ing indicated transgenes driven by GFP;;OK107-Gal4 under ISO or EE condition. Genotype as
indicated.
(TIFF)

S2 Fig. Schematic of tested regions on selected genes. (A) Schematic of selected promoter
and gene coding region used for ChIP experiments. (B) Consensus sequence illustrated over
selected gene targets.
(TIFF)

S3 Fig. Representative immunohistochemistry staining on hippocampal neurons. Immnu-
nostaining using Abs against Tip60 and cytoplasmic and nuclear neuronal markers reveals a
cytoplasmic and nuclear distribution pattern for Tip60 in neurons, consistent to what we
observe in fly neuronal circuits.
(TIFF)

Acknowledgments
The authors thank Drs. Jeffery Twiss and Cynthia Gomes for generously contributing primary
rat hippocampal neuron cultures. This work was supported by National Institutes of Health
(R01HD057939 to F.E.).

Conflict of Interest: No conflict of interest is reported.
Accession Number: The accession number for the microarray files used in this paper is

GEO: GSE76612.

Author Contributions
Conceived and designed the experiments: SX FE. Performed the experiments: SX PP SI. Ana-
lyzed the data: SX FE. Contributed reagents/materials/analysis tools: SX PP. Wrote the paper:
SX FE.

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 20 / 26

http://www.david.abcc.ncifcrf.gov
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159623.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159623.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0159623.s003


References
1. Lorbeck M, Pirooznia K, Sarthi J, Zhu X, Elefant F. Microarray analysis uncovers a role for Tip60 in

nervous system function and general metabolism. PLoS One. 2011; 6(4):e18412. Epub 2011/04/16.
doi: 10.1371/journal.pone.0018412 PMID: 21494552; PubMed Central PMCID: PMC3073973.

2. Johnson AA, Sarthi J, Pirooznia SK, ReubeW, Elefant F. Increasing Tip60 HAT Levels Rescues Axo-
nal Transport Defects and Associated Behavioral Phenotypes in a Drosophila Alzheimer's Disease
Model. J Neurosci. 2013; 33(17):7535–47. doi: 10.1523/JNEUROSCI.3739-12.2013 PMID:
23616558.

3. Pirooznia K, Elefant F. Targeting specific HATs for neurodegenerative disease treatment: translating
basic biology to therapeutic possibilities. Frontiers in Cellular Neuroscience. 2013; 7(30):1–18. Epub
1.

4. Pirooznia K, Elefant F. Modulating epigenetic HAT activity: A promising therapuetic option for neuro-
logical disease? Journal of Molecular Cloning and Genetic Recombination. 2012; 1(1):1–3.

5. Pirooznia SK, Chiu K, Chan MT, Zimmerman JE, Elefant F. Epigenetic regulation of axonal growth of
Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics. 2012; 192
(4):1327–45. Epub 2012/09/18. doi: 10.1534/genetics.112.144667 PMID: 22982579.

6. Pirooznia SK, Elefant F. A HAT for sleep?: epigenetic regulation of sleep by Tip60 in Drosophila. Fly
(Austin). 2013; 7(2):99–104. Epub 2013/04/11. 24141 [pii] doi: 10.4161/fly.24141 PMID: 23572111;
PubMed Central PMCID: PMC3732338.

7. Pirooznia SK, Sarthi J, Johnson AA, Toth MS, Chiu K, Koduri S, et al. Tip60 HAT activity mediates
APP induced lethality and apoptotic cell death in the CNS of a Drosophila Alzheimer's disease model.
PLoS One. 2012; 7(7):e41776. Epub 2012/08/01. doi: 10.1371/journal.pone.0041776 PMID:
22848598; PubMed Central PMCID: PMC3406101.

8. Sarthi J, Elefant F. dTip60 HAT activity controls synaptic bouton expansion at the Drosophila neuro-
muscular junction. PLoS One. 2011; 6(10):e26202. Epub 2011/11/03. doi: 10.1371/journal.pone.
0026202 PMID: 22046262; PubMed Central PMCID: PMC3203119.

9. Zhu X, Singh N, Donnelly C, Boimel P, Elefant F. The cloning and characterization of the histone acet-
yltransferase human homolog Dmel\TIP60 in Drosophila melanogaster: Dmel\TIP60 is essential for
multicellular development. Genetics. 2007; 175(3):1229–40. Epub 2006/12/21. doi: 10.1534/genetics.
106.063685 PMID: 17179074; PubMed Central PMCID: PMC1840084.

10. Xu S, Wilf R, Menon T, Panikker P, Sarthi J, Elefant F. Epigenetic control of learning and memory in
Drosophila by Tip60 HAT action. Genetics. 2014; 198(4):1571–86. Epub 2014/10/19. doi: 10.1534/
genetics.114.171660 PMID: 25326235; PubMed Central PMCID: PMC4256772.

11. Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG. Exchange of N-CoR corepressor
and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor
protein. Cell. 2002; 110(1):55–67. Epub 2002/08/02. PMID: 12150997.

12. Fischer A. Targeting histone-modifications in Alzheimer's disease. What is the evidence that this is a
promising therapeutic avenue? Neuropharmacology. 2014; 80:95–102. doi: 10.1016/j.neuropharm.
2014.01.038 PMID: 24486385

13. Muller T, Meyer HE, Egensperger R, Marcus K. The amyloid precursor protein intracellular domain
(AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzhei-
mer's disease. Prog Neurobiol. 2008; 85(4):393–406. Epub 2008/07/08. doi: 10.1016/j.pneurobio.
2008.05.002 PMID: 18603345.

14. Kim HS, Kim EM, Lee JP, Park CH, Kim S, Seo JH, et al. C-terminal fragments of amyloid precursor
protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J. 2003;
17(13):1951–3. Epub 2003/08/19. doi: 10.1096/fj.03-0106fje PMID: 12923068.

15. Cao X, Sudhof TC. Dissection of amyloid-beta precursor protein-dependent transcriptional transacti-
vation. J Biol Chem. 2004; 279(23):24601–11. Epub 2004/03/27. doi: 10.1074/jbc.M402248200
PMID: 15044485.

16. Cao X, Sudhof TC. A transcriptionally [correction of transcriptively] active complex of APP with Fe65
and histone acetyltransferase Tip60. Science. 2001; 293(5527):115–20. Epub 2001/07/07. doi: 10.
1126/science.1058783 PMID: 11441186.

17. Muller T, Concannon CG,Ward MW,Walsh CM, Tirniceriu AL, Tribl F, et al. Modulation of gene
expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD).
Mol Biol Cell. 2007; 18(1):201–10. Epub 2006/11/10. doi: 10.1091/mbc.E06-04-0283 PMID:
17093061; PubMed Central PMCID: PMC1751311.

18. Hass MR, Yankner BA. A gamma-secretase-independant mechanism of signal transduction by the
amyloid precursor protein. The Journal of Biological Chemistry. 2005; 280:36895–904. PMID:
16103124

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 21 / 26

http://dx.doi.org/10.1371/journal.pone.0018412
http://www.ncbi.nlm.nih.gov/pubmed/21494552
http://dx.doi.org/10.1523/JNEUROSCI.3739-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23616558
http://dx.doi.org/10.1534/genetics.112.144667
http://www.ncbi.nlm.nih.gov/pubmed/22982579
http://dx.doi.org/10.4161/fly.24141
http://www.ncbi.nlm.nih.gov/pubmed/23572111
http://dx.doi.org/10.1371/journal.pone.0041776
http://www.ncbi.nlm.nih.gov/pubmed/22848598
http://dx.doi.org/10.1371/journal.pone.0026202
http://dx.doi.org/10.1371/journal.pone.0026202
http://www.ncbi.nlm.nih.gov/pubmed/22046262
http://dx.doi.org/10.1534/genetics.106.063685
http://dx.doi.org/10.1534/genetics.106.063685
http://www.ncbi.nlm.nih.gov/pubmed/17179074
http://dx.doi.org/10.1534/genetics.114.171660
http://dx.doi.org/10.1534/genetics.114.171660
http://www.ncbi.nlm.nih.gov/pubmed/25326235
http://www.ncbi.nlm.nih.gov/pubmed/12150997
http://dx.doi.org/10.1016/j.neuropharm.2014.01.038
http://dx.doi.org/10.1016/j.neuropharm.2014.01.038
http://www.ncbi.nlm.nih.gov/pubmed/24486385
http://dx.doi.org/10.1016/j.pneurobio.2008.05.002
http://dx.doi.org/10.1016/j.pneurobio.2008.05.002
http://www.ncbi.nlm.nih.gov/pubmed/18603345
http://dx.doi.org/10.1096/fj.03-0106fje
http://www.ncbi.nlm.nih.gov/pubmed/12923068
http://dx.doi.org/10.1074/jbc.M402248200
http://www.ncbi.nlm.nih.gov/pubmed/15044485
http://dx.doi.org/10.1126/science.1058783
http://dx.doi.org/10.1126/science.1058783
http://www.ncbi.nlm.nih.gov/pubmed/11441186
http://dx.doi.org/10.1091/mbc.E06-04-0283
http://www.ncbi.nlm.nih.gov/pubmed/17093061
http://www.ncbi.nlm.nih.gov/pubmed/16103124


19. Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the beta-amyloid pre-
cursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol
Chem. 2001; 276(43):40288–92. doi: 10.1074/jbc.C100447200 PMID: 11544248.

20. Carulli D, Foscarin S, Rossi F. Activity-dependent plasticity and gene expression modifications in the
adult CNS. Frontiers in Molecular Neuroscience. 2011; 4(50):1–11.

21. Sweatt JD. Experience-dependent epigenetic modifications in the central nervous system. Biol Psy-
chiatry. 2009; 65(3):191–7. Epub 2008/11/14. S0006-3223(08)01089-5 [pii] doi: 10.1016/j.biopsych.
2008.09.002 PMID: 19006788.

22. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associ-
ated with chromatin remodelling. Nature. 2007; 447(7141):178–82. Epub 2007/05/01. doi: 10.1038/
nature05772 PMID: 17468743.

23. Hv Praag, Kempermann G, Gage FH. Neural consequences of envioronmental enrichment. Nature
Neuroscience. 2000; 1.

24. Donlea JM, Shaw PJ. Sleeping together: using social interactions to understand the role of sleep in
plasticity. Advanced Genetics. 2009; 68:57–81.

25. Heisenberg M, Heusipp M, Wanke C. Structural plasticity in the Drosophila brain. J Neurosci. 1995;
15(3 Pt 1):1951–60. Epub 1995/03/01. PMID: 7891144.

26. Aso Y, Grubel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. The mushroom body of adult Dro-
sophila characterized by GAL4 drivers. J Neurogenet. 2009; 23(1–2):156–72. Epub 2009/01/14. doi:
10.1080/01677060802471718 PMID: 19140035.

27. Heisenberg M. Mushroom body memoir: frommaps to models. Nat Rev Neurosci. 2003; 4(4):266–75.
Epub 2003/04/03. doi: 10.1038/nrn1074 PMID: 12671643.

28. Margulies C, Tully T, Dubnau J. Deconstructing memory in Drosophila. Curr Biol. 2005; 15(17):R700–
13. PMID: 16139203

29. Guven-Ozkan T, Davis R. Functional neuroanatomy of Drosophila olfactory memory formation. Learn
Mem. 2014; 21(10):519–26. doi: 10.1101/lm.034363.114 PMID: 25225297

30. Farris S. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom
body elaboration in insects. Brain Behav Evol. 2013; 82(1):9–18. doi: 10.1159/000352057 PMID:
23979452

31. Technau GM. Fiber number in the mushroom bodies of adult Drosophila melenogaster depends on
age, sex and experience. Journal of Neurogenetics. 2007; 21:183–96. PMID: 18161582

32. Lopez-Atalaya JP, Ciccarelli A, Viosca J, Valor LM, Jimenez-Minchan M, Canals S, et al. CBP is
required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J.
2011; 30(20):4287–98. Epub 2011/08/19. emboj2011299 [pii] doi: 10.1038/emboj.2011.299 PMID:
21847097; PubMed Central PMCID: PMC3199387.

33. Sweatt JD. Creating stable memories. Science. 2011; 331:869–71. doi: 10.1126/science.1202283
PMID: 21330525

34. Penner MR, Roth TL, Barnes CA, Sweatt JD. An epigenetic hypothesis of aging-related cognitive dys-
function. Front Aging Neurosci. 2010; 2:9. Epub 2010/06/17. doi: 10.3389/fnagi.2010.00009 PMID:
20552047; PubMed Central PMCID: PMC2874394.

35. Bushey D, Tononi G, Cirelli C. Sleep and synaptic homeostasis: structural evidence in Drosophila.
Science. 2011; 332:1576–81. doi: 10.1126/science.1202839 PMID: 21700878

36. Gilestro, Tononi G, Cirelli C. Widespread changes in synaptic markers as a function of sleep and
wakefulness in Drosophila. Science. 2009; 324(5923):109–12. doi: 10.1126/science.1166673 PMID:
19342593

37. Ganguly-Fitzgerald I, Donlea J, Shaw PJ. Waking experience affects sleep need in Drosophila. Sci-
ence. 2006; 313(5794):1775–81. Epub 2006/09/23. 313/5794/1775 [pii] doi: 10.1126/science.
1130408 PMID: 16990546.

38. Xu S, Elefant F. Tip off the HAT–Epigenetic control of learning and memory by Drosophila Tip60. Fly.
2015; 9(1):22–8. doi: 10.1080/19336934.2015.1080887 PMID: 26327426

39. Ganguly-Fitzgerald I, Donlea J, Shaw PJ. Waking experience affects sleep need in Drosophila. Sci-
ence. 2006; 313:1775–9. PMID: 16990546

40. Dukas R, Moors AO. Environmental enrichment improves mating success in flies. animal Behaviour.
2003; 66:741–9.

41. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, et al. Altered his-
tone acetylation is associated with age-dependent memory impairment in mice. Science. 2010; 328
(5979):753–6. Epub 2010/05/08. doi: 10.1126/science.1186088 PMID: 20448184.

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 22 / 26

http://dx.doi.org/10.1074/jbc.C100447200
http://www.ncbi.nlm.nih.gov/pubmed/11544248
http://dx.doi.org/10.1016/j.biopsych.2008.09.002
http://dx.doi.org/10.1016/j.biopsych.2008.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19006788
http://dx.doi.org/10.1038/nature05772
http://dx.doi.org/10.1038/nature05772
http://www.ncbi.nlm.nih.gov/pubmed/17468743
http://www.ncbi.nlm.nih.gov/pubmed/7891144
http://dx.doi.org/10.1080/01677060802471718
http://www.ncbi.nlm.nih.gov/pubmed/19140035
http://dx.doi.org/10.1038/nrn1074
http://www.ncbi.nlm.nih.gov/pubmed/12671643
http://www.ncbi.nlm.nih.gov/pubmed/16139203
http://dx.doi.org/10.1101/lm.034363.114
http://www.ncbi.nlm.nih.gov/pubmed/25225297
http://dx.doi.org/10.1159/000352057
http://www.ncbi.nlm.nih.gov/pubmed/23979452
http://www.ncbi.nlm.nih.gov/pubmed/18161582
http://dx.doi.org/10.1038/emboj.2011.299
http://www.ncbi.nlm.nih.gov/pubmed/21847097
http://dx.doi.org/10.1126/science.1202283
http://www.ncbi.nlm.nih.gov/pubmed/21330525
http://dx.doi.org/10.3389/fnagi.2010.00009
http://www.ncbi.nlm.nih.gov/pubmed/20552047
http://dx.doi.org/10.1126/science.1202839
http://www.ncbi.nlm.nih.gov/pubmed/21700878
http://dx.doi.org/10.1126/science.1166673
http://www.ncbi.nlm.nih.gov/pubmed/19342593
http://dx.doi.org/10.1126/science.1130408
http://dx.doi.org/10.1126/science.1130408
http://www.ncbi.nlm.nih.gov/pubmed/16990546
http://dx.doi.org/10.1080/19336934.2015.1080887
http://www.ncbi.nlm.nih.gov/pubmed/26327426
http://www.ncbi.nlm.nih.gov/pubmed/16990546
http://dx.doi.org/10.1126/science.1186088
http://www.ncbi.nlm.nih.gov/pubmed/20448184


42. Griñan-Ferré Christian P-C D, Gutiérrez-Zetina Sofía Martínez, Camins Antoni, Palomera-Avalos
Verónica, Ortuño-Sahagún Daniel, Rodrigo M. Teresa, Pallàs M.. Environmental Enrichment
Improves Behavior, Cognition, and Brain Functional Markers in Young Senescence-Accelerated
Prone Mice (SAMP8). Molecular Neurobiology. 2015:1–16. doi: 10.1007/212035-015-9210-6

43. Fischer A. Environmental enrichment as a method to improve cognitive function. What can we learn
from animal models? Neurolmage. 2015. doi: 10.1016/j.neuroimage.2015.11.039

44. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, et al. Bruchpilot promotes
active zone assembly, Ca2+ channel clustering, and vesicle release. Science. 2006; 312
(5776):1051–4. Epub 2006/04/15. 1126308 [pii] doi: 10.1126/science.1126308 PMID: 16614170.

45. Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, et al. Bruchpilot, a protein with
homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in
Drosophila. Neuron. 2006; 49(6):833–44. Epub 2006/03/18. S0896-6273(06)00124-3 [pii] doi: 10.
1016/j.neuron.2006.02.008 PMID: 16543132.

46. Huang JK, Ma P. L., Ji S. Y., Zhao X. L., Tan J. X., Sun X. J., & Huang F. D.. Age-dependent alter-
ations in the presynaptic active zone in a Drosophila model of Alzheimer's Disease. Neurobiology of
disease. 2013; 51:161–7. doi: 10.1016/j.nbd.2012.11.006 PMID: 23149068

47. Woods D, Bryant P. The discs-large tumor suppressor gene of Drosophila encodes a guanylate
kinase homolog localized at septate junctions. cell. 1991; 66(3):451–64. PMID: 1651169

48. Albornoz V, Mendoza-Topaz C, Oliva C, Tello J, Olguín P, Sierralta J. Temporal and spatial expres-
sion of Drosophila DLGS97 during neural development. Gene Expr Patterns 2008; 8(6):443–51. doi:
10.1016/j.gep.2008.04.001 PMID: 18501681

49. Chen K, Featherstone DE. Discs-large (DLG) is clustered by presynaptic innervation and regulates
postsynaptic glutamate receptor subunit composition in Drosophila. BMC Biol. 2005; 3:1. Epub 2005/
01/11. 1741-7007-3-1 [pii] doi: 10.1186/1741-7007-3-1 PMID: 15638945; PubMed Central PMCID:
PMC545058.

50. Liu Z, Chen Y, Wang D, Wang S, Zhang YQ. Distinct presynaptic and postsynaptic dismantling pro-
cesses of Drosophila neuromuscular junctions during metamorphosis. J Neurosci. 2010; 30
(35):11624–34. doi: 10.1523/JNEUROSCI.0410-10.2010 PMID: 20810883.

51. Thomas U, Ebitsch S, Gorczyca M, Koh YH, Hough CD, Woods D, et al. Synaptic targeting and locali-
zation of discs-large is a stepwise process controlled by different domains of the protein. Curr Biol.
2000; 10(18):1108–17. PMID: 10996791.

52. Chamberlain Luke H., Burgoyne RD. Cysteine-String Protein The Chaperone at the Synapse. Journal
of neurochemistry. 2008; 74(5):1781–9.

53. Bennett Mark K., Calakos Nicole, Scheller RH. Syntaxin: A Synaptic Protein Implicated in Docking of
Synaptic Vesicles at Presynaptic Active Zones. Science. 1992; 257(5067):255–9. PMID: 1321498

54. Südhof TC. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle. Neuron
2013; 80(3):675–90. doi: 10.1016/j.neuron.2013.10.022 PMID: 24183019

55. Goodwin S, Del Vecchio M, Velinzon K, Hogel C, Russell S, Tully T, et al. Defective learning in
mutants of the Drosophila gene for a regulatory subunit of cAMP-dependent protein kinase. J Neu-
rosci. 1997; 17(22):8817–27. PMID: 9348350

56. de Belle J, Heisenberg M. Expression of Drosophila mushroom body mutations in alternative genetic
backgrounds: a case study of the mushroom body miniature gene (mbm). Proc Natl Acad Sci U S A.
1996; 93(18):9875–80. PMID: 8790424

57. Raabe T, Clemens-Richter S, Twardzik T, Ebert A, Gramlich G, Heisenberg M. Identification of mush-
room body miniature, a zinc-finger protein implicated in brain development of Drosophila. Proc Natl
Acad Sci U S A. 2004; 101(39):14276–81. PMID: 15375215

58. Song H, Billeter J, Reynaud E, Carlo T, Spana E, Perrimon N, et al. The fruitless gene is required for
the proper formation of axonal tracts in the embryonic central nervous system of Drosophila. Genetics.
2002; 162(4):1703–24. PMID: 12524343

59. Sedaghat Y, MirandaW, Sonnenfeld M. The jing Zn-finger transcription factor is a mediator of cellular
differentiation in the Drosophila CNSmidline and trachea. Development. 2002; 129(11):2591–606.
PMID: 12015288

60. Hekmat-Scafe D, Scafe C, McKinney A, Tanouye M. Genome-wide analysis of the odorant-binding
protein gene family in Drosophila melanogaster. Genome Res. 2002; 12(9):1357–69. PMID:
12213773

61. Bohbot J, Vogt R. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); charac-
terization of odorant-binding protein 10 and takeout. Insect Biochemistry and Molecular Biology.
2005; 35(9):961–79. PMID: 15978998

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 23 / 26

http://dx.doi.org/10.1007/212035-015-9210-6
http://dx.doi.org/10.1016/j.neuroimage.2015.11.039
http://dx.doi.org/10.1126/science.1126308
http://www.ncbi.nlm.nih.gov/pubmed/16614170
http://dx.doi.org/10.1016/j.neuron.2006.02.008
http://dx.doi.org/10.1016/j.neuron.2006.02.008
http://www.ncbi.nlm.nih.gov/pubmed/16543132
http://dx.doi.org/10.1016/j.nbd.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23149068
http://www.ncbi.nlm.nih.gov/pubmed/1651169
http://dx.doi.org/10.1016/j.gep.2008.04.001
http://www.ncbi.nlm.nih.gov/pubmed/18501681
http://dx.doi.org/10.1186/1741-7007-3-1
http://www.ncbi.nlm.nih.gov/pubmed/15638945
http://dx.doi.org/10.1523/JNEUROSCI.0410-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20810883
http://www.ncbi.nlm.nih.gov/pubmed/10996791
http://www.ncbi.nlm.nih.gov/pubmed/1321498
http://dx.doi.org/10.1016/j.neuron.2013.10.022
http://www.ncbi.nlm.nih.gov/pubmed/24183019
http://www.ncbi.nlm.nih.gov/pubmed/9348350
http://www.ncbi.nlm.nih.gov/pubmed/8790424
http://www.ncbi.nlm.nih.gov/pubmed/15375215
http://www.ncbi.nlm.nih.gov/pubmed/12524343
http://www.ncbi.nlm.nih.gov/pubmed/12015288
http://www.ncbi.nlm.nih.gov/pubmed/12213773
http://www.ncbi.nlm.nih.gov/pubmed/15978998


62. Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, et al. Parkinson's disease
mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO
Molecular Medicine. 2009; 1:99–111. doi: 10.1002/emmm.200900006 PMID: 20049710

63. Sananbenesi F, Fischer A. The epigenetic bottleneck of neurodegenerative and psychiatric diseases.
Biol Chem. 2009; 390(11):1145–53. Epub 2009/09/15. doi: 10.1515/BC.2009.131 PMID: 19747081.

64. Stilling RM, Fischer A. The role of histone acetylation in age-associated memory impairment and Alz-
heimer's disease. Neurobiol Learn Mem. 2011; 96(1):19–26. Epub 2011/05/05. doi: 10.1016/j.nlm.
2011.04.002 PMID: 21540120.

65. Emery I, Bedian V, Guild G. Differential expression of Broad-Complex transcription factors may fore-
cast tissue-specific developmental fates during Drosophila metamorphosis. Development. 1994; 120
(11):3275–87. PMID: 7720567

66. Riccio A. Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nat
Neurosci. 2010; 13(11):1330–7. Epub 2010/10/27. nn.2671 [pii] doi: 10.1038/nn.2671 PMID:
20975757.

67. Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H. Neuronal activity-dependant nucleocyto-
plasmic shuttling of HDAC4 and HDAC5. Journal of Neurochemistry. 2003; 85(1):151–9. PMID:
12641737

68. Newcomer JW, Farber N. B., & Olney J. W.. NMDA receptor function, memory, and brain aging. Dia-
logues in Clinical Neuroscience. 2000; 2(3):219–32. PMID: 22034391

69. Xia S, Miyashita T., Fu T., Lin W, Wu C., Pyzocha L., Lin I., Saitoe M., Tully T., Chiang A. NMDA
Receptors Mediate Olfactory Learning and Memory in Drosophila. Current Biology. 2005; 15(7):603–
15. PMID: 15823532

70. Duguid IC, Smart TG. Retrograde activation of presynaptic NMDA receptors enhances GABA release
at cerebellar interneuron–Purkinje cell synapses. Nature Neuroscience 2004; 7:525–33. PMID:
15097992

71. Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG. Modulation of hippocam-
pal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by iso-
lation stress. Neuroscience. 2004; 127:601–9. PMID: 15283960

72. West AE, Greenberg ME. Neuronal activity-regulated gene transcription in synapse development and
cognitive function. Cold Spring Harbor Perspectives in Biology. 2011; 1(3):1–21.

73. Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci. 2005; 6
(2):108–18. Epub 2005/01/18. doi: 10.1038/nrn1604 PMID: 15654323.

74. Nelson ED, Monteggia L.M.. Epigenetics in the mature mammalian brain: Effects on behavior and
synaptic transmission. Neurobiology of Learning and Memory. 2011; 1(96):53–60.

75. Alberini Cristina M.., Kandel ER. The Regulation of Transcription in Memory Consolidation. Cold
Spring Harbor Perspectives in Biology. 2015; 7(12):a021741.

76. Rampon C, Jiang CH, dog H, Tang YP, Lockhart DJ, Schultz PG, et al. Effects of enviornmental
enrichments on gene expression in the brain. PNAS. 2000; 87(23):12880–4.

77. Meaney MJ, Ferguson-Smith AC. Epigenetic regulation of the neural transcriptome: the meaning of
the marks. Nat Neurosci. 2010; 13(11):1313–8. Epub 2010/10/27. doi: 10.1038/nn1110-1313 PMID:
20975754.

78. Bousiges O, Neidl R, Majchrzak M, Muller MA, Bergelivien A, Vasconcelos APd, et al. Detection of
histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B
and H4 histones in response to learning. PLoS One. 2013; 8(3):e57816. doi: 10.1371/journal.pone.
0057816 PMID: 23469244

79. Bousiges O, Vasconcelos AP, Neidl R, Cosquer B, Herbeaux K, Panteleeva I, et al. Spatial memory
consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransfer-
ase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocam-
pus. Neuropsychopharmacology. 2010; 35(13):2521–37. Epub 2010/09/03. doi: 10.1038/npp.2010.
117 PMID: 20811339; PubMed Central PMCID: PMC3055563.

80. Kim TK HM, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuer-
sten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME. Wide-
spread transcription at neuronal activity-regulated enhancers. Nature 2010; 465(7295):182–7. doi:
10.1038/nature09033 PMID: 20393465

81. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal
activity-regulated enhancers. Nature. 2010; 465(7295):182–7. Epub 2010/04/16. nature09033 [pii]
doi: 10.1038/nature09033 PMID: 20393465; PubMed Central PMCID: PMC3020079.

82. Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J, Garcia-Osta A. Phe-
nylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 24 / 26

http://dx.doi.org/10.1002/emmm.200900006
http://www.ncbi.nlm.nih.gov/pubmed/20049710
http://dx.doi.org/10.1515/BC.2009.131
http://www.ncbi.nlm.nih.gov/pubmed/19747081
http://dx.doi.org/10.1016/j.nlm.2011.04.002
http://dx.doi.org/10.1016/j.nlm.2011.04.002
http://www.ncbi.nlm.nih.gov/pubmed/21540120
http://www.ncbi.nlm.nih.gov/pubmed/7720567
http://dx.doi.org/10.1038/nn.2671
http://www.ncbi.nlm.nih.gov/pubmed/20975757
http://www.ncbi.nlm.nih.gov/pubmed/12641737
http://www.ncbi.nlm.nih.gov/pubmed/22034391
http://www.ncbi.nlm.nih.gov/pubmed/15823532
http://www.ncbi.nlm.nih.gov/pubmed/15097992
http://www.ncbi.nlm.nih.gov/pubmed/15283960
http://dx.doi.org/10.1038/nrn1604
http://www.ncbi.nlm.nih.gov/pubmed/15654323
http://dx.doi.org/10.1038/nn1110-1313
http://www.ncbi.nlm.nih.gov/pubmed/20975754
http://dx.doi.org/10.1371/journal.pone.0057816
http://dx.doi.org/10.1371/journal.pone.0057816
http://www.ncbi.nlm.nih.gov/pubmed/23469244
http://dx.doi.org/10.1038/npp.2010.117
http://dx.doi.org/10.1038/npp.2010.117
http://www.ncbi.nlm.nih.gov/pubmed/20811339
http://dx.doi.org/10.1038/nature09033
http://www.ncbi.nlm.nih.gov/pubmed/20393465
http://dx.doi.org/10.1038/nature09033
http://www.ncbi.nlm.nih.gov/pubmed/20393465


model. Neuropsychopharmacology. 2009; 34(7):1721–32. Epub 2009/01/16. doi: 10.1038/npp.2008.
229 PMID: 19145227.

83. Bahari-Javan. S, Sananbenesi. F, Fischer. A. Histone-acetylation: a link between Alzheimer's disease
and post-traumatic stress disorder? Front Neurosci. 2014; 8(160). doi: 10.3389/fnins.2014.00160

84. Graff J, Mansuy IM. Epigenetic dysregulation in cognitive disorders. Eur J Neurosci. 2009; 30(1):1–8.
Epub 2009/06/11. doi: 10.1111/j.1460-9568.2009.06787.x PMID: 19508697.

85. Graff J, Rei D, Guan JS, WangWY, Seo J, Hennig KM, et al. An epigenetic blockade of cognitive func-
tions in the neurodegenerating brain. Nature. 2012; 483(7388):222–6. Epub 2012/03/06. doi: 10.
1038/nature10849 PMID: 22388814; PubMed Central PMCID: PMC3498952.

86. Johnsson A, Durand-Dubief M, Xue-Franzén Y, Rönnerblad M, Ekwall K, Wright A. HAT-HDAC inter-
play modulates global histone H3K14 acetylation in gene-coding regions during stress. EMBORep.
2009; 10(9):1009–14. doi: 10.1038/embor.2009.127 PMID: 19633696

87. Nguyen L H S, Saudou F, Chariot A. Elongator—an emerging role in neurological disorders. Trends
Mol Med. 2010; 16(1):1–6. doi: 10.1016/j.molmed.2009.11.002 PMID: 20036197

88. Verdone L CM, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem
Cell Biol. 2005; 83(3):344–53. PMID: 15959560

89. Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes,
syndromes, and therapies. Lancet Neurol. 2009; 8(11):1056–72. doi: 10.1016/S1474-4422(09)
70262-5 PMID: 19833297.

90. Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, et al. Chromatin acetylation,
memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi
syndrome and its amelioration. Neuron. 2004; 42(6):947–59. Epub 2004/06/23. doi: 10.1016/j.neuron.
2004.05.021 PMID: 15207239.

91. Haggarty SJ, Tsai LH. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplas-
ticity. Neurobiol Learn Mem. 2011; 96(1):41–52. Epub 2011/05/07. doi: 10.1016/j.nlm.2011.04.009
PMID: 21545841; PubMed Central PMCID: PMC3188418.

92. Konsoula Z, Barile FA. Epigenetic histone acetylation and deacetylation mechanisms in experimental
models of neurodegenerative disorders. J Pharmacol Toxicol Methods. 2012; 66(3):215–20. Epub
2012/08/21. doi: 10.1016/j.vascn.2012.08.001 PMID: 22902970.

93. Graff J, Woldemichael BT, Berchtold D, Dewarrat G, Mansuy IM. Dynamic histone marks in the hippo-
campus and cortex facilitate memory consolidation. Nature Communications. 2012; 3:991. doi: 10.
1038/ncomms1997 PMID: 22871810

94. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, et al. Histone deacetylase
inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. 2001; 413
(6857):739–43. Epub 2001/10/19. doi: 10.1038/35099568 PMID: 11607033.

95. Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder.
Nature. 2013; 493(7432):327–37. doi: 10.1038/nature11860 PMID: 23325215; PubMed Central
PMCID: PMC3576027.

96. Andrade C, Radhakrishnan R. The prevention and treatment of cognitive decline and dementia: An
overview of recent research on experimental treatments. Indian J Psychiatry. 2009; 51(1):12–25. doi:
10.4103/0019-5545.44900 PMID: 19742190

97. Galvin JE, Sadowsky Carl H.. Practical Guidelines for the Recognition and Diagnosis of Dementia.
Jounal of the American board of family medicine. 2012; 25(3):367–82.

98. Fernell E, Eriksson MA, Gillberg C. Early diagnosis of autism and impact on prognosis: a narrative
review. Clin Epidemiol. 2013; 5:33–43. doi: 10.2147/CLEP.S41714 PMID: 23459124

99. Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central
nervous system disorders. Nat Rev Drug Discov. 2008; 7(10):854–68. Epub 2008/10/02. doi: 10.
1038/nrd2681 PMID: 18827828.

100. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, et al. Suberoylanilide hydroxamic
acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's dis-
ease. Proc Natl Acad Sci U S A. 2003; 100(4):2041–6. Epub 2003/02/11. doi: 10.1073/pnas.
0437870100 PMID: 12576549; PubMed Central PMCID: PMC149955.

101. Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, et al. Neuroprotective effects of
phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J Biol Chem.
2005; 280(1):556–63. Epub 2004/10/21. doi: 10.1074/jbc.M410210200 PMID: 15494404.

102. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, et al. Sirtuin 2 inhibi-
tors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science. 2007; 317
(5837):516–9. Epub 2007/06/26. doi: 10.1126/science.1143780 PMID: 17588900.

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 25 / 26

http://dx.doi.org/10.1038/npp.2008.229
http://dx.doi.org/10.1038/npp.2008.229
http://www.ncbi.nlm.nih.gov/pubmed/19145227
http://dx.doi.org/10.3389/fnins.2014.00160
http://dx.doi.org/10.1111/j.1460-9568.2009.06787.x
http://www.ncbi.nlm.nih.gov/pubmed/19508697
http://dx.doi.org/10.1038/nature10849
http://dx.doi.org/10.1038/nature10849
http://www.ncbi.nlm.nih.gov/pubmed/22388814
http://dx.doi.org/10.1038/embor.2009.127
http://www.ncbi.nlm.nih.gov/pubmed/19633696
http://dx.doi.org/10.1016/j.molmed.2009.11.002
http://www.ncbi.nlm.nih.gov/pubmed/20036197
http://www.ncbi.nlm.nih.gov/pubmed/15959560
http://dx.doi.org/10.1016/S1474-4422(09)70262-5
http://dx.doi.org/10.1016/S1474-4422(09)70262-5
http://www.ncbi.nlm.nih.gov/pubmed/19833297
http://dx.doi.org/10.1016/j.neuron.2004.05.021
http://dx.doi.org/10.1016/j.neuron.2004.05.021
http://www.ncbi.nlm.nih.gov/pubmed/15207239
http://dx.doi.org/10.1016/j.nlm.2011.04.009
http://www.ncbi.nlm.nih.gov/pubmed/21545841
http://dx.doi.org/10.1016/j.vascn.2012.08.001
http://www.ncbi.nlm.nih.gov/pubmed/22902970
http://dx.doi.org/10.1038/ncomms1997
http://dx.doi.org/10.1038/ncomms1997
http://www.ncbi.nlm.nih.gov/pubmed/22871810
http://dx.doi.org/10.1038/35099568
http://www.ncbi.nlm.nih.gov/pubmed/11607033
http://dx.doi.org/10.1038/nature11860
http://www.ncbi.nlm.nih.gov/pubmed/23325215
http://dx.doi.org/10.4103/0019-5545.44900
http://www.ncbi.nlm.nih.gov/pubmed/19742190
http://dx.doi.org/10.2147/CLEP.S41714
http://www.ncbi.nlm.nih.gov/pubmed/23459124
http://dx.doi.org/10.1038/nrd2681
http://dx.doi.org/10.1038/nrd2681
http://www.ncbi.nlm.nih.gov/pubmed/18827828
http://dx.doi.org/10.1073/pnas.0437870100
http://dx.doi.org/10.1073/pnas.0437870100
http://www.ncbi.nlm.nih.gov/pubmed/12576549
http://dx.doi.org/10.1074/jbc.M410210200
http://www.ncbi.nlm.nih.gov/pubmed/15494404
http://dx.doi.org/10.1126/science.1143780
http://www.ncbi.nlm.nih.gov/pubmed/17588900


103. Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A. Valproic acid is neuroprotective in
the rotenone rat model of Parkinson's disease: involvement of alpha-synuclein. Neurotox Res. 2010;
17(2):130–41. Epub 2009/07/25. doi: 10.1007/s12640-009-9090-5 PMID: 19626387.

104. Langley B, Gensert JM, Beal MF, Ratan RR. Remodeling chromatin and stress resistance in the cen-
tral nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective
agents. Curr Drug Targets CNS Neurol Disord. 2005; 4(1):41–50. Epub 2005/02/23. PMID:
15723612.

105. Fischer A, Sananbenesi F, Mungenast A, Tsai LH. Targeting the correct HDAC(s) to treat cognitive
disorders. Trends Pharmacol Sci. 2010; 31(12):605–17. Epub 2010/10/29. doi: 10.1016/j.tips.2010.
09.003 PMID: 20980063.

106. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development
and physiology: implications for disease and therapy. Nat Rev Genet. 2009; 10(1):32–42. doi: 10.
1038/nrg2485 PMID: 19065135; PubMed Central PMCID: PMC3215088.

107. Wang Y, Wang X, Liu L. HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal
cells. Neurosci Lett. 2009; 467(3):212–6. Epub 2009/10/20. doi: 10.1016/j.neulet.2009.10.037 PMID:
19835929.

108. Rouaux C, Panteleeva I, Rene F, Gonzalez de Aguilar JL, Echaniz-Laguna A, Dupuis L, et al. Sodium
valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mecha-
nisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci.
2007; 27(21):5535–45. Epub 2007/05/25. doi: 10.1523/JNEUROSCI.1139-07.2007 PMID: 17522299.

109. Graff J, Franklin TB, Mansuy IM. [Epigenetics and memory]. Biol Aujourdhui. 2010; 204(2):131–7.
Epub 2010/10/19. doi: 10.1051/jbio/2010007 PMID: 20950557.

110. Huang DWS B, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID
Bioinformatics Resources. Nature Protoc. 2009; 4(1):44–57.

111. Huang DWS B, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive func-
tional analysis of large gene lists. Nucleic Acids Research. 2009; 37(1):1–13. doi: 10.1093/nar/
gkn923 PMID: 19033363

112. Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27
(12):1696–7. doi: 10.1093/bioinformatics/btr189 PMID: 21486936

113. Banker G, Goslin K. Developments in neuronal cell culture. Nature. 1988; 336:185–6. PMID: 3185736

EE Induced Cognitive Restoration by Tip60

PLOS ONE | DOI:10.1371/journal.pone.0159623 July 25, 2016 26 / 26

http://dx.doi.org/10.1007/s12640-009-9090-5
http://www.ncbi.nlm.nih.gov/pubmed/19626387
http://www.ncbi.nlm.nih.gov/pubmed/15723612
http://dx.doi.org/10.1016/j.tips.2010.09.003
http://dx.doi.org/10.1016/j.tips.2010.09.003
http://www.ncbi.nlm.nih.gov/pubmed/20980063
http://dx.doi.org/10.1038/nrg2485
http://dx.doi.org/10.1038/nrg2485
http://www.ncbi.nlm.nih.gov/pubmed/19065135
http://dx.doi.org/10.1016/j.neulet.2009.10.037
http://www.ncbi.nlm.nih.gov/pubmed/19835929
http://dx.doi.org/10.1523/JNEUROSCI.1139-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17522299
http://dx.doi.org/10.1051/jbio/2010007
http://www.ncbi.nlm.nih.gov/pubmed/20950557
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://dx.doi.org/10.1093/bioinformatics/btr189
http://www.ncbi.nlm.nih.gov/pubmed/21486936
http://www.ncbi.nlm.nih.gov/pubmed/3185736

