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Abstract: The appearance of wheezing sounds is widely considered by physicians as a key indica-
tor to detect early pulmonary disorders or even the severity associated with respiratory diseases,
as occurs in the case of asthma and chronic obstructive pulmonary disease. From a physician’s
point of view, monophonic and polyphonic wheezing classification is still a challenging topic in
biomedical signal processing since both types of wheezes are sinusoidal in nature. Unlike most
of the classification algorithms in which interference caused by normal respiratory sounds is not
addressed in depth, our first contribution proposes a novel Constrained Low-Rank Non-negative
Matrix Factorization (CL-RNMF) approach, never applied to classification of wheezing as far as
the authors’ knowledge, which incorporates several constraints (sparseness and smoothness) and a
low-rank configuration to extract the wheezing spectral content, minimizing the acoustic interference
from normal respiratory sounds. The second contribution automatically analyzes the harmonic
structure of the energy distribution associated with the estimated wheezing spectrogram to classify
the type of wheezing. Experimental results report that: (i) the proposed method outperforms the
most recent and relevant state-of-the-art wheezing classification method by approximately 8% in
accuracy; (ii) unlike state-of-the-art methods based on classifiers, the proposed method uses an
unsupervised approach that does not require any training.

Keywords: monophonic; polyphonic; wheezing; non-negative matrix factorization; spectral pattern;
spectrogram; constraint; low-rank; asthma; chronic obstructive pulmonary disease

1. Introduction

Chronic Respiratory Diseases (CRDs) are increasingly a huge and growing public
health problem due to their high prevalence, high morbidity and mortality, and socio-
economic cost. CRDs can be defined as disorders of the airways and other physiological
structures of the respiratory system [1]. Some of the most common and relevant CRDs
are asthma and Chronic Obstructive Pulmonary Disease (COPD). According to the World
Health Organization (WHO), there were 417,918 deaths due to asthma at the global level
in 2016 [2] and approximately three million people die from COPD every year, which is
6% of all deaths worldwide [3]. Although chronic diseases currently have no medical cure,
early detection can lead to appropriate treatment when the disease is in its early stages,
thus improving people’s quality of life.

The auscultation examination is considered a widely used method of detecting CRDs
because it is a non-invasive, inexpensive, easy, comfortable, and fast method regardless of
age [4]. However, the auscultation process has several limitations that reduce the reliability
of the diagnosis: (i) high subjectivity conditioned by the physician’s training to recognize
and interpret the sounds captured by the stethoscope [5,6]; (ii) the discrimination between
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adventitious sounds with similar characteristics, such as monophonic and polyphonic
wheezing sounds, is a harder task to perform by means of auscultation [7]; and (iii) normal
respiratory sounds and adventitious sounds (abnormal and indicative of a lung disorder)
are simultaneously mixed in the time and frequency domain, complicating the physician’s
analysis of the valuable clinical information contained in adventitious sounds [5,8,9].
Considering the above, a misdiagnosis is the main cause of the patient returning to the
health center with a worsening of the disease that was not detected in the first medical
examination performed by auscultation, so in recent years, it has become crucial to develop
novel approaches to help physicians provide reliable diagnoses applied to lung disorders,
with the implicit fact of reducing health care costs [10,11].

In general, the sounds generated during breathing can be classified into two main
categories: normal respiratory sounds and adventitious sounds. Both sounds are mixed
in the time-frequency domain as they are simultaneously generated by the same air flow
through the bronchial tree of the lungs and also share part of the spectral bands in which
they are active [5,9]. Normal respiratory sounds are represented by a wideband spectrum
where most of the energy is concentrated in the frequency band of 60 Hz–1000 Hz [12].
Adventitious sounds can be classified into two categories: discontinuous and continuous
sounds. Discontinuous Adventitious Sounds (DASs) are characterized by a short dura-
tion of less than 25 ms, such as coarse and fine crackles [13]. Continuous Adventitious
Sounds (CASs) are characterized by a long duration of more than 100 ms, such as rhonchi,
stridor, and wheezing [14]. In recent years, several works have been published that car-
ried out an exhaustive review of lung acoustic measurements [15] and signal processing
methods [16,17] applied to adventitious sounds, most of them focused on detection [16–23]
and classification tasks [16,17,24–29].

Focusing on wheezing or wheeze sounds, the guidelines established by Computerized
Respiratory Sound Analysis (CORSA) [5,30] define them as a pitch located between 100 Hz
and 1000 Hz whose duration is greater than 100 ms, displaying trajectories of narrowband
spectral peaks over time. The appearance of wheezing is widely considered by doctors
as a clue to be able to detect either respiratory diseases or the severity associated with
CRDs early, as occurs in the case of asthma and COPD [31,32]. For this reason, many
research efforts have been applied in biomedical signal processing in order to develop
reliable methods for early wheezing detection. In this sense, many wheezing detection
algorithms, based on different approaches, can be found in the state-of-the-art literature:
the Autoregressive (AR) model [33], auditory modeling [34], entropy [35], Neural Net-
works (NN) [36,37], wavelet transform [38,39], tonal index [40,41], Mel-Frequency Cepstral
Coefficients (MFCCs) [42,43], Gaussian Mixture Models (GMMs) [44,45], spectral peaks
identification [46–48], the Hidden Markov Model (HMM) [49], and recently, Non-negative
Matrix Factorization (NMF) [9,50,51].

In addition, wheezing can be classified into two main categories according to the
spectral behavior [52]: (i) wheezes that occur with a single peak or with the harmonics
associated with that single basal peak are called Monophonic (MP) wheezes (as can be seen
in Figure 1); and (ii) wheezes that occur with variable peaks that differ in harmonics are
called Polyphonic (PP) wheezes (as can be seen in Figure 2). The scientific interest in the
field of biomedical sound signal processing in automatically performing this classification
lies in the fact that PP wheezes are usually caused by the pathology of small airways
and MP wheezes are caused by the pathology of larger airways [53]. In fact, several
studies [4,54–56] have shown that MP and PP wheezes exhibit distinctive physiological
and pathological characteristics: (i) in physiological analysis, MP wheezes are caused by a
single bronchial narrowing, while PP wheezes are caused by multiple central bronchial
compression; and (ii) in pathological analysis, MP wheezes are an indicator of the presence
of asthma, while PP wheezes can be considered as a sound marker of COPD.
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Figure 1. Time-frequency representation of two examples of Monophonic (MP) wheezing: (A) with a
single basal peak; (B) with the harmonics of a single basal peak. Note that the frequency components
are harmonically related in (B).
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Figure 2. Time-frequency representation of two examples of Polyphonic (PP) wheezing: (A) with
two non-harmonically related peaks; (B) with five non-harmonically related peaks. Note that the
frequency components are not harmonically related in the case of PP wheezing.

Despite advances in the analysis of respiratory sounds, MP/PP wheezing classification
is a critical step in the diagnosis of asthma [4,54,55] and COPD diseases [54–56], so it is
still a challenging topic in biomedical signal processing [7] since both types of wheezes are
sinusoidal in nature. Although there are relatively few works [7,18,47,57–60] in which the
analysis of MP/PP wheezing is treated, the only works focused on the task of classifying
MP/PP wheezing in depth are [7,57,59,60] to our knowledge. All these MP/PP wheezing
classification approaches are based on the feature extraction and classifier configuration.
Ulukaya et al. [7] proposed to extract a single feature, the Peak Energy Ratio (PER), from
a RAtional Dilation Wavelet Transform (RADWT) to discriminate between MP and PP
wheezes. Specifically, PER is obtained from the first and second peak with the highest
energy of all sub-bands of the wavelet coefficients (considering that the second peak is not
consecutive to the first one). Moreover, the authors applied a robust evaluation method-
ology in which most of the relevant feature extraction methods [57,59,60] were evaluated
using some of the most popular classifiers (SVM, KNN, and ELM) and Leave-One-Out
(LOO) cross-validation schemes. The results reported that the proposed method, based
on only one feature (PER), obtained the best MP/PP wheezing classification performance
showing an accuracy equal to 86%.

However, none of the state-of-the-art methods consider the interference generated
by normal respiratory sounds that can affect the MP/PP wheezing classification task.
In this work, our proposal is based on the Non-negative Matrix Factorization (NMF)
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approach in order to classify MP/PP wheezing sounds according to the harmonic structure
shown by removing the sound interference caused by normal respiratory sounds. The first
contribution of this work proposes a novel Constrained Low-Rank Non-negative Matrix
Factorization (CL-RNMF) approach, which allows the spectral patterns associated with
wheezing sounds to be extracted with the least possible sound interference from normal
breath sounds. Specifically, we propose a low-rank configuration using a reduced number
of wheeze bases to compact the frequency components into the fewest possible bases for
further analysis without loss of relevant wheeze content. In addition, the proposed CL-
RNMF approach incorporates a set of constraints to model the spectro-temporal behavior
of wheezing and normal respiratory sounds. These constraints help to acoustically isolate
the wheezing spectral patterns from normal respiratory sounds. To classify between MP
or PP wheezing sounds, the second contribution analyzes the harmonic structure of the
previous reduced number of wheezing bases based on the spectral location of the wheezing
components, rather than the energy of their components.

The structure of the paper is as follows. Section 2 briefly reviews the principles of
non-negative matrix factorization, focusing on the standard approach and some regular-
izations used to model the properties of the sounds of interest. The proposed MP/PP
wheezing classification method is presented in Section 3. Section 4 details and discusses
the experimental evaluation. Finally, we conclude in Section 5 and provide perspectives on
further research.

2. Theoretical Background
2.1. Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) or standard NMF [61,62] is a decomposi-
tion technique that has attracted special attention in different fields of biomedical signal
processing in the last few years [63,64]. Previous works showed the efficiency of the NMF
approach at detecting [9,50,51] and improving the audio quality of wheezing [65,66]. In
general terms, NMF can be defined as an unsupervised learning tool used for linear rep-
resentation of non-negative two-Dimensional (2D) data where its main advantage is to
reduce the dimensionality of a large amount of data in order to find hidden structures by
means of part-based representation with non-negative patterns. From a mixture signal
x(t), its magnitude spectrogram X ∈ RF×T

+ is obtained by means of the Short-Time Fourier
Transform (STFT) applying a window function (e.g., Hamming or Hann) and inter-window
overlap to increase the temporal resolution, F being the number of frequency bins and T
the number of time frames. Here, standard NMF decomposes the magnitude spectrogram
X into the product of two non-negative matrices: spectral basis matrix (patterns) B ∈ RF×K

+

and temporal activation matrix (weights) A ∈ RK×T
+ , K being the rank or the number of

components (spectral bases),
X ≈ X̂ = BA (1)

where X̂ ∈ RF×T
+ is the estimated spectrogram. Each column of the basis matrix B defines

a spectral pattern that describes the spectral behavior of an active sound event in the
input spectrogram X. Each row of the activation matrix A represents a temporal gain for a
spectral pattern. In other words, the matrix B provides a dictionary composed of K spectral
bases, and the matrix A defines the weight with which the different spectral bases appear
along the temporal frames. Due to the non-negativity property, NMF underlies an additive
linear interpolation model that results in the so-called part-based representation [61].

The decomposition or factorization of the input magnitude spectrogram X into the
product BA is usually sought minimizing a defined scalar-valued divergence,

arg min
B,A

D(X|BA) B, A ≥ 0 (2)

This divergence function measures the error made in the approximation of the ob-
served spectrogram X and the reconstruction BA. Typically, the divergence is computed
entry-wise:
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D(X|X̂) = D(X|BA) =
F

∑
f=1

T

∑
t=1

d(X f ,t|X̂ f ,t) (3)

where d(i, j) is a function of two scalar variables i, j. It is often called the cost function and
is a positive function of i ∈ R+ given j ∈ R+ with a single minimum for i = j. Some of the
most popular cost functions are the Euclidean distance, the generalized Kullback–Leibler
divergence, the Itakura–Saito divergence, and the Cauchy distribution [67,68]. In this
paper, we propose to minimize the generalized Kullback–Leibler divergence DKL(X|X̂)
(see Equation (4)) because previous works [9,50,51,63,65,66] obtained promising results in
biomedical signal processing since DKL(X|X̂) provides a scale-invariant factorization, that
is low energy sound components of X bear the same relative importance as high energy
ones in the decomposition process.

DKL
(
X|X̂

)
=

F

∑
f=1

T

∑
t=1

X f ,t log
X f ,t

X̂ f ,t
− X f ,t + X̂ f ,t (4)

The most popular minimization method to solve the problem shown in Equation (2) is
based on the so-called multiplicative update rules, initially proposed by Lee and Seung [61].
This method obtains the basis and activation matrices, minimizing the Kullback–Leibler
divergence function DKL(X|X̂) and ensuring the non-negativity of the estimated matrices.
These rules are obtained directly from the negative and positive terms of the partial
derivative of the divergence function DKL(X|X̂) with respect to the parameters B and A,

B← B�

[
∂DKL(X|X̂)

∂B

]−
[

∂DKL(X|X̂)
∂B

]+ = B�
((

X� BA
)

AT �
(
[1]AT

))
(5)

A← A�

[
∂DKL(X|X̂)

∂A

]−
[

∂DKL(X|X̂)
∂A

]+ = A�
(

BT
(

X� BA
)
�
(

BT[1]
))

(6)

where [1] ∈ RF×T
+ represents an all-ones matrix, T is the transpose operator, � is the

element-wise multiplication, and � is the element-wise division. This procedure always
maintains the non-negativity of both parameters, since the used terms in the updating are
also non-negative.

As previously described, NMF models the magnitude spectrogram of an input mixture
signal as a product of a basis matrix and an activation matrix with the only constraint
of the element-wise non-negativity of all matrices. Under this constraint, the aim is to
minimize the cost function of the reconstruction error. However, the main problem of
NMF is the trade-off between signal reconstruction and the physical interpretation of
the factorized part-based objects. In other words, this non-negativity of the parameters
does not guarantee a meaningful part-based representation when dealing with real-world
mixture signals [69,70]. Several properties can be used to improve the uniqueness of the
local minima obtained by NMF, incorporating physical meaning into the basis functions
and activations. In particular, these properties can be implemented using regularizations,
which are added to the global cost function in the factorization model. The main constraints,
sparseness and smoothness, used in this paper to model the spectro-temporal behavior of
wheezing and normal respiratory sounds are briefly described below.

2.2. Spectral Sparseness

Spectral sparseness ψ(B) denotes that, for each source, most of its frequencies are zero
or close to zero [71,72]. This constraint enforces that only a few frequency bins predominate
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in each spectral basis, whilst the other bins are canceled. It is implemented by incorporating
a penalty term into the NMF objective function. In practice, the L1-norm is often used
because it was demonstrated to be less sensitive to changes of the parameter that controls
the importance of the constraint in the factorization process. Then, the optimization
problem can be expressed as,

arg min
B,A

D(X|BA) + α‖B‖1 B, A ≥ 0 (7)

where α is the weight parameter that adjusts the influence of the constraint.

2.3. Temporal/Spectral Smoothness

Generally, smoothness φ means how continuous or smooth the spectral or temporal
changes related to a source are [72]. Smoothness constraints have been defined for both
activation A and basis functions B and added to the global cost function as penalty terms
as follows,

arg min
B,A

D(X|BA) + λφ(A) + βφ(B) B, A ≥ 0 (8)

where φ(A) and φ(B) are the functions that penalize non-smooth temporal activations or
spectral patterns and the parameters λ and β control the effect of the regularization in the
decomposition procedure.

Temporal smoothness (also known as smooth activations) φ(A), applied to the esti-
mated activation matrix A, reports how slow the amplitude variations over time are. In
other words, temporal smoothness accounts for the fact that real-world sounds usually
have a temporal structure, and their acoustic characteristics vary slowly as a function
of time. In [72], the authors proposed to model the temporal smoothness regularization
φ(A) by applying a high cost to large changes produced between adjacent frames in the
activation matrix A as follows,

φ(A) =
K

∑
k=1

1
σ2

k

T

∑
t=2

(Ak,t − Ak,t−1)
2 (9)

where σk =
√

1
T ∑T

t=1 A2
k,t indicates the standard deviation used to normalize the activation

functions. This normalization provides that the cost of regularization is independent of the
numerical scale of activation [69,72].

Spectral smoothness (also known as smooth basis) φ(B), applied to the estimated
basis matrix B, measures how fast the amplitude changes along the frequency axis, that
is it allows modeling the behavior of those sounds that are represented by a wideband
spectrum. In [69,73], the authors proposed to model the spectral smoothness regularization
φ(B) by applying a high cost to large changes produced between adjacent bins in the basis
matrix B as follows,

φ(B) =
K

∑
k=1

1
σ2

k

F

∑
f=2

(B f ,k − B f−1,k)
2 (10)

where σk =
√

1
F ∑F

f=1 B2
f ,k represents the standard deviation used to normalize the basis

functions. This normalization achieves that the cost of regularization is independent of the
numerical scale of the basis [69,73].

3. Proposed Method

The main problem in classifying wheezes from a mixture is that both wheezing sounds
and normal respiratory sounds occur simultaneously in the time and frequency domain.
Considering the acoustic interference caused by normal respiratory sounds, the proposed
signal model is composed of two stages: Modelling and separation of wheezing spectral
patterns from normal respiratory sounds based on CL-RNMF (stage I) and Classification
between MP/PP wheezing according to its harmonic structure (stage II). In this manner, the
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goal of the stage I is to model the spectral patterns that characterize wheezing sounds by
isolating them from respiratory interference. The aim of stage II is to analyze the location
of the frequency components extracted from the previous stage to determine the type,
monophonic or polyphonic, of wheezing according how the wheezing energy is locating in
the frequency domain. The flowchart of the proposed method is shown in Figure 3, and
details are depicted in Sections 3.1–3.3.

Figure 3. Flowchart of the proposed method.

3.1. Time-Frequency Signal Representation

Time-frequency representation by means of spectrograms has been demonstrated to
be useful for visualizing the characteristics and behavior of both wheezing and normal
respiratory sounds [9,50,51,65,66]. The input mixture signal x(t) is composed of wheeze
sounds xw(t) (MP or PP wheezing) and normal respiratory sounds xr(t) overlapping in the
time and frequency domain. We assume that the mixture of these sounds is additive and can
be expressed as x(t) = xr(t) + xw(t). The input magnitude spectrogram X ∈ RF×T

+ of the
input mixture signal can be represented as X = XR + XW , being XR ∈ RF×T

+ the magnitude
spectrogram of only respiratory sounds and XW ∈ RF×T

+ the magnitude spectrogram of
only wheeze sounds. Specifically, each magnitude spectrogram is composed of T frames, F
frequency bins and a set of time-frequency units X f ,t, being f = 1, ... , F and t = 1, ... , T.
Each unit X f ,t is defined by the f th frequency bin at the tth frame and is calculated from
the magnitude of the Short-Time Fourier Transform (STFT) using a Hamming windows of
N samples with 10% overlap. In this work, a normalization process is applied in order to
achieve independence regarding the size and scale of the input spectrogram X. Thus, the
normalized magnitude spectrogram X is computed as follows,

X =
X(

∑F
f=1 ∑T

t=1 X f ,t
FT

) (11)

To avoid complex nomenclature throughout the paper, the variable X is hereinafter
referred to the normalized magnitude spectrogram previously computed in Equation (11).
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3.2. Stage I: Constrained Low-Rank Non-Negative Matrix Factorization

As mentioned above, it is common that normal respiratory sounds mask the presence
of the wheezing sounds. As a result, this sound mask makes the task of wheezing clas-
sification difficult since the spectral patterns associated with normal respiratory sounds
can be confused with wheezing spectral content. Therefore, the aim of this stage is to
provide a reliable modeling of the different frequency components (spectral patterns) that
compose a wheeze, removing any sound interference from normal respiratory sounds. For
this purpose, we propose a CL-RNMF approach because, as far as the authors’ knowledge,
the non-negative matrix factorization approach has never been applied before to MP/PP
wheezing classification. In addition, our approach is an unsupervised method because it
does not require any training of the sounds to classify. Therefore, the proposed method de-
composes a magnitude mixture spectrogram X into two estimated spectrograms: X̂R (only
normal respiratory sounds without wheezing) and X̂W (only wheeze sounds without nor-
mal respiratory sounds). In this manner, each estimated spectrogram can be factorized into
the product of its corresponding estimated basis and activation matrices: (i) BR ∈ RF×Kr

+

and AR ∈ RKr×T
+ to the factorization of X̂R, Kr being the number of respiratory components;

and (ii) BW ∈ RF×Kw
+ and AW ∈ RKw×T

+ to the factorization of X̂W , Kw being the number
of wheezing components. The proposed separation model can be formulated with the
following objective function,

X ≈ X̂R + X̂W = BRAR + BWAW (12)

where, considering the non-negative property that characterizes the NMF approach, all the
matrices that compose the previous model are non-negative.

As previously mentioned, this stage attempts to ensure that BW contains reliable
modeling of the wheezing spectral patterns by means of narrowband spectral peaks that
typically characterize the wheeze content. The key assumptions behind the proposed
CL-RNMF approach to model wheezing spectral patterns are the following:

• Low-rank: The number of wheezing components should be much less than the
number of normal respiratory components, that is Kw � Kr. This assumption allows
that the number of frequency components can be reduced in the least number of bases
possible for their posterior analysis, while normal respiratory sounds are modeled
using a higher range of components. Experimental results showed that the best
classification performance was obtained when 2 ≤ Kw ≤ 6 and Kr ≥ 32. In particular,
when Kw = 1, the proposed CL-RNMF approach tends to converge very quickly at the
expense of losing relevant wheezing content. On the other hand, when Kw > 6, the
spectral wheezing patterns tend to be split into different components of the matrix BW .

• Constraints: These characterize wheezing sounds and normal respiratory sounds
using opposite restrictions between both sounds. The use of constraints allows isolat-
ing the spectral wheezing patterns from the spectral patterns of normal respiratory
sounds. Therefore, in order to find a better NMF decomposition that shows spectro-
temporal features of the wheezing and normal respiratory sounds as can be observed
in the real world, we propose to incorporate sparseness and smoothness into the
NMF decomposition process. As shown in Figures 1 and 2, wheezing sounds can be
considered sparse in frequency because MP wheezing or PP wheezing is characterized
by one or more than one narrowband spectral peak. Moreover, wheezing sounds
can be considered smooth or continuous events in time, that is slow variation of the
magnitude spectrogram along time. On the other hand, normal respiratory sounds can
be considered smooth in frequency, that is they can be modeled assuming wideband
spectral patterns. Therefore, BW should contain wheezing spectral patterns composed
of one or more than one narrowband spectral peak, depending on the spectral com-
plexity of each wheezing, and BR should be composed of a set of wideband spectral
patterns that model the behavior of normal respiratory sounds.
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Considering the key assumptions mentioned above, the global objective function
D
(
X|X̂

)
that must be minimized in order to estimate the basis (BR, BW) and activation

(AR, AW) matrices is composed of: (i) the Kullback–Leibler divergence cost function
DKL

(
X|X̂

)
to minimize the reconstruction error between the input spectrogram X and the

estimated spectrogram X̂, (ii) the spectral sparseness ψ(BW) and temporal smoothness
φ(AW) restrictions applied to BW and AW , respectively, to model the wheezing spectral
patterns, and (iii) the spectral smoothness φ(BR) restriction applied to BR, to model the
spectral patterns of normal respiratory sounds. The global objective function D

(
X|X̂

)
is

detailed as follows,

D
(
X|X̂

)
= DKL

(
X|X̂

)
+ αψ(BW) + λφ(AW) + βφ(BR) (13)

where the equations of terms DKL
(
X|X̂

)
, ψ(BW), φ(AW), and φ(BR) can be found in

Section 2. The parameters α, λ, and β define the weight to control the effect of the regular-
ization. Experimental results showed that the best classification performance is obtained
when all weights are equal α = λ = β, the optimal value being α = λ = β = 0.5. Analyzing
the sound separation performance of the previous decomposition, we observed empiri-
cally that the acoustic interference suffered by wheezing sounds from normal respiratory
sounds is minimum, and no significant loss of wheezing content occurs when α = λ = β.
However, significant losses of wheezing content appear when α = λ > β, or significant
sound interference by normal respiratory sounds can be observed when α = λ < β.

From Equation (13), the estimated basis matrices (BW and BR) and activation matrices
(AW and AR) can be obtained by applying a gradient descent algorithm based on multi-
plicative update rules. Specifically, the multiplicative update rules to learn those matrices
can be computed by taking negative and positive terms of the partial derivative of the
global objective function D

(
X|X̂

)
with respect to BW , BR, AW , and AR, respectively,

BW ← BW �

[
∂DKL(X|X̂)

∂BW

]−
+ α
[

∂ψ(BW )
∂BW

]−
[

∂DKL(X|X̂)
∂BW

]+
+ α
[

∂ψ(BW )
∂BW

]+ (14)

BR ← BR �

[
∂DKL(X|X̂)

∂BR

]−
+ β

[
∂φ(BR)

∂BR

]−
[

∂DKL(X|X̂)
∂BR

]+
+ β

[
∂φ(BR)

∂BR

]+ (15)

AW ← AW �

[
∂DKL(X|X̂)

∂AW

]−
+ λ

[
∂φ(AW )

∂AW

]−
[

∂DKL(X|X̂)
∂AW

]+
+ λ

[
∂φ(AW )

∂AW

]+ (16)

AR ← AR �

[
∂DKL(X|X̂)

∂AR

]−
[

∂DKL(X|X̂)
∂AR

]+ (17)

where, for each multiplicative update rule, the division between the negative and posi-
tive terms of the partial derivatives is an element-wise division. More details related to
the equations of each partial derivative of the multiplication update rules can be found
in Appendix A. Finally, the estimated respiratory and wheezing basis (BW and BR) and
activation matrices (AW and AR) are obtained updating the previous rules until the algo-
rithm converges using M iterations. Figure 4 shows the estimated matrices BW and BR
decomposing the MP wheezing spectrogram shown in Figure 1B. As can be observed, the
matrix BW contains spectral patterns that characterize a typical MP wheezing, which are
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represented by means of a set of narrowband spectral peaks (or frequency components).
In contrast, the estimated matrix BR is composed of a set of wideband spectral patterns
that characterize normal respiratory sounds. Therefore, the proposed CL-RNMF approach
achieves extracting the wheezing spectral content at the expense of removing normal
respiratory sounds.
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Figure 4. Example of the estimated matrices BW and BR obtained from the proposed CL-RNMF approach, analyzing the
MP wheezing spectrogram previously shown in Figure 1B. (A) Although the matrix BW is composed of four spectral bases,
the spectral wheezing patterns are compacted into the fourth basis BW(4). This spectral basis BW(4) is composed of three
narrowband spectral peaks. (B) The matrix BR is composed of thirty-two wideband spectral bases.

Experimentally, we found that the proposed CL-RNMF approach tends to compact all
the narrowband spectral peaks into a single basis of the matrix BW , as shown in Figure 4A.
However, considering that CL-RNMF uses a small set of wheezing components (Kw), in
some cases, the narrowband spectral peaks are divided into several bases of the same
matrix BW . To clarify this issue, Figure 5 shows the matrix BW obtained for the different
examples of MP and PP wheezing described in Section 1. As shown in Figure 5D, the
energy of the narrowband spectral patterns, which characterizes that PP wheezing, are
divided into two bases BW(1) and BW(2) belonging to the matrix BW . In both bases, BW(1)
and BW(2), all narrowband spectral peaks are correctly modeled.
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Figure 5. The estimated basis matrices BW obtained from CL-RNMF in the examples shown in Section 1. (A) BW for the MP
wheezing shown in Figure 1A. (B) BW for the MP wheezing shown in Figure 1B. (C) BW for the PP wheezing shown in
Figure 2A. (D) BW for the PP wheezing shown in Figure 2B. The wheezing spectral patterns were compacted into a single
basis, BW(2) (in Case (A)), BW(4) (in Case (B)), and BW(2) (in Case (C)). However, the energy of the narrowband spectral
peaks was divided into two bases BW(1) and BW(2), as can be seen in Case (D).
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Finally, we propose to obtain the spectral energy distribution ξ( f ) (see Equation (18))
from the set of bases that compose the matrix BW . This makes it possible to compact the
spectral distribution of all narrowband spectral peaks that make up the input MP or PP
wheezes to analyze their harmonic structure in Stage II.

ξ( f ) =
Kw

∑
kw=1

BW f ,kw
, f = 1, . . . , F (18)

Figure 6 shows the spectral energy distribution ξ( f ) obtained for the four examples
of wheezing shown in Section 1. The pseudocode of this Stage I for the modeling and
separation of wheezing spectral patterns based on CL-RNMF is detailed in Algorithm 1.
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Figure 6. The spectral energy distribution ξ( f ) provided by CL-RNMF from the estimated basis
matrix BW shown in Figure 5: (A) Figure 5A. (B) Figure 5B. (C) Figure 5C. (D) Figure 5D.

Algorithm 1: CL-RNMF.
Require: x(t), Kr, Kw, α, β, λ, and M.
ss1: Compute the normalized magnitude spectrogram X using Equation (11).
ss2: Initialize BW , BR, AW , and AR with random non-negative values.
ss3: Update the estimated wheezing basis matrix BW using Equation (14).
ss4: Update the estimated respiratory basis matrix BR using Equation (15).
ss5: Update the estimated wheezing activations matrix AW using Equation (16).
ss6: Update the estimated respiratory activations matrix AR using Equation (17).
ss7: Repeat Steps 3–6 until the algorithm converges (or until the maximum
number of iterations M is reached).

ss8: Compute the spectral energy distribution ξ( f ) from BW using Equation (18).
ssreturn ξ( f )

3.3. Stage II: Harmonic Structure Analysis

The goal of this stage is to classify between MP and PP wheezing by analyzing the
spectral energy distribution ξ( f ) of the different narrowband spectral peaks obtained in
the previous stage. Depending on the harmonic structure, wheezing can be classified as
MP or PP. Specifically, MP wheezing is composed of a single narrowband spectral peak
or the set of harmonically related narrowband spectral peaks. In contrast, PP wheezing is
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composed of several non-harmonically related narrowband spectral peaks. For this reason,
we propose to obtain the number of narrowband spectral peaks η that can be found from
ξ( f ). Note that the procedure to detect the spectral peaks is a simple task since, as can be
seen in Figure 6, the spectral energy distribution ξ( f ) from CL-RNMF clearly provides a set
of narrowband spectral peaks typically found in wheezing sounds. Once the parameter η is
obtained, a preliminary classification of the type of wheezing can be performed as follows,

Wheezing category =

{
MP if η = 1
MP or PP if η > 1

(19)

Wheezing can only be classified as MP when η = 1 since a wheezing is composed of a
single narrowband spectral peak, as can be seen in Figure 6A. However, a wheezing can
be classified as MP or PP when η > 1, depending on the harmonic structure that exists
between the different narrowband spectral peaks. Specifically, the wheezing is classified as
MP if the set of spectral peaks are harmonically related between them. The wheezing is
classified as PP if the spectral peaks are not harmonically related between them. In order to
perform the classification between MP and PP wheezing in the case of η > 1, we propose a
two-step procedure, as follows:

• The objective of the first step is to locate, in terms of frequency, all the narrowband
spectral peaks detected in the previous Stage I. For this, we propose to locate the
most prominent frequency fp(z) in each spectral peak z = 1, ... , η. Each value fp(z)
was calculated using the findpeaks function provided by the MATLAB software [74]
due to the satisfactory results obtained in several preliminary analyses performed.
Figure 7 shows the location fp(z), in terms of frequency, of each spectral peak for the
MP example previously shown in Figure 1B.

• The objective of the second step is to check if the different spectral peaks z = 1, ... , η are
harmonically related or not. We assume that the first spectral peak (z = 1) represents
the basal peak. Therefore, the wheezing is classified as MP if the rest of spectral peaks
(z = 2, ... , η) are located in the harmonic frequencies (integer multiple) of the basal
peak. Otherwise, the wheezing is classified as PP. From the width ∆ of the main
lobe of the basal peak (z = 1) and the value of its most prominent frequency fp(1),
the spectral intervals where the possible harmonic frequencies should be located are
calculated as follows,

Λz =
[
z fp(1)− (∆/2), z fp(1) + (∆/2)

]
, z = 1, . . . , η (20)

where [i, j] denotes the spectral interval comprised between the lower limit i and the
upper limit j, in terms of frequency. Specifically, Λ1 represents the spectral interval
associated with the basal peak, and Λz (z = 2, . . . , η) corresponds to the spectral
intervals where the harmonic frequencies should be located. Note that the width of
the main lobe ∆ was obtained by positioning the reference line beneath the peak at a
vertical distance equal to half the peak prominence [74].
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Figure 7. Example of the proposed two-step procedure to classify between MP and PP wheezing
when η > 1 from the example of MP wheezing shown in Figure 1B. Note that the arrows indicate the
narrowband spectral peaks that compose the wheezing. In this case, the wheezing is classified as MP
because all spectral peaks are harmonically related.

Considering the two-step procedure described above, wheezes that are composed of
several narrowband spectral peaks (η > 1) can be classified as MP or PP as follows,

Wheezing category =

{
MP if fp(z) ⊆ Λz, z = 2, . . . , η
PP otherwise

(21)

where v ⊆ V denotes that element v is contained in the interval V. Therefore, when
the frequency fp(z) of all possible harmonic spectral peaks z = 2, . . . , η is located in the
corresponding spectral intervals Λz, the wheezing is classified as MP. Otherwise, wheezing
is classified as PP because the narrowband spectral peaks that characterize the wheezing
are not harmonically related. This occurs when for the frequency fp(z), at least one of the
possible harmonic spectral peaks is not located in its corresponding spectral intervals Λz.
Figure 7 shows an example of the procedure described for MP wheezing composed of a
basal peak and two harmonics. Figure 8 shows two examples of the procedure described
for two PP wheezing with several non-harmonically related spectral peaks. Finally, the
pseudocode of this stage for the classification between MP/PP wheezing according to its
harmonic structure is detailed in Algorithm 2.
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Figure 8. Example of the proposed two-step procedure to classify between MP and PP wheezing when η > 1, considering
the two examples of PP wheezing shown in Figure 2. (A) Two-step procedure applied to the PP wheezing shown in
Figure 2A. (B) Two-step procedure applied to the PP wheezing shown in Figure 2B. Note that the arrows indicate the
narrowband spectral peaks that compose the wheezing. In this case, both wheezing are classified as PP because not all
spectral peaks are harmonically related.
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Algorithm 2: Harmonic structure analysis.
Require: ξ( f ).
ss1: From ξ( f ), detect the number η of narrowband spectral peaks.
ssif η = 1 then
ssssssreturn Wheezing category = MP
sselse
ssssss2: Locate the frequency fp(z) in each spectral peak z = 1, . . . , η.
ssssss3: Compute the spectral intervals Λz using Equation (20).
ssssssif fp(z) ⊆ Λz, z = 2, . . . , η then
ssssssssreturn Wheezing category = MP
sssssselse
ssssssssreturn Wheezing category = PP
ssssssend if
ssend if

4. Experimental Results and Discussion
4.1. Data Collection

As far as the authors’ knowledge, there is no public wheeze database in which wheez-
ing has been labeled as monophonic or polyphonic. For this reason, we received the
collaboration of a pneumologist from the University Hospital of Jaén (Spain) to create
and label a database according to the wheezing harmonic structure. The database was
created by collecting and categorizing a set of recordings from different subjects of the most
widely used Internet pulmonary repositories [75–87]. Specifically, all previous recordings
were collected from subjects with CRDs (asthma or COPD). Note that the set of record-
ings selected for this assessment was only composed of normal respiratory sounds and
wheezing sounds.

The type of wheezing (MP or PP) was labeled by the pneumologist by means of an
acoustic inspection and a visual verification of the spectrogram considering the harmonic
structure that distinguishes both types of wheezing. The database consisted of 200 MP and
200 PP wheezing segments, where the duration of each segment was at least 100 ms, to be
consistent with the literature. As mentioned above, MP wheezing can show two different
harmonic structures: Type 1, wheezes with a single peak, that is only the fundamental
frequency component is active; and Type 2, wheezes with the harmonics of a single
basal peak, that is both the fundamental frequency component and its frequencies that
are harmonically related are active. Therefore, to guarantee the maximum variability of
the MP wheezing, the 200 MP wheezing segments were divided into 100 MP wheezing
segments with a single peak and 100 MP wheezing segments with the harmonics of a single
basal peak. Note that all segments were independent of each other, since each segment
corresponded to a different wheezing from the rest. Finally, all segments in the database
were sampled at 4096 Hz and had a length between 100 and 700 ms. Figure 9 shows the
classification performed on the database created.
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200 MP wheezing segments 

 

100 MP wheezing 
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segments with 
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Figure 9. Scheme of the types of wheezing contained in the database.
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4.2. Experimental Setup

To be consistent with the literature, we assumed that wheezing sounds were not active
below 100 Hz and above 1000 Hz. For this reason, all segments that compose the database
were band-limited from 100 Hz–1000 Hz.

The length of the signal frames was set to N = 256 samples (62.5 ms). This frame size
was considered large enough to assume a perfect spectral representation of all wheezing
frequency components. The overlap between frames was set to 10% (6.25 ms). To obtain the
time-frequency representation, windowing with a Hamming window was applied, and the
order of the Discrete Fourier Transform (DFT) was set to 2N frequency bins, similar to [9,50].
This DFT size provides a high enough resolution for modeling the spectral patterns of
wheezing sounds and was chosen empirically as a trade-off between achieved quality and
complexity. Besides, we empirically observed that the reconstruction error converged after
50 iterations, so the maximum number of iterations for the decomposition was equal to
M = 50.

Finally, note that the performance of the proposed method depends on the initial
values with which the basis matrices BW , BR and the activation matrices AW , AR are
initialized. Although the obtained results are not dispersed and keep the same behavior, in
order to overcome this issue, we ran the proposed method five times for each segment that
composed the database, and the results shown in this paper are averaged values.

4.3. Evaluation Metrics

The Accuracy rates (ACC) were used to evaluate the performance of the proposed
method, which are commonly used in the field of wheezing classification [7]. In order to
provide a fair evaluation of the classification performance obtained by the proposed method
and the state-of-the-art algorithms, the following accuracy rates were proposed: (i) ACCG
is the ability to correctly classify a wheezing segment as MP or PP; (ii) ACCP represents
the ability to correctly classify a wheezing segment as PP; (iii) ACCM corresponds to the
ability to correctly classify a wheezing segment as MP; (iv) ACCM1 indicates the ability to
correctly classify a wheezing segment as MP Type 1; and (v) ACCM2 reports the ability to
correctly classify a wheezing segment as MP Type 2. The terms used in Equations (22)–(26)
are described in Table 1.

ACCG =
(TP + TM)

(TP + TM + FP + FM))
(22)

ACCP =
TP

(TP + FP)
(23)

ACCM =
TM

(TM + FM)
(24)

ACCM1 =
TM1

(TM1 + FM1)
(25)

ACCM2 =
TM2

(TM2 + FM2)
(26)
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Table 1. Definition of the terms that appear in the metrics detailed in Equations (22)–(26).

Terms Definitions

TP (True PP) PP wheezing segments correctly classified
TM (True MP) MP wheezing segments correctly classified
FP (False PP) PP wheezing segments misclassified as MP

FM (False MP) MP wheezing segments misclassified as PP
TM1 (True MP Type 1) MP Type 1 wheezing segments correctly classified
TM2 (True MP Type 2) MP Type 2 wheezing segments correctly classified
FM1 (False MP Type 1) MP Type 1 wheezing segments misclassified as PP
FM2 (False MP Type 2) MP Type 2 wheezing segments misclassified as PP

4.4. State-of-the-Art Method for Comparison

In order to measure the MP/PP classification performance of the proposal, we used
the most recent and relevant state-of-the-art algorithm [7], denoted as UPER in this paper.
The method UPER was implemented strictly following the instructions specified by the
authors in [7]. Firstly, the values of the metric PER were obtained using the 19th parameter
set (p = 10, q = 11, s = 7, and J = 45) in the RADWT model. Then, three classifiers,
Support Vector Machine (SVM) with the Radial Basis Function kernel (RBF kernel), K-
Nearest Neighbor (KNN), and Extreme Learning Machine (ELM) were applied to the PER
features. The classification performance of UPER was obtained in Leave-One-Out (LOO)
cross-validation schemes with the SVM, KNN, and ELM classifiers. Specifically, LOO cross-
validation is a particular case of Leave-p-Out (LPO) cross-validation with p = 1. Therefore,
the LOO scheme involves using one observation as the validation set and the remaining
observations as the training set. This is repeated in all ways to cut the database into a
validation set of one observation and a training set. Considering the database evaluated
in this work (400 segments in total), the LOO cross-validation scheme has 400 possible
combinations of validation in which the training set is composed of 399 segments, and only
one segment is tested, as can be observed in Figure 10). Results shown in this paper for all
classifiers are the average values obtained from the 400 possible validation combinations.
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Figure 10. LOO cross-validation scheme for the database described in this paper.

4.5. Accuracy Results

In this section, we evaluate the MP/PP classification performance between the pro-
posed method and UPER [7]. A remarkable distinction between the two methods is that
the proposed method is completely unsupervised or blind (no training), but the method
UPER depends on the training database.
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Table 2 shows the MP/PP classification results, in terms of the accuracy rates, eval-
uating the database described in Section 4.1. Results provided by UPER, considering
the three classifier versions (SVM, KNN, and ELM), were obtained by applying an LOO
cross-validation scheme as was previously described in Section 4.4. Results report that the
proposed method provides the best overall MP/PP classification results compared to UPER
considering all evaluated metrics. Focusing on the different accuracy rates, the following
can be observed:

• the improvement, in terms of ACCG, of the proposed method is about 8.25% UPER
(SVM), 12% UPER (KNN), and 10.5% UPER (ELM).

• the improvement, in terms of ACCP, of the proposed method is about 4% UPER
(SVM), 7.1% UPER (KNN), and 5.5% UPER (ELM).

• the improvement, in terms of ACCM, of the proposed method is about 12.5% UPER
(SVM), 17% UPER (KNN), and 15.5% UPER (ELM).

• the improvement, in terms of ACCM1, of the proposed method is about 5% UPER
(SVM), 10% UPER (KNN), and 8% UPER (ELM).

• the improvement, in terms of ACCM2, of the proposed method is about 20% UPER
(SVM), 24% UPER (KNN), and 23% UPER (ELM).

Table 2. Comparative ACC results between the proposed method and UPER.

Algorithm ACCG ACCP ACCM ACCM1 ACCM2

Proposed Method 92% 91.5% 92.5% 91% 94%
UPER (SVM) [7] 83.75% 87.5% 80% 86% 74%
UPER (KNN) [7] 80% 84.4% 75.5% 81% 70%
UPER (ELM) [7] 81.5% 86% 77% 83% 71%

The main advantage of UPER is that it only uses one feature (PER value) to discrim-
inate between MP and PP wheezing. As shown in Table 2, the SVM classifier obtains
the best classification performance in the method UPER. Specifically, the classifier SVM
achieves an improvement of 2.25% (KNN) and 1.5% (KNN), in terms of ACCG. These
results are consistent with those obtained by the authors in [7], confirming that the SVM
classifier with the RBF kernel obtains the best classification performance when the number
of features (only one PER value) is small [88].

Performing an empirical analysis of the proposed method and UPER, the following
observations were extracted:

(i) Due to the time-frequency overlapping problem, normal respiratory sounds often
mask wheezing sounds, hiding relevant medical information [5]. While the proposed
method (based on CL-RNMF) allows removing as much as possible the acoustic
interference from normal respiratory sounds, the method UPER is based on a feature
PER obtained from the sub-band energy of the wavelet coefficients, so the presence of
normal respiratory sounds interferes in the selection of the optimal sub-bands that
really belong to the wheezing components.

(ii) The method UPER has more difficulty in discriminating between PP and MP wheezing
composed by a basal peak and its harmonics since it achieves the worst performance
in terms of ACCM2. The reason is because UPER is based on energy and ignoring
the spectral location of the components that model the harmonic behavior of MP
wheezing. Results in Table 2 suggest that MP/PP classification based on the spectral
location of the harmonic structure as occurs in the proposed method is more reliable
than the use of the energy of the wheezing spectral components, as occurs in UPER.

The LOO cross-validation scheme does not show the dependency that classifiers have
with the size of the training segments set, since this scheme always uses one segment as the
validation set and the remaining segments as the training set. For this reason, we propose
to use an LPO cross-validation scheme by varying the size of the training segments set. The
LPO scheme requires training and validating the model Cn

p times, where n is the number
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of segments that compose the database, p is the number of validation segments, and Cn
p is

the binomial coefficient. As a result, the associated computational cost can be excessive. In
order to overcome this issue, we limited the number of iterations of the LPO scheme to
500. Furthermore, the same number of MP and PP wheezes was selected for both training
and validation sets in each iteration. Specifically, we used four LPO schemes: (i) p = 80
uses 80% of the total segments as the training set in each iteration; (ii) p = 160 uses 60%
of the total segments as the training set in each iteration; (iii) p = 240 uses 40% of the
total segments as the training set in each iteration; and (iv) p = 320 uses 20% of the total
segments as the training set in each iteration. Considering all the instructions described
above, Table 3 shows the MP/PP classification results, in terms of ACCG, obtained by UPER
using its three classifier versions (SVM, KNN, and ELM) in order to assess its dependence
on the training set size. Comparing the LOO scheme with the LPO scheme (p = 320), the
ACCG reduction of the classification performance is about 7.5% (SVM), 8.25% (KNN), and
6.25% (ELM). Results report that the PER feature allows distinguishing between MP and
PP wheezing even when the training set size is reduced. In addition, the ELM classifier
shows less dependence on the training database size compared to SVM and KNN.

Table 3. Comparative results, in terms of ACCG, between the three classifier versions (SVM, KNN,
and ELM) of the method UPER using four Leave-p-Out (LPO) cross-validation schemes.

Scheme Training Set Validate Set SVM KNN ELM

LOO 399 (99.75%) 1 (0.25%) 83.75% 80% 81.5%
LPO (p = 80) 320 (80%) 80 (20%) 81.5% 79.25% 80%

LPO (p = 160) 240 (60%) 160 (40%) 80.5% 77.75% 79.5%
LPO (p = 240) 160 (40%) 240 (60%) 78.25% 74.75% 77.25%
LPO (p = 320) 80 (20%) 320 (80%) 76.25% 71.75% 75.25%

5. Conclusions and Future Work

In this paper, we present a novel Constrained Low-rank Non-negative Matrix Factor-
ization (CL-RNMF) approach to classify monophonic and polyphonic wheezing sounds
according to their harmonic structure. The first contribution of this work proposes a CL-
RNMF framework that allows extracting the spectral patterns that characterize wheezing
sounds with the least possible interference from normal respiratory sounds. Specifically, a
low-rank configuration with a reduced number of wheezing bases is presented to compact
its frequency components in the least number of bases possible for their posterior analysis.
In addition, CL-RNMF uses a set of constraints to model the spectro-temporal behavior
of wheezing and normal respiratory sounds. As far as the authors’ knowledge, the non-
negative matrix factorization approach has never been applied before to MP/PP wheezing
classification. The second contribution analyzes the harmonic structure of the energy dis-
tribution from the estimated wheezing spectrogram provided by CL-RNMF to determine
the type of wheezing, allowing a more efficient classification based on the location of the
wheezing frequency components, rather than the energy of their components.

The most relevant conclusions from the experimental results indicate the following:
(i) the proposed method provides the best overall performance related to MP/PP wheezing
classification compared to the most relevant method of the state-of-the-art; (ii) unlike most
state-of-the-art methods based on classifiers, the proposed method is an unsupervised
(blind) approach that does not require any training from wheezing sounds; (iii) the pro-
posed method achieves removing most of the interference from normal respiratory sounds;
(iv) specific accuracy rates, ACCM and ACCP, obtained by the proposed method seem to
suggest the ability of the proposal to classify both monophonic and polyphonic wheezing
sounds correctly.

Future work will be focused on the design of new constraints, to be applied in NMF
approaches, that improve the modeling of time-frequency respiratory sound events, ana-
lyzing different types of adventitious sounds, such as wheezes and crackles. The objective
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of this future research line is to perform an early detection and classification among the dif-
ferent types of adventitious sounds active in the auscultation process in order to maximize
the reliability of the diagnosis issued by the physician in the case of pathologies of lung
diseases caused by the appearance of such adventitious sounds.
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Appendix A. Terms of the Multiplicative Update Rules
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Here are each of the terms belonging to the multiplicative update rule to obtain the
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