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Abstract: The TUBA1A gene encodes tubulin alpha-1A, a protein that is highly expressed in the
fetal brain. Alpha- and beta-tubulin subunits form dimers, which then co-assemble into microtubule
polymers: dynamic, scaffold-like structures that perform key functions during neurogenesis,
neuronal migration, and cortical organisation. Mutations in TUBA1A have been reported to cause
a range of brain malformations. We describe four unrelated patients with the same de novo
missense mutation in TUBA1A, c.5G>A, p.(Arg2His), as found by next generation sequencing.
Detailed comparison revealed similar brain phenotypes with mild variability. Shared features
included developmental delay, microcephaly, hypoplasia of the cerebellar vermis, dysplasia or
thinning of the corpus callosum, small pons, and dysmorphic basal ganglia. Two of the patients
had bilateral perisylvian polymicrogyria. We examined the effects of the p.(Arg2His) mutation
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by computer-based protein structure modelling and heterologous expression in HEK-293 cells.
The results suggest the mutation subtly impairs microtubule function, potentially by affecting
inter-dimer interaction. Based on its sequence context, c.5G>A is likely to be a common recurrent
mutation. We propose that the subtle functional effects of p.(Arg2His) may allow for other factors
(such as genetic background or environmental conditions) to influence phenotypic outcome, thus
explaining the mild variability in clinical manifestations.

Keywords: TUBA1A; tubulin; p.(Arg2His), R2H; tubulinopathy; polymicrogyria; cerebellar hypoplasia

1. Introduction

TUBA1A is a highly-conserved gene with few changes among eukaryotes and few polymorphic
variants in human populations. TUBA1A encodes the tubulin alpha-1A chain, a protein that is
highly-expressed in the cerebral cortex, hippocampus, cerebellum, and brainstem of the developing
fetal brain, with a decrease in postnatal and adult stages [1,2]. Alpha- and beta-tubulin subunits
form dimers that coassemble into microtubules. Microtubules are dynamic polymers that perform
a range of mechanical tasks within the cell. As major components of the mitotic spindle, microtubules
control division of neuronal progenitors to produce neurons. In turn, they generate the push-and-pull
forces that are required for the migration of primitive neurons, from deep proliferative areas to the
cortical plate. Subsequently, bundles of stable and polarised microtubule polymers generate long
axons facilitating cortical organisation and synaptic connectivity.

TUBA1A was the first tubulin gene to be associated with human brain malformations [3].
Mutations in TUBA1A have been reported in patients with a range of brain malformations, including
lissencephaly, microlissencephaly, polymicrogyria, and simplified gyri [4–6]. They have also been
reported in patients with hydranencephaly-like dysplasias, cerebral palsy, and autistic spectrum
disorders [7–9]. TUBA1A mutations (as with other tubulinopathies) are often associated with
hypoplasia/agenesis of the corpus callosum, hypoplasia/dysplasia of the cerebellum, and dysmorphic
basal ganglia [5,6]. Common clinical features in TUBA1A patients include microcephaly, intellectual
disability, motor impairment, and epilepsy. Mutations in several other tubulin genes have been
reported in patients with brain malformations including TUBB2B [10], TUBB3 [11,12], TUBB [13],
TUBB2A [14], and TUBG1 [15]. However, TUBA1A mutations remain the most common cause
of tubulin-related brain malformations, with over 60 mutations being described to date [6].
Most disease-causing TUBA1A mutations are de novo, although familial recurrence due to parental
somatic mosaicism has been reported [4,16].

Pathogenic TUBA1A mutations have been found distributed throughout the gene. A handful
of recurrent TUBA1A mutations have been reported. These include the p.(Arg402His) mutation,
which has been reported in at least five patients and is associated with classic lissencephaly [3,17].
Similarly, the recurrent p.(Arg264Cys) mutation has been found in several patients and is typically
associated with central pachygyria [3,18,19]. Few genotype-phenotype correlations have been reported
for TUBA1A. However, the phenotypic effects of a specific recurrent mutation are generally consistent.
Alpha-tubulin must fold in a precise way and present specific shapes and charges on its surface to
interact with other proteins (e.g., beta-tubulin subunits, microtubule binding proteins) and to correctly
handle and hydrolyse guanosine-5′-triphosphate (GTP). Many TUBA1A mutations have been shown
to disrupt protein folding and/or heterodimer formation, resulting in either a reduced yield or reduced
stability [20].

During the clinical diagnostic work-up of two unrelated patients with developmental delay and
brain abnormalities, we identified the same mutation, c.5G>A, p.(Arg2His), in TUBA1A. To define the
clinical consequences of this mutation, we collected detailed phenotype information from both patients
and two additional patients that were previously reported in the literature [21–23]. We examined
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the functional impact of the mutation by in vitro microtubule studies and computer-based protein
structure modeling.

2. Materials and Methods

2.1. Patients

Patients 1 and 2 were diagnosed during routine clinical diagnostic work-ups. Patient 1 underwent
testing with a 12-gene polymicrogyria sequencing panel (targets enriched by Agilent SureSelect system,
followed by Illumina sequencing) in the United States. Patient 2 had testing with a 40 gene cortical
malformation gene panel (HaploPlex target enrichment system followed by Illumina sequencing) in the
United Kingdom. The mutations in Patients 1 and 2 were confirmed and shown to be de novo by Sanger
sequencing in the patient and both parents. Patient 3 underwent trio-based whole exome sequencing
(WES) as a part of their routine clinical diagnostic work-up in the United States [21,23]. The approach to
analysis and filtering of the WES data has previously been described [21]. No other candidate variants
were identified in the patient. Patient 4 underwent targeted sequencing of a panel of 423 genes that are
associated with corpus callosum anomalies in France [22]. The approach to analysis and filtering of this
panel has previously been described [24,25]. No other candidate variants were identified in the patient.
Consent was obtained from the parents of all the participants for publication. The genomic location of
the mutation is chr12:g.49580615C>T (GRCh37/hg19), rs587784491. Coding and protein positions of
TUBA1A mutations are based on GenBank accession codes NM_006009.3 (ENST00000301071.7) and
NP_006000.2, respectively.

2.2. Homology Modelling

Structural predictions of wild-type and mutant TUBA1A protein subunits were generated while
using a previously-described homology modeling pipeline [26]. This approach uses the solved
structure of a homologous template to predict the folding of a target sequence. The target sequence was
wild-type TUBA1A (NP_006000.2). The template used was the crystal structure of Tubulin alpha-1B
from Bos taurus (Protein Data Bank (PDB): 4I4T) [27], which shares 99% sequencing identity with human
TUBA1A. Microtubule architecture was based on a previously published template (PDB: 2XRP) [28].
Homology modelling was performed by MODELLER (version 9.17) [29]. Structural models were
viewed and analysed while using the UCSF Chimera software (version 1.12) [30,31].

2.3. Expression Construct Mutagenesis and Cell Culture

A C-terminally FLAG-tagged wild-type TUBA1A expression construct (pRK5-TUBA1A-C-FLAG)
was modified to generate TUBA1A-R2H by site-directed mutagenesis using the QuikChange
mutagenesis kit (Stratagene, La Jolla, CA, USA). HEK-293 cells were cultured in Dulbecco’s modified
Eagle’s media (ThermoFisher, Waltham, MA, USA, catalogue number 41966029), supplemented
with 10% fetal calf serum (ThermoFisher, 10500056) and 1% penicillin/streptomycin (ThermoFisher,
15070063), as previously described [14].

2.4. Immunocytochemistry

HEK-293 cells were cultured in Dulbecco’s modified Eagle’s media (ThermoFisher, 41966029).
supplemented with 10% fetal calf serum (ThermoFisher, 10500056) and 1% penicillin/streptomycin
(ThermoFisher, 15070063) and incubated at 37 ◦C 5% CO2. Cells were seeded onto poly-D-Lysine
(Sigma-Aldrich, St. Louis, MO, USA, P6407) pre-coated 13 mm glass coverslips. After 24 h,
the cells were transfected with either wild-type or mutant expression constructs using Lipofectamine
2000 (ThermoFisher, 11668030). Twenty-four hours post-transfection, the cells were fixed with methanol
at −20 ◦C for five minutes. Fixed cells were blocked with blocking buffer (phosphate-buffered saline
(PBS) with 2% Bovine Serum Albumin (BSA; Sigma-Aldrich, B4287) and 0.5% Triton (Sigma-Aldrich,
T8787)) for 30 min at room temperature (23 ◦C). Cells were immunostained with rabbit anti-FLAG
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(Sigma-Aldrich, F7425; 1:500) and mouse anti-alpha-tubulin (Sigma-Aldrich, T6199; 1:750) diluted
in PBS with 2% BSA and 0.1% Triton for one hour at room temperature. Primary antibodies were
aspirated, cells washed three times with PBS, and incubated with AlexaFluor568-conjugated goat
anti-rabbit (ThermoFisher, A11011) and AlexaFluor488-conjugated goat anti-mouse (ThermoFisher,
A11011) secondary antibodies for 30 minutes at room temperature, and protected from light from
this point onwards. Cells were rinsed with PBS, mounted onto glass slides with ProLong Gold
mounting medium (ThermoFisher, P10144) and stored at 4 ◦C until examined by confocal microscopy
(Zeiss Axioscope).

2.5. Predicting the Probability of TUBA1A Substitutions

The genomic DNA sequence of the TUBA1A gene (based on transcript ENST00000301071.7)
was obtained from the Ensembl Genome Browser [32]. A sliding window was implemented using
a Perl script. For each 7-nucleotide window the script recorded the position and base of the central
nucleotide. The heptanucleotide sequence was then looked up in the data from [33] (Supplementary
Table 7 from that paper). The substitution probabilities for changing the central nucleotide to each of
the three alternative bases were taken (averaging African, Asian, and European values). The cDNA and
protein consequences of each substitution were derived using Mutalyzer [34,35]. Predicted substitution
probabilities were obtained for all coding positions, introns (±20 base pairs flanking exons), and 5’ and
3’ untranslated regions (±20 base pairs).

3. Results

3.1. Clinical Features of Patients with the p.(Arg2His) Mutation

We identified two unrelated patients (Patients 1 and 2) with the same TUBA1A missense mutation,
c.5G>A, p.(Arg2His). A search of the literature found reports of two additional patients with the
p.(Arg2His) mutation (Patients 3 and 4) [21–23]. Only brief descriptions of the two published subjects
were previously available. We obtained detailed clinical information from the four individuals (Table 1,
detailed case reports are provided in the Supplementary Material). All four mutations were de novo.
Consistent features in the living patients were developmental delay and microcephaly. MRI brain
images from Patients 1–3 were available for review (Figure 1). The images demonstrated the hypoplasia
and dysplasia of the cerebellar vermis (3/3), hypoplasia or dysgenesis of the corpus callosum (3/3),
and dysmorphic basal ganglia (3/3). Patient 1 had bilateral perisylvian polymicrogyria. The pons of
all three patients was small, particularly affecting the belly of the pons.

Patient 4 was a fetus terminated at 36 weeks gestation. Post-mortem examination of Patient
4 found a small brain (weight on 5th centile) with shortening of the corpus callosum and cerebellar
hypoplasia (Figure 2A,B). Neuropathology examination found bilateral perisylvian polymicrogyria
(Figure 2C–E). At the supratentorial level, callosal fibers and corticospinal tracts (CST) were hypoplastic.
The brainstem was shortened and dysmorphic, displaying a Z-shaped kink. At the level of the cerebral
peduncles, the CST were present but reduced in size. The pons was reduced in size in its basilar part.
In the pons the CST were present at the junction with the peduncles but showed a chaotic pattern in
between the pontine nuclei. The transverse pontine fibers were also reduced, and associated with
cerebellar heterotopias and hypoplastic deep nuclei. At the level of the medulla, the pyramids were
present but hypoplastic. The inferior olivary nuclei were also reduced in size. Neuronal heterotopia of
the olivary nuclei was noted. At the cervical spinal cord level, crossing CST were absent. Cerebellar
foliation was normal, but lamination was impaired with rare and misaligned Purkinje cells.
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Table 1. Clinical features of patients with the recurrent p.(Arg2His) TUBA1A mutation.

Patient 1 2 3 4 (fetus)

Sex Male Male Male Male
OFC at Birth 30 cm (−3.6 SD) 34 cm (−0.9 SD) 33 cm (−1.7 SD) n/a

Age at last review 4 years 32 months 37 months TOP at 36 weeks gestation
Last OFC 45 cm (−4.9 SD) 43 cm (−5.9 SD) 45 cm (−4.6 SD) n/a

Developmental delay Moderate Severe Moderate n/a
Seizures Yes (onset at 3 years) Yes (onset at 12 months) No n/a

Cerebral cortex Bilateral perisylvian
polymicrogyria Normal Normal Bilateral perisylvian

polymicrogyria
White matter Reduced Reduced Reduced n/k

Corpus callosum Partial agenesis Thin Thin Short, no rostrum

Basal ganglia Dysmorphic, prominent Dysmorphic, prominent Dysmorphic,
prominent n/k

Cerebellum Hypoplasia and
dysplasia of vermis

Hypoplasia and
dysplasia of vermis

Hypoplasia and
dysplasia of

vermis

Hypoplasia, Impaired
lamination, rare and
misaligned Purkinje

Brainstem Small pons Small pons Small pons
Neuronal heterotopia of

olivary nuclei and
hypoplastic pyramids

Key: n/a/k = not applicable/known; OFC = occipital frontal circumference; PMG = polymicrogyria; SD = standard
deviations; TOP = termination of pregnancy.
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Figure 1. Magnetic resonance images from patients with the recurrent p.(Arg2His) TUBA1A mutation.
T2-weighted axial and T1-weighted midline sagittal brain images for Patient 1 at age three years (A–C),
Patient 2 at age six months (D–F), and Patient 3 at age 19 months (G–I). The images demonstrate
hypoplasia and dysplasia of the cerebellar vermis (yellow arrows), thinning or partial agenesis of the
corpus callosum (red arrows), globular basal ganglia with incomplete formation of the anterior limb
internal capsule (white arrows), and bilateral perisylvian polymicrogyria (blue arrows). The pons is
similar in size to the midbrain which suggests the pons is relatively small (C,F,I).
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cerebellum showing mild hypoplasia of the cerebellar vermis. (C) Coronal section of the cerebral 
hemispheres. The corpus callosum is thinned and there is thickening of the cortex around the sylvian 
fissures. (D) Stained section of the right cerebral hemisphere revealing abnormal folding of the 
cortical ribbon around the sylvian fissure. (E) A magnified view of (D) demonstrating 
polymicrogyria around the sylvian fissure. 
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is relatively small (Grantham difference 29) with both of the residues having positively-charged side 
chains. The c.5G>A change is predicted to have minimal effects on the splicing at the adjacent splice 
acceptor site (Figure S2). When incorporated into polymerised microtubule, the N-terminus of 
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heterodimer and the beta subunit of the next heterodimer. To study the effects of p.Arg2His on the 
three-dimensional structure of the protein, we compared wild-type and mutant TUBA1A by 
modelling the alpha/beta-tubulin heterodimer (Figure 3A,B) (the protein variant is given here 
without brackets as we know the amino acid sequence in a simulation). The effects of the mutation 
were mild. No predicted hydrogen bonding was lost or gained between the alpha- and beta-tubulin 
subunits as a result of p.Arg2His. A hydrogen bond between Arg2 and the highly-conserved Cys4 
residue within TUBA1A was lost. In addition, new bonds between Glu3, and both Asn50 and Thr130 
were predicted to form as a result of the substitution. Additional conformational changes were 
predicted to occur in a loop region (Asp38 to Asn51, Figure 3B), which may affect interactions 
between heterodimers. 

Figure 2. Neuropathology from Patient 4. (A) The medial aspect of right cerebral hemisphere showing
a thin corpus callosom with absent rostrum. (B) Midline sagittal section of brain stem and cerebellum
showing mild hypoplasia of the cerebellar vermis. (C) Coronal section of the cerebral hemispheres.
The corpus callosum is thinned and there is thickening of the cortex around the sylvian fissures.
(D) Stained section of the right cerebral hemisphere revealing abnormal folding of the cortical ribbon
around the sylvian fissure. (E) A magnified view of (D) demonstrating polymicrogyria around the
sylvian fissure.

3.2. Modelling the Structural Effects of p.Arg2His

The Arg2 residue of TUBA1A is highly conserved across species and tubulin isoforms (Figure S1).
The p.(Arg2His) variant is not present in gnomAD and multiple in silico prediction tools suggest it
is deleterious (Table S1). However, the physicochemical difference between arginine and histidine
is relatively small (Grantham difference 29) with both of the residues having positively-charged
side chains. The c.5G>A change is predicted to have minimal effects on the splicing at the adjacent
splice acceptor site (Figure S2). When incorporated into polymerised microtubule, the N-terminus
of alpha-tubulin is positioned near the inter-dimer interface, between the alpha-tubulin subunit of
one heterodimer and the beta subunit of the next heterodimer. To study the effects of p.Arg2His
on the three-dimensional structure of the protein, we compared wild-type and mutant TUBA1A by
modelling the alpha/beta-tubulin heterodimer (Figure 3A,B) (the protein variant is given here without
brackets as we know the amino acid sequence in a simulation). The effects of the mutation were mild.
No predicted hydrogen bonding was lost or gained between the alpha- and beta-tubulin subunits as
a result of p.Arg2His. A hydrogen bond between Arg2 and the highly-conserved Cys4 residue within
TUBA1A was lost. In addition, new bonds between Glu3, and both Asn50 and Thr130 were predicted
to form as a result of the substitution. Additional conformational changes were predicted to occur in
a loop region (Asp38 to Asn51, Figure 3B), which may affect interactions between heterodimers.
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(arrow) with the mutant (purple ribbon, red side chain) and wild type (green ribbon and side chain) 
proteins superimposed. Only mild confirmation changes are predicted around the Arg2 residue. 
However, additional conformational changes are predicted between residues 38 and 51 (bracket). 
These may affect the interaction between heterodimers. (C) HEK-293 cells expressing FLAG-tagged 
TUBA1A-R2H. The cells are stained with DAPI (4′,6-diamidino-2-phenylindole, blue), anti-FLAG- 
(red), and anti-alpha-tubulin (green) antibodies. The microtubules appear yellow due to the 
colocalisation of endogenous (green) and FLAG-tagged transgenic (red) tubulin. The arrows indicate 
diffuse patches of transgenic mutant tubulin (red) in the cytoplasm between the microtubules. (D) 
Control cells expressing FLAG-tagged wild-type TUBA1A have less staining for the transgenic 
tubulin in the cytoplasm between the microtubules. 
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HEK-293 cells. TUBA1A-R2H incorporated into the microtubule polymer network (Figure 3C), 
suggesting that it successfully folds and dimerises with endogenous beta-tubulin. However, in 
comparison to wild-type TUBA1A (Figure 3D), there was a slight increase in the proportion of the 
mutant FLAG-tagged protein seen unpolymerised within the cytosol. This suggests the mutation 
subtly alters the function (folding, dimerisation, or coassembly) of the subunit, but that once 
incorporated the dynamics of the mutant subunit are similar to wild type. 

Figure 3. In silico modelling and in vitro functional analysis of the p.(Arg2His) mutation. (A) Ribbon
models of alpha-tubulin (green) and beta-tubulin (blue) subunits aligned in a microtubule polymer.
The position of Arg2 is shown (arrow) close to the inter-dimer interface (between alpha-tubulin and
the beta-tubulin of an adjacent heterodimer). The mutation is on the opposite side of TUBA1A from
the binding site of guanosine-5′-triphosphate (GTP, orange). (B) A close-up view of the Arg2 residue
(arrow) with the mutant (purple ribbon, red side chain) and wild type (green ribbon and side chain)
proteins superimposed. Only mild confirmation changes are predicted around the Arg2 residue.
However, additional conformational changes are predicted between residues 38 and 51 (bracket).
These may affect the interaction between heterodimers. (C) HEK-293 cells expressing FLAG-tagged
TUBA1A-R2H. The cells are stained with DAPI (4′,6-diamidino-2-phenylindole, blue), anti-FLAG- (red),
and anti-alpha-tubulin (green) antibodies. The microtubules appear yellow due to the colocalisation of
endogenous (green) and FLAG-tagged transgenic (red) tubulin. The arrows indicate diffuse patches
of transgenic mutant tubulin (red) in the cytoplasm between the microtubules. (D) Control cells
expressing FLAG-tagged wild-type TUBA1A have less staining for the transgenic tubulin in the
cytoplasm between the microtubules.

3.3. Heterologous Expression of TUBA1A-R2H in HEK-293 cells

TUBA1A containing the p.(Arg2His) mutation (TUBA1A-R2H) was expressed in cultured HEK-293
cells. TUBA1A-R2H incorporated into the microtubule polymer network (Figure 3C), suggesting that it
successfully folds and dimerises with endogenous beta-tubulin. However, in comparison to wild-type
TUBA1A (Figure 3D), there was a slight increase in the proportion of the mutant FLAG-tagged
protein seen unpolymerised within the cytosol. This suggests the mutation subtly alters the function
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(folding, dimerisation, or coassembly) of the subunit, but that once incorporated the dynamics of the
mutant subunit are similar to wild type.

3.4. Substitution Probability of Recurrent TUBA1A Mutations

The observation of p.(Arg2His) on four separate occasions suggested that it was a common
recurrent TUBA1A mutation. However, we noted that p.(Arg2His) had not been reported in
previous large tubulinopathy cohorts [6]. In contrast, several TUBA1A mutations have been found
recurrently in tubulinopathy patients. Examples include p.(Arg214His) [6,36], p.(Arg264Cys) [3,18,19],
p.(Arg390Cys) [17,37], p.(Arg402His) [3,17,38,39], p.(Arg402Cys) [17,19], and p.(Arg422His) [17,18,40].
This made us wonder whether p.(Arg2His) had a lower mutation rate than the other recurrent TUBA1A
mutations or whether it was just ascertained less frequently. We observed that the recurrent mutations
all occurred at CpG sites, which are prone to spontaneous deamination (CGx is the codon for arginine).
This highlighted that sequence context was likely to be an important factor. To predict the substitution
rates at these sites and to compare them with the rest of TUBA1A, we estimated the probability of
all possible single-base substitutions in TUBA1A based on heptanucleotide context (target position
and three flanking nucleotides either side). Heptanucleotide context has been shown to explain >81%
of variability in substitution probabilities [33]. We found the seven recurrent TUBA1A mutations all
ranked in the top 1% for substitution probability. The p.(Arg2His) mutation was the second highest in
the group (ranking 7th out of 4548 possible substitutions) (Table S2). These results suggest p.(Arg2His)
has a mutation rate that is similar to other recurrent TUBA1A mutations. The lack of observations in
previous tubulinopathy cohorts may therefore reflect differences in ascertainment.

4. Discussion

In this report, we describe four patients with the TUBA1A p.(Arg2His) mutation. The patients had
similar phenotypes with mild variability. Shared features included developmental delay, microcephaly,
hypoplasia, and dysplasia of the cerebellar vermis, dysplasia or thinning of the corpus callosum, and
dysmorphic basal ganglia. The pons tended to be small, disproportionally affecting the belly of the
pons. We suspect the pons is dyspastic (i.e., abnormally developed) as well as small. Histopathological
abnormalities of the pons were noted in patient 4. Two of the patients had bilateral perisylvian
polymicrogyria. These features are typical of a tubulinopathy spectrum disorder [6]. Our findings
suggest that p.(Arg2His) is a common recurrent TUBA1A mutation. Tubulinopathy patients are often
ascertained due to cortical malformations (e.g., the classical lissencephaly associated with the recurrent
p.(Arg402His) mutation)). In contrast, p.(Arg2His) does not cause an extensive cortical malformation.
This may explain why p.(Arg2His) has not been observed in previous tubulinopathy cohorts [6].

Phenotypic variability that is associated with recurrent TUBA1A mutations has previously
been noted. For example, the p.(Arg390Cys) mutation was first reported in a patient with mild
gyral simplification, complete agenesis of the corpus callosum, and cerebellar hypoplasia [17].
It was subsequently reported in a patient with asymmetrical perisylvian polymicrogyria, hypoplasia
of the corpus callosum, dysplastic cerebellar vermis, dysmorphic basal ganglia, and severe
hypoplasia of brainstem [37]. Similarly, p.(Arg214His) was initially reported in a fetus with central
polymicrogyria-like cortical dysplasia, complete agenesis of the corpus callosum, and normal
cerebellum [6]. It was then reported in a patient with diffuse irregular gyration and sulcation of
the cortex, partial agenesis of the corpus callosum, hypoplasia of the cerebellar vermis, and globular
thalami [36]. As with p.(Arg2His), these descriptions suggest variability, but with overlap in key
elements of the phenotype (abnormalities of the cortex, corpus callosum, cerebellum, and basal ganglia).
Some of the variability may be due to differences in the interpretation of the brain imaging. However,
differences in genetic background, environmental factors, or random chance may also contribute.
Oegema et al. [36] found that p.(Arg214His) caused only a mild functional deficit (incorporating
into microtubule polymers at comparable levels to wild type but at a reduced rate) and subtle
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predicted structural effects. Mutations with relatively mild functional effects (such as p.(Arg214His) or
p.(Arg2His)) may allow for other factors to influence phenotype outcome.

Mutations of the homologous Arg2 residue in other tubulin isoforms have been linked to human
disease phenotypes. TUBB8 is the main beta-tubulin of oocytes. The p.(Arg2Lys) mutation in TUBB8
has been found to cause arrest of oocyte meosis [41]. The mutation is thought to affect folding of the
protein as well as the assembly and stability of heterodimers. The p.(Arg2Met) mutation in TUBB8
has also been shown to cause arrest of oocyte maturation [42,43]. TUBB4A is a brain-expressed
beta-tubulin isoform. A p.(Arg2Gly) mutation in TUBB4A has been identified in a family with dystonia
type 4 (‘Whispering dysphonia’) [44,45]. TUBB4A p.(Arg2Trp) and p.(Arg2Gln) have been reported to
cause hypomyelination with atrophy of the basal ganglia and cerebellum [46,47]. The Arg2 of TUBB4A
is part of the MREI (Met-Arg-Glu-Ile) ‘auto-regulatory’ domain, which is involved in controlling the
amount of the beta-tubulin produced by the cell. In addition, these mutations disrupt a salt bridge
Arg2 forms with Asp249 in TUBB4A [48]. This salt bridge is not predicted to occur in TUBA1A as the
homologous residues are further apart.

5. Conclusions

We have shown that the TUBA1A c.5G>A, p.(Arg2His) mutation causes cortical, callosal,
and cerebellar abnormalities that are typical of tubulinopathy-associated brain malformations.
Based on its sequence context (and observation in four unrelated patients), c.5G>A is likely to
be a common recurrent mutation in TUBA1A. Our functional and computer modelling results
suggest that p.(Arg2His) has subtle effects on microtubule function, possibly acting at the inter-dimer
interface. We propose that the subtle functional effects of the mutation may allow for other factors
(e.g., genetic background, environmental conditions, or random chance) to modulate outcome,
explaining the mild phenotypic variability observed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/8/8/145/s1,
Supplementary File 1 containing Figure S1: Sequences from orthologs and paralogs of TUBA1A demonstrating
conservation of the Arg2 residue, Figure S2: In silico RNA splicing prediction reports, Table S1: In silico predictions
and population data, and the detailed clinical descriptions of the four patients with the TUBA1A p.(Arg2His)
mutation; Supplementary File 2 containing Table S2: The substitution probabilities for 4548 possible substitutions
in the TUBA1A gene based on heptanucleotide sequence context.
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