
ARTICLE

Reservoir computing using dynamic memristors for
temporal information processing
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Reservoir computing systems utilize dynamic reservoirs having short-term memory to project

features from the temporal inputs into a high-dimensional feature space. A readout function

layer can then effectively analyze the projected features for tasks, such as classification and

time-series analysis. The system can efficiently compute complex and temporal data with

low-training cost, since only the readout function needs to be trained. Here we experimentally

implement a reservoir computing system using a dynamic memristor array. We show that the

internal ionic dynamic processes of memristors allow the memristor-based reservoir to

directly process information in the temporal domain, and demonstrate that even a small

hardware system with only 88 memristors can already be used for tasks, such as handwritten

digit recognition. The system is also used to experimentally solve a second-order nonlinear

task, and can successfully predict the expected output without knowing the form of the

original dynamic transfer function.
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Reservoir computing (RC) is a neural network-based com-
puting paradigm that allows effective processing of time
varying inputs1–3. An RC system is conceptually illustrated

in Fig. 1a, and can be divided into two parts: the first part,
connected to the input, is called the ‘reservoir’. The connectivity
structure of the reservoir will remain fixed at all times (thus
requiring no training); however, the neurons (network nodes) in
the reservoir will evolve dynamically with the temporal input
signals. The collective states of all neurons in the reservoir at time
t form the reservoir state x(t). Through the dynamic evolutions of
the neurons, the reservoir essentially maps the input u(t) to a new
space represented by x(t) and performs a nonlinear transforma-
tion of the input. The different reservoir states obtained are then
analyzed by the second part of the system, termed the ‘readout
function’, which can be trained and is used to generate the final
desired output y(t). Since training an RC system only involves
training the connection weights (red arrows in the figure) in the
readout function between the reservoir and the output4, training
cost can be significantly reduced compared with conventional
recurrent neural network (RNN) approaches4.

The readout function in an RC system is typically simple (thus
easy to train) and is normally based on a linearly weighted
combination of the reservoir neuron node values. As a result, it is
memory-less. To process temporal information, the reservoir
state needs to be determined not only by the present input but
also by inputs within a certain period in the past. Therefore, the
reservoir itself must have short-term memory. In fact, it has been
mathematically shown3 that an RC system only needs to possess
two very unrestrictive properties to achieve universal computa-
tion power for time-varying inputs: point-wise separation prop-
erty for the reservoir, which means that all output-relevant

differences in the input series u1(·) and u2(·) before time t are
reflected in the corresponding reservoir internal states x1(·) and
x2(·) that are separable; and approximation property for the
readout function, which means that the readout function can map
the current reservoir state to the desired current output with
required accuracy.

Several studies have demonstrated the implementation of RC
systems, using randomly connected atomic switches, field pro-
grammable gate arrays (FPGAs) and photonic systems5–8. Recent
theoretical analyses on RC systems based on memristor devices
have further shown that memristor-based RC systems can pro-
vide excellent performance in tasks, such as pattern recognition,
signal processing and disease detection9–12 by taking advantage of
the intrinsic nonlinearity and/or volatile (short-term memory)
effects of the devices.

In this study, we experimentally demonstrate a memristor-
based RC system using dynamic memristor devices that offer
internal, short-term memory effects13–15. These dynamic effects
allow the devices to map temporal input patterns into different
reservoir states, represented by the collective memristor resistance
states, which can then be further processed through a simple
readout function. The memristor-based RC hardware system is
then used to experimentally perform hand digit recognition tasks
and solve a second-order nonlinear task.

Results
Short-term memristor dynamics. Memristors are two terminal
resistive elements with memory effects, where the state of the
device depends on one or more internal state variables and can be
modulated depending on the history of external stimulation16–19.
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Fig. 1 Reservoir computing system based on a memristor array. a Schematic of an RC system, showing the reservoir with internal dynamics and a readout
function. Only the weight matrix Θ connecting the reservoir state x(t) and the output y(t) needs to be trained. b Response of a typical WOx memristor to a
pulse stream with different time intervals between pulses. Inset: image of the memristor array wired-bonded to a chip carrier and mounted on a test board.
c Schematic of the RC system with pulse streams as the inputs, the memristor reservoir and a readout network. For the simple digit recognition task of
5 × 4 images, the reservoir consists of 5 memristors. d An example of digit 2 used in the simple digit analysis
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Generally speaking, a memristor’s resistance is determined by
the internal ion (either anion or cation) configuration, where
the re-distribution of oxygen ions or metal cations inside the
device changes the local resistivity and the overall device resis-
tance17,19–21. The compact device structure and the ability to both
store and process information at the same physical locations
make memristors and memristor crossbar arrays attractive can-
didates for neuromorphic computing applications22–26. At the
single-device level, memristors have been shown to be able to
emulate synaptic functions by storing analog synaptic weights
and thus modulate the connection strength between the input and
output neurons22–24, while recent studies have also demonstrated
that these devices can even emulate synaptic effects faithfully
based on internal ionic dynamics13–15,27,28.

Specifically, memristor devices with short-term memory
effects13–15 are used in this study to act as the reservoir in an
RC system. During device fabrication, the switching layer of the
WOx based device was specifically designed to exhibit short-term
memory (i.e., volatile) behavior13–15 (see Methods section and
Supplementary Fig. 1–5). To demonstrate the temporal dynamics of
the device, write pulses having the same amplitude (1.4 V, 500 µs)
are applied to the device at different timeframes and the response
of the memristor, which is represented by the read current
through a small read pulse (0.6 V, 500 µs) following each write
pulse, is recorded. The results are shown in Fig. 1b. Two
properties, similar to results obtained in dynamic synapses, can be
observed: (1) if multiple pulses are applied with short intervals,
the response will gradually increase (as indicated by the red arrow
in the figure), showing an accumulation effect, (2) if there is a
long enough period without any stimulation, then the device state
will decay toward the original resting state, as indicated by the
green arrow in the figure. This temporal response is attributed to
the internal ionic processes of the WOx memristor, including the
drift under electric field during the spike and the spontaneous
diffusion after the spike of oxygen vacancies, and can be well
modeled within the memristor theoretical framework13–15,28. The
memristor’s short-term memory effect can be described by a time
constant τ (Supplementary Note 1 and Supplementary Fig. 5),
which is around 50 ms for devices used in this study. As a result,
when programming the device, the device state depends not only
on the programming pulse itself, but also depends on whether
other programming pulses have been applied in the immediate
past within a period of around 50 ms. Prior programming pulses
applied within this range will affect the device state, with pulses
applied closer to present time having a stronger effect, while
events happened much earlier will not affect the present device
state since the device would have decayed to the initial state
already.

Realization of RC system for digit recognition. WOx memris-
tors selected from a 32 × 32 crossbar array (Supplementary Fig. 6)
were used to form the reservoir, where each memristor device is
connected to an input through a custom-built test board. After
receiving temporal inputs, the memristor resistance values are
measured using the test board and fed to the readout function.
The uniformity and reliability of the devices in response to
temporal inputs can be found in Supplementary Figs. 7,8. The
readout function was implemented in software using Matlab
(Methods section). The RC system is schematically shown in
Fig. 1c.

We start with a simple task by processing computer generated
images. The task is to recognize the digit from an input image, for
example digit 2 from the image in Fig. 1d. The 5 × 4 image has 20
pixels, either black (0) or white (1). It is then divided into 5 rows,
each row containing 4 consecutive pixels and is fed into a

memristor in the reservoir as a 4-timeframe input stream. A
timeframe (3 ms in width) will contain a write pulse (1.5 V, 1 ms)
if the corresponding pixel is a white pixel, or no pulse
(equivalently a pulse with amplitude of 0 V) if the corresponding
pixel is a black pixel29. Therefore, information of the image for
digit 2, which is represented by the spatial locations of the white
pixels in each row, is represented by temporal features streamed
into the reservoir, i.e., a pulse stream with pulses applied at
different timeframes. The goal is to extract information of the
image, i.e., the digit number 2 here, by collectively processing the
temporal features in the 5 input pulse streams. Here only 5
memristors are used to process the image, with each memristor
processing the input pulse stream from a specific row in the
image. The reservoir state is represented by the collective
resistance states of the 5 memristors. After the application of
the input streams, the reservoir state is thus dependent on the
input temporal patterns and can be used to analyze the input.

Specifically, when a pulse is applied, the state of the memristor
will be changed (reflected as a conductance increase) and if
multiple pulses are applied with short interval a larger increase in
conductance will be achieved, while long intervals without
stimulation will result in the memristor state (conductance)
decaying toward its resting state, i.e., the initial state before any
pulse is applied. Therefore, different temporal inputs will lead to
different states of the device and consequently the overall
reservoir state represented by all devices. In this specific set-up,
each memristor’s state after stimulation will thus represent a
specific feature for the given row in the original image, and the
collective device states, representing the reservoir state, can be
used to perform pattern recognition through the (trained)
readout function, i.e., identifying the digit as 2 of the original
input.

The readout function here is a 5 × 10 network, with the
reservoir state, measured by the read currents from the 5
memristors in the reservoir, as the input, and 10 output neurons
(labeled 0–9) representing the predicted digit value of the input
image, schematically illustrated in Fig. 1c. During classification,
the output from the 10 output neurons are calculated from the
dot product of the 5 inputs and the weights associated with each
output neuron, and the output with the maximum dot product is
selected and its label number is used as the predicted digit value.
The readout function is trained in a supervised fashion based on
logistic regression (Methods section) where the weights are
adjusted to minimize output error during training.

A significant advantage of using the RC system is the reduction
of network size and training cost. A conventional neural network
for this task will have 20 inputs corresponding to the 20 pixels
and minimum 10 outputs. Even without any hidden layers, i.e.,
with the 20 inputs directly connected to the 10 outputs forming a
20 × 10 network, 200 weights need to be trained. This number will
grow very quickly if one or more hidden layers are used. In the
RC system, the spatial information is encoded in the temporal
domain so a smaller network (e.g., a 5 × 10 readout function with
only 50 weights) need to be trained, while the reservoir consisting
of only 5 memristors does not need training.

Training and classification of 5 × 4 images. Extensive tests were
carried out to characterize the memristor response to different
temporal inputs. Figure 2a shows results from one such test. Here
15 memristors are chosen from an array and their response to 6
different pulse streams are measured. Although there are some
variations among the devices, all devices show the same trend
when subjected to the different input pulse streams, and for all
devices the read current (immediately after the pulse train) can be
well separated for different inputs. For the 10 digits represented
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by the 5 × 4 images shown in Fig. 2b, there are overall 10 different
pixel arrangements along each row direction, corresponding to 10
different possible pulse streams for the memristors. An example
of a memristor responses to all 10 pulse stream configurations is
shown in Supplementary Fig. 9, showing the memristor state can
be used to separate these 10 inputs. The uniqueness of the
memristor state for a given input was further verified by results
shown in Supplementary Figs. 10,11. More details and discussions
on memristor response to pulse streams can be found in Sup-
plementary Note 2.

Figure 2c shows the reservoir state, represented by the
combination of the 5 memristors’ resistance values, after feeding
the reservoir with the 10 images shown in Fig. 2b. The reservoir
states are significantly different, verifying the reservoir’s ability to
clearly separate these 10 cases.

The reservoir state was then used as input to the readout
network for training and classification. After 200 training
iterations, the RC system can correctly recognize all inputs from
the 10 original images. To test the effects of cycle-to-cycle
variations of the device, the 10 images were repeatedly tested 10
times without retraining the readout function, and 100% accuracy
was verified experimentally in the memristor-based RC system for
this simple task.

The temporal information processing ability of the reservoir
was more clearly revealed by testing images not included in the
original training set. For example, two distorted images were
generated by adding noise to digits 2 and 3 as shown in Fig. 3a, c
(as marked by the dashed boxes). A close inspection will reveal

that the number of pulses in the pulse streams (white pixels in
each row) for these two digits are in fact identical for all rows (i.e.,
2, 1, 2, 1, 3 pulses for rows 1–5). The only difference is the relative
timing of the pulses in the last two rows. The reservoir states
(shown in Fig. 3b, d) are sensitive to the temporal ordering of the
pulses and the different temporal ordering in the last two rows in
the two input cases leads to significantly different reservoir states
(reflected in Fig. 3b, d, respectively), therefore enabling the
reservoir to still separate these two different inputs and allow the
system to successfully recognize the former as digit 2 while later
as digit 3 through the readout network, without additional
training.

We note that the noisy patterns were created by adding or
removing one white pixel, but not simultaneously. This type of
noise will thus have a smaller effect on the memristor response
than re-ordering the pixels in the same row (as may be expected
from different input classes such as the cases in Fig. 3a, c), and the
output signal from the reservoir, although distorted, can still lead
to successful classification by the readout function.

After adding more noise to the original images, the digits can
still be recognized correctly by the system as shown in Fig. 3e.
However, if too much noise is added, as in the last two examples
shown in the figure, the system will no longer be able to recognize
them without further training of the readout function. However,
it could be argued that in these two cases, the noisy 2 can
indeed by alternatively considered as a noisy 1, while the noisy 9
can in fact be considered as a noisy 8 (with a missing pixel)
instead.
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Fig. 2 Reservoir states used to differentiate different temporal inputs. a The response of 15 memristors from the array to 6 different pulse streams (black: [1
1 1 1], purple: [1 0 0 0], blue: [0 1 1 0], red: [0 0 1 1], cyan: [0 0 1 0], green: [0 0 0 1]), showing similar response from all devices, as well as device
variations. b Images of the 10 digits used in this test. c Experimentally measured reservoir states after the memristors are subjected to the 10 inputs. The
reservoir state is reflected as the read currents of the 5 memristors forming the reservoir
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MNIST data set classification. Following these demonstrations,
the memristor-based RC system was then tested with a more
complex, real-world task, that is, recognition of handwritten
digits. We trained and tested the system with the commonly used
Mixed National Institute of Standards and Technology database
(MNIST, see Methods section)30. A preprocessing was performed
before the images were fed into the reservoir, as shown in Fig. 4a.
Take the image of digit 8 as an example, the original grayscale
image was first converted into a binary-pixel image. The unused
boarder area was also removed to reduce the original 28 × 28
image into a 22 × 20 image with 22 rows and 20 pixels per row.
Some samples from MNIST are shown in Fig. 4b.

If the entire row is used as one input pulse stream then in
theory there can be 220 different input patterns which may be too
difficult for one memristor to distinguish. Therefore, several
optimization methods were introduced to improve the ability of
the reservoir to separate the inputs. The first approach is to divide
each row into smaller sections (e.g., 4 sections with each section
now containing 5 pixels) to allow better separation of the inputs.
Another strategy is to apply the same input as pulse streams at
different rates (by using different timeframe widths). The rational
is as follows. If the timeframe is short and thus the interval
between pulses is small (compared to the decay time constant of
the memristor), the increased conductance caused by each pulse
will not decay much before the next pulse arrives. As a result, the
final memristor conductance is largely determined by the number

of pulses in the input due to the cumulative effects of the
conductance increases. In the other extreme, if the timeframe is
long the memristor will have enough time to decay toward the
resting state, so the final memristor state is largely determined by
pulses applied later in time. The relative timing between pulses
will also have different effects in these cases, allowing the
memristor-based reservoir to perform different transformations
of the temporal information in the input to allow better
separation of the reservoir states. Equivalently, similar effects
can be obtained by applying copies of input pulse streams to
memristors with different internal time constants. In this study,
we used pulses with different timeframe widths applied to
(nominally) identical memristors out of convenience.

With these considerations, the image is fed into the reservoir in
5 pixel sections as input pulse streams and applied with two
different rates, as shown in Fig. 4a. The readout network is
trained using logistic regression as discussed earlier. Fourteen
thousand images from the MNIST data set was used for the
readout function training. After training, another set of samples
consisting of 2000 images not in the training set, are used to test
the recognition accuracy. Figure 4c shows the experimentally
measured reservoir states corresponding to the three test samples
shown in Fig. 4b at two different input rates, demonstrating that
significant difference can be achieved in the reservoir to allow
effective separation of the inputs and subsequent classification in
the readout network. The reservoir state was then fed to the

1 2 2 2 1

2 2 4 7 8

a c

e

0 1 2 3 4

0.5

1.0

1.5

0.3
0.6
0.9

0.5

1.0

0.5

1.0

0 1 2 3 4

0.5

1.0

Pulse number

0 1 2 3 4

0.5

1.0

1.5

0.3
0.6
0.9

0.5

1.0

0.5

1.0

0 1 2 3 4

0.5

1.0

Pulse number

b d

R
ea

d 
cu

rr
en

t (
μA

)

R
ea

d 
cu

rr
en

t (
μA

)

Fig. 3 Recognition of noisy images. a, c Distorted images of digits 2 and 3 are generated by adding noise to the original data at locations marked by the
dashed squares. b, d Corresponding reservoir states for these two inputs, showing differences in the two digits can be clearly captured by the memristors
corresponding to the last two rows. e Recognition results of noisy digits. The RC system output, e.g., the predicted digit is shown below each case. The
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readout function to perform classification. In the experimental
study, 88 memristors were used as the reservoir (22 rows,
4 sections and 2 rates), and a 176 × 10 readout network was used
for classification. From the 2000 test images, an 88.1% accuracy
was obtained from the RC system. Figure 4d shows a false color
confusion matrix highlighting the experimentally obtained
classification results from the RC system vs. the desired outputs.
If the inputs were fed to the reservoir at only one rate, an 85.6%
recognition accuracy was obtained experimentally, supporting the
hypothesis that input with more than one rate improves the
reservoir’s ability to process temporal information.

The memristor-based RC system was further analyzed through
simulation using a physics-based memristor model (details are
shown in Supplementary Note 3 and Supplementary Tables 1–4).
From simulations based on the dynamic WOx memristor
model15, an RC system with a reservoir consisting of 88
memristor devices (22 rows, each row has 4 sections and each
section is input at 2 rates) can potentially achieve 91.1%
recognition accuracy. Increasing the reservoir to 112 memristors
(28 rows, 4 sections, 3 rates) improves the performance slightly to
91.5% accuracy. The lower accuracy obtained in the experimental
network can be attributed to the cycle-to-cycle variations of the
device response, during training and the image analysis stages.
We note that even with these non-idealities, the experimental
results, with a much smaller network and dealing with a
simplified, truncated input, are already better than the 88%
accuracy achieved previously by simulation based on a one-layer
neural network with 7850 free parameters, using pixel values of

the entire digit image as the input31. Additional benchmarking
analysis against a conventional approach with an added hidden
layer to achieve the same connectivity pattern as the RC system
show that for a given readout network size, the RC system
generally outperforms the conventional network system, particu-
larly at smaller network sizes (Supplementary Note 4 and
Supplementary Figs. 12, 13).

Solving a second-order nonlinear dynamic task. In the experi-
ments of digit image recognition, we partitioned the two-
dimensional images row-wise and converted spatial patterns
into temporal inputs to the reservoir. More native applications of
the reservoir system may be to perform temporal data directly,
i.e., analyzing time series data and solving dynamic nonlinear
problems. Below we show another experiment where the
memristor-based reservoir hardware system is used to solve a
second-order dynamic nonlinear task.

Nonlinear dynamical systems are commonly used in electrical,
mechanical, control, and other engineering fields32. Among
which, second-order nonlinear dynamic systems are widely
studied as a model system because of their close relations to
electrical systems (i.e., RLC circuits). Figure 5a shows the
schematic of using an RC system to map a second-order dynamic
nonlinear system. For a given input u(k) at timeframe k, the
system generates an output y(k) following a nonlinear transfer
function that may have a time lag. In our experiment, we choose a
second-order dynamic nonlinear transfer function following a
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function. b Some examples from the MNIST database. c Reservoir states corresponding to the three examples in b at two input rates (rate 1: timeframe
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d False color confusion matrix showing the experimentally obtained classification results from the RC system vs. the desired outputs. The occurrence of the
predicted output for each test case is represented by colors shown in the color scale. A recognition accuracy of 88.1% was obtained from the reservoir
consisting of only 88 memristors
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prior study33, described as:

y kð Þ ¼ 0:4y k� 1ð Þ þ 0:4y k� 1ð Þy k� 2ð Þ þ 0:6u3 kð Þ þ 0:1:

ð1Þ

As can be observed from equation (1), the output y(k) at
timeframe k not only depends on the current input u(k), but is
also related to the cross term of past two outputs, y(k–1) and y
(k–2) at timeframes k–1 and k–2, which makes it a second-order
nonlinear system with a time-lag of two time-steps. In typical
applications, the relationship between y(k) and u(k) is implicit
and hidden, which makes the problem difficult to solve. For
example, an attempt to solve this problem with a conventional
network shows large error for both the training and testing data
(Supplementary Note 5, Supplementary Fig. 14).

The goal is to train the memristor-based RC system to map the
hidden nonlinear transfer function, so the correct output y(k) can
be obtained from the input u(k) after training, without knowing
the original expression between u(k) and y(k).

We note this type of nonlinear problems are well suited for
reservoir systems such as the one presented here, since each
output y(k) is dependent on the recent past results but not on the
far past, matching well with systems having short-term memory
effects. We use a 300 timeframe-long random sequence as inputs

to train the memristor-based RC system (Methods sections). The
training signal is shown in Fig. 5b. The reservoir consists of 90
physical memristor devices chosen from the memristor crossbar
array, and is divided into 10 groups with 9 devices in each group.
Input voltage pulse streams with 10 different timeframe widths (1
ms, 2 ms, 3 ms, 4 ms, 5 ms, 6 ms, 8 ms, 10 ms, 15 ms, and 20 ms)
are then, respectively, applied to the 10 groups through the test
board. We found having 9 devices in each group improves the
reservoir performance (Supplementary Fig. 15) due to inherent
device variations that help make the reservoir output more
separable, as well as having inputs with different timeframe
widths as has already been discussed in the MNIST case. The
readout layer in this case is a 90 × 1 feedforward layer, and is used
to convert the reservoir state to a single output y(k). A simple
linear regression training algorithm based on batch gradient
descent is used to train the readout function (Methods section).

Figure 5c shows the experimentally obtained reconstructed
(i.e., predicted) outputs from the physical memristor RC system
after training (red cycles and dashed line), and the theoretical
output (i.e., ground truth) y(k) (blue solid line) from the training
sequence, showing the memristor RC system can correctly solve
the dynamic nonlinear problem, with a normalized mean squared
error (NMSE, Methods section) of 3.61 × 10−3. More importantly,
to verify the memristor RC system has indeed solved the dynamic
transfer function, we tested the system using a new,
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independently generated random sequence (Fig. 5d) other than
the training sequence. Figure 5e shows that the system is still able
to successfully predict the expected dynamic output for the
random, untrained sequence using the same readout function,
with a similar NMSE of 3.13 × 10−3.

Discussion
In this study, we demonstrate a memristor-based RC system by
utilizing the internal, short-term ionic dynamics of memristor
devices. We show experimentally that even a small reservoir
consisting of 88 memristor devices can be used to process real-
world problems such as handwritten digit recognition with per-
formance comparable to those achieved in much larger networks.
A similar-sized network is also used to solve a second-order
nonlinear dynamic problem and is able to successfully predict the
expected dynamic output without knowing the form of the
transfer function.

It should be noted that the system is not fully optimized for the
handwritten digit recognition task yet so the performance could
still be improved further. First, information from the original data
has already been partially lost during the preprocessing, such as
transforming the grayscale image to binary data. Second, the
pulse amplitude, width and rates could still be fine-tuned to
maximum classification yield. Additionally, while normal neural
networks aim to extract features across the image from several
rows simultaneously, the reservoir presented here only processes
each row separately and independently. A quick solution would
be to scan the digit also in the vertical direction and input each
column to the reservoir to allow relations between the rows to be
processed by the reservoir as well. Indeed, adding vertical scan
can improve the classification accuracy to 92.1% as verified
through simulation using the device model (Supplementary
Table 3), although the system also becomes larger and requires
672 inputs.

The computing capacity added by the memristor-based reser-
voir layer was analyzed by comparing the RC system performance
with networks having the same connectivity patterns, by repla-
cing the reservoir layer with a conventional nonlinear down-
sampling function (Supplementary Note 4, Supplementary
Figs. 12–13). The RC system outperforms the conventional
approach and the advantage is significant at small readout net-
work sizes, even for the image analysis task that is not naturally
fitted for RC. For the second-order dynamic problem that is more
naturally suited for the RC system, our analysis shows that the
small RC system significantly outperforms a conventional linear
network, with orders-of-magnitude improvements in prediction
NMSE (Supplementary Fig. 15). We also show that the inherent
device variations, which can pose significant challenges for some
applications, become a benefit for RC systems, as they help make
the reservoir states more separable (Supplementary Fig. 15)11,29.

The demonstration of memristor-based RC systems will sti-
mulate continued developments to further optimize the network
performance toward broad applications in areas, such as speech
analysis, action recognition and prediction. This approach will
also be attractive for applications that do not require fast pro-
cessing speed but have strong constraints on memory size and
computation power. Finally, we want to note that the crossbar
used in this work mainly provides the high-density devices, and
the devices function independently in the reservoir since the
short-term memory property is a native property of the
device itself. Future algorithm and experimental advances that
can take full advantage of the interconnected nature of the
crossbar structures, by utilizing the intrinsic sneak paths and
possible loops in the system may further enhance the computing
capacity of the system.

Methods
Memristor array fabrication. The array of WOx devices were fabricated following
our previous approaches. Briefly, 60 nm of W was first sputter deposited on a Si
carrier wafer with a 100 nm thermally grown oxide. The bottom electrodes (BEs)
with 500 nm width were patterned by e-beam lithography and reactive ion etching
(RIE) using Ni as a hard mask. Afterwards, the Ni hard mask was removed by wet
etching. 250 nm of SiO2 was then deposited by plasma-enhanced chemical vapor
deposition, followed by RIE etch back to form a spacer structure along the sidewalls
of the BEs. The spacer structure allows better step coverage of the top electrodes
(TEs) at the crosspoints and also restricts the resistive switching regions to a flat
surface. The resistive switching WOx layer was formed via rapid thermal annealing
of the exposed W electrode surface with oxygen gas at 375 °C for 60 s. Afterwards,
the TEs (Pd (90 nm)/Au (50 nm)) were patterned by e-beam lithography, e-beam
evaporation and liftoff processes. Another RIE process was used to remove the
WOx between the TEs to isolate the devices and to expose the BEs for electrical
contacts. Finally, a photolithography, e-beam evaporation and liftoff process was
performed to form wire bonding pads of 150 nm thick Au. Supplementary Fig. 1
shows a schematic of the memristor structure. With the W bottom electrode
partially oxidized to form the nonstoichiometric WOx switching layer, and Pd/Au
top electrode. Supplementary Fig. 2 shows a scanning-electron microscopy (SEM)
image of a fabricated 32 × 32 memristor array. After fabrication, the memristor
chip was then wire bonded to a chip carrier and mounted on a customized board
for electrical testing.

Mixed National Institute of Standards and Technology database. The data set,
Mixed National Institute of Standards and Technology (MNIST) database30 is a
large database that is commonly used for training and testing in the field of
machine learning. The database was created by “remixing” the digit samples written
by high school students and employees of the United States Census Bureau, and
consists of 60,000 training samples and 10,000 test samples.

Experimental set-up for RC system. The memristor measurement is performed
on a custom-designed PCB board. It can measure crossbar arrays up to 32 rows
and 32 columns. The board contains four Digital-to-Analog Converters (DACs)
capable of producing 0–5 V independently and two Analog-to-Digital Converters
(ADCs) to measurement current. The board is capable of performing tests
including DC sweeps and pulse measurements.

Eighty-eight memristors were selected from the 32 × 32 crossbar array for the
handwritten digit recognition test. The devices were selected in a way to avoid
having adjacent devices in both row and column direction to minimize the write
disturbance (Supplementary Fig. 6). Each 22 × 20 training image was converted
into 88 pulse streams, with each row represented by 4 pulse streams. The pulses
streams were then applied to the 88 devices. The device states after the pulse trains
were measured and recorded. After each training image, the devices were erased to
their initial states, and the process was repeated. The reservoir states recorded from
the 14,000 training images, were used to train the readout function.

During the reservoir operation, we apply one pulse stream to one device at a
time, by apply the voltage pulses to the row of the selected device in the memristor
array and keeping the column grounded. Other rows and columns are also
grounded.

Readout function training via logistic regression. A supervised learning algo-
rithm, logistic regression, was used to train the readout functions for the simple
digit recognition task shown in Figs. 2, 3 and for the handwritten digit recognition
task in Fig. 4.

Suppose the reservoir state is x, which is represented by a vector containing 5
elements (the 5 memristor conductance values) for the network used in Figs. 2, 3.
The vector representing the reservoir state is applied to the readout network. The
probability of the reservoir state corresponding to the different possible outputs is
determined by the input vector and the weight matrix θ34)

hθ xð Þ ¼ g θT � x� �
; ð2Þ

g zð Þ ¼ 1
1þ e�z

: ð3Þ

The cost function defined is as

J θð Þ ¼ 1
m

Xm

i¼1

�y ið Þlog hθ x ið Þ
� �� �

� 1� y ið Þ
� �

log 1� hθ x ið Þ
� �� �h i

; ð4Þ

where m is the number of samples, y(i) is the desired output for input x(i).
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To minimize the cost function, the network is trained using the gradient descent
defined as

∂J θð Þ
∂θj

¼ 1
m

Xm

i¼1

hθ x ið Þ
� �

� y ið Þ
� �

x ið Þ
j : ð5Þ

The training of weights is achieved in Matlab 2016b using function fmincg(),
which was provided by Jason Rebello as a logistic regression routine with
regularization and has been commonly used to classify handwritten digits.

The same approach was used to train the readout function for the handwritten
digit recognition task in Fig. 4.

Training and testing the second-order nonlinear task. Random sequences based
on uniform random distribution were used to train and test the memristor RC
system for the second-order dynamic task implementation:

u kð Þ ¼ rand 0; 0:5½ �: ð6Þ

The amplitude of the input signal u(k) is linearly converted into a voltage pulse
with amplitude V(k) that is then applied to the memristor reservoir:

V kð Þ ¼ 2�u kð Þ þ 0:8: ð7Þ

This linear conversion allows the input voltage pulses to fall in the range of
0.8–1.8 V for memristor stimulation. After collecting the reservoir output, the data
are fed into the readout function. Following a similar approach in a prior study35,
we ignore the first 50 initial data points in the transient period and train the
readout function weights wi (i = 1,…90) using the last 250 points in the training
sequence using simple linear regression. The same training procedure is also
applied for the linear network case used for comparison analysis.

Readout function training via linear regression. A supervised learning algo-
rithm, linear regression, was used to train the readout functions for the dynamic
task shown in Fig. 5.

Suppose the reservoir state is x, which is represented by a vector containing n
elements (the conductance values of the n memristors forming the reservoir). The
vector representing the reservoir state is applied to the readout network.

The cost function is defined as

J θð Þ ¼ 1
2m

Xm

i¼1

θTx ið Þ � yðiÞ
� �2

; ð8Þ

where m is the number of samples, y(i) is the desired output for input x(i).
To minimize the cost function, the network is trained using the gradient descent

defined as

∂J θð Þ
∂θj

¼ 1
m

Xm

i¼1

θTx ið Þ � yðiÞ
� �

x ið Þ
j : ð9Þ

The training of weights is achieved in Matlab 2016b. Training typically takes
2000 iterations.

Normalized mean squared error. We calculate our output signal error using the
normalized mean squared error (NMSE), which is defined as following:

NMSE ¼
P

k

P
i pi kð Þ � yi kð Þð Þ2

P
k

P
i y

2
i ðkÞ

; ð10Þ

where p(k) is the predicted signal and y(k) is the original signal. Since the result is
normalized by the original signal, the error is unitless.

Data availability. All relevant data are available from the authors.
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