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ABSTRACT The draft genome sequence of Methylocaldum sp. 14B, an obligate
methanotrophic strain isolated from solid-state anaerobic digestion systems, is re-
ported here. Strain 14B possesses genes for methane oxidation and exhibited toler-
ance to H2S.

Biogas is a renewable energy source, but its direct utilization has several limitations
due to corrosion caused by H2S present in biogas and difficulty with its storage and

transportation. Therefore, alternative technologies to utilize biogas are desirable. We
recently isolated one strain (Methylocaldum sp. 14B) of methanotrophs from a solid-
state anaerobic digester fed corn stover (1). 14B is the first methanotroph isolated from
anaerobic digesters, and it is an obligate methanotroph closely related to Methylocal-
dum szegediense. 14B can directly convert biogas containing H2S to methanol (1), and
thus, it can be used in converting biogas into methanol as a liquid fuel or chemical.
Species of Methylocaldum constitute a novel group of type I methanotrophs, but only
the genome of one strain, Methylocaldum szegediense O-12 (2), has been sequenced
recently (accession no. NZ_ATXX00000000). Here, we present the draft genome se-
quence of Methylocaldum sp. 14B.

Methylocaldum sp. 14B was cultured in a mineral medium (3) with methane as the
sole substrate. One paired-end library was prepared from genomic DNA using the
NEBNext Ultra DNA library prep kit for Illumina (NEB) and sequenced (2 � 300 bp) using
MiSeq. Sequence reads were de novo assembled using Newbler (4), resulting in 85
contigs (N50, 133,347 bp; largest contig, 294,260 bp) with an average coverage of 90�.
The draft genome of Methylocaldum sp. 14B is 4,820,475 bp, with a G�C content of
58.24%. Genes were predicted using Glimmer 3.02 (5–7), and only open reading frames
(ORFs) longer than 100 amino acid residues were considered genes. Genes were
annotated using the NCBI NR, KEGG (8–11), COG (11, 12), Swiss-Prot (13), GO (14), PHI
(15), ARDB (16), VFDB (17), and CAZy (18) databases, and the annotation results were
combined to improve gene annotations. Tandem Repeats Finder 4.04 (19), tRNAscan-SE
1.23 (20), RNAmmer 1.2 (21), and Rfam 10.1 (22) were used to identify tandem repeats,
tRNAs, rRNAs, and small RNA (sRNA) sequences, respectively. Minisatellite DNA and
microsatellite DNA were predicted based on the number and length of the repeat units.

The draft genome contained four rRNA genes (two 5S, one 16S, and one 23S rRNA),
45 tRNA genes, one sRNA gene, 98 minisatellite DNA, 12 microsatellite DNA, 152
tandem repeat sequences, 4,586 genes with predicted functions, and 919 genes coding
for hypothetical proteins. MegaBLAST searches (23) of the 14B concatenated genome
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against the NCBI reference genome database (http://www.ncbi.nlm.nih.gov/genome)
revealed that the most closely related genome was that of Methylocaldum szegediense
O-12 (accession no. NZ_ATXX01000000), with 87% sequence coverage and 95% se-
quence identity.

Key genes associated with the pathways of the tricarboxylic acid cycle, methane
oxidation, sulfur metabolism and relay system, glycolysis and gluconeogenesis,
pentose phosphate, oxidative phosphorylation, cell motility, one-carbon assimila-
tion (the serine cycle and the ribulose-1,5-bisphosphate [RuBP] pathways) were
identified, in agreement with the characterization data of this strain (1). Genes
encoding enzymes of the methane monooxygenase (particulate), sulfide dehydro-
genase, sulfite oxidase and reductase, and sulfur transferase were also detected.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession number MSCV00000000. The version de-
scribed in this paper is the first version, MSCV01000000.1.
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