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The field of spintronics explores howmagnetic fields can influence the properties of organic
and inorganic materials by controlling their electron’s spins. In this sense, organic materials
are very attractive since they have small spin-orbit coupling, allowing long-range spin-
coherence over times and distances longer than in conventional metals or
semiconductors. Usually, the small spin-orbit coupling means that organic materials
cannot be used for spin injection, requiring ferromagnetic electrodes. However, chiral
molecules have been demonstrated to behave as spin filters upon light illumination in the
phenomenon described as chirality-induced spin selectivity (CISS) effect. This means that
electrons of certain spin can go through chiral assemblies of molecules preferentially in one
direction depending on their handedness. This is possible because the lack of inversion
symmetry in chiral molecules couples with the electron’s spin and its linear momentum so
the molecules transmit the one preferred spin. In this respect, chiral semiconductors have
great potential in the field of organic electronics since when charge carriers are created, a
preferred spin could be transmitted through a determined handedness structure. The
exploration of the CISS effect in chiral supramolecular semiconductors could add greatly to
the efforts made by the organic electronics community since charge recombination could
be diminished and charge transport improved when the spins are preferentially guided in
one specific direction. This review outlines the advances in supramolecular chiral
semiconductors regarding their spin state and its influence on the final electronic
properties.
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INTRODUCTION

The field of supramolecular electronics bridges the gap between molecular and plastic electronics
(Meijer and Schenning, 2002; Schenning and Meijer, 2005; Moulin et al., 2013). In this sense,
supramolecular chemistry represents the bridge, providing the tools to achieve highly organized
structures with superior properties than those of the individual components. The presence of
noncovalent interactions in organic semiconductors has been demonstrated to enhance the charge
transport properties and device efficiency (Ghosh et al., 2017), finding exciting results in literature
where π−π stacking interactions (Lee et al., 2011), hydrogen bonds (Huang et al., 2005; Ruiz-
Carretero et al., 2013; Aytun et al., 2015; Carretero et al., 2020) metallophilic interactions (Che et al.,
2011; Ruiz-Carretero et al., 2019) or a combination of several noncovalent interactions (Yamamoto
et al., 2006; Schulze et al., 2014; Stupp and Palmer, 2014; Weldeab et al., 2018) were used to boost the
properties of supramolecular electronic systems (Figure 1A). The dynamic nature of noncovalent
interactions allows to tune the optoelectronic properties by controlling the self-assembly processes.
In this regard, parameters such as temperature, concentration or solvent polarity can impact the self-
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assembly and hence, the properties (Aida et al., 2012). The
incorporation of chiral centers into π-conjugated materials also
affects the self-assembly properties. In this case, the chiral
information of the monomer is transferred along the assembly
yielding the final chiral configuration to the structure (Liu et al.,
2015) (Figure 1B). Recently, chiral supramolecular structures
have raised as very interesting systems in the field of spintronics
(Wolf et al., 2001) since chiral and helical structures have been
demonstrated to behave as spin filters upon light illumination in
the phenomenon described as Chirality-Induced Spin Selectivity
(CISS) effect (Naaman and Waldeck, 2012) (Figure 1C). Organic
materials are very attractive for spintronic devices due to their
small spin-orbit coupling (SOC), which increases the spin
relaxation time as compared to inorganic materials usually
containing heavy atoms, resulting in long-range spin transport
in organic materials (Rocha et al., 2005). However, this
affirmation should be taken carefully since the mobility of
organic materials is rather inferior to those of inorganic
materials, meaning that even if spin relaxation times are high,
the spin polarized charges do not travel long distances
(Szulczewski et al., 2009).

The small SOC implies that organic materials cannot be used
for spin injection, requiring ferromagnetic electrodes
(Awschalom and Flatté, 2007). However, the CISS effect

indicates that organic molecules are not considered as passive
elements but as spin filters because the lack of inversion
symmetry in chiral molecules couples with the electron’s spin
and its linear momentum, so the molecules transmit one
preferred spin.

The scope of this review is to introduce the reader to chiral
supramolecular electronic materials and the importance of the
electron’s spin in the final properties of such materials. The CISS
effect will be presented, as well as examples of supramolecular
semiconductors where the roles of chirality and the spin have
been highlighted but not related to the CISS effect. Finally, we
focus on the latest insights into supramolecular systems based on
chiral π-conjugated materials and the impact of controlling the
spin state on the final electronic processes.

THE CISS EFFECT

Discovery and Definition
The CISS effect was firstly identified by Naaman and coworkers in
1999, who determined the scattering asymmetry in electrons
transmission in Langmuir-Blodgett films made of L- and
D-stearoyl lysine (Ray et al., 1999). Their results showed that
the quantum yield of photoelectrons depended both on the

FIGURE 1 | (A)Representation of the monomer (left) and the resulting supramolecular nanotube containing a coaxial p/n-heterojunction (right). The donor moiety in
the monomer is HBC (blue), and the acceptor is trinitrofluorenone (green); TEG (red) and C12 chains (white) in the monomer provide solubility. From Yamamoto et al.
2006. Reprinted with permission from AAAS. (B) Schematic representation of the kinetically controlled modulation of the supramolecular helical organization of chiral
oligo-p-phenylene-based organogelators. Structures of opposite handedness are obtained depending on the concentration, temperature, and times of formation.
Reprinted with permission from Aparicio et al. (2014). Copyright 2014 Wiley-VCH. (C) Schematic representation of the CISS effect. The panel shows helical
supramolecular structures where, after illumination with circular polarized light, electrons with opposite spins (orange and blue spheres) can be selectively transported
through right-handed (orange) or left-handed (blue) helices, respectively.
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relative polarization of the light, and the chirality of the
molecules. They started the study of the main factors that
influence the CISS effect using self-assembled monolayers
(SAMs) of double-stranded (ds) DNA and oligopeptides,
demonstrating that spin selectivity is correlated to the
supramolecular organization of single molecules, and its
magnitude increases with the length of the DNA strands or
peptide sequence, respectively (Carmeli et al., 2002; Ray et al.,
2006; Göhler et al., 2011; Xie et al., 2011; Kettner et al., 2015;
Aragonès et al., 2017; Kiran et al., 2017; Tassinari et al., 2018;
Torres-Cavanillas et al., 2020). These studies pointed out the
previously ignored role of the spin in electron-biomolecule
interactions, as well as the potential of SAMs of chiral
molecules that work as spin filters at room temperature
(Michaeli et al., 2016; Naaman et al., 2019).

Theoretical Models
Several theoretical models have been described to explain the
spin-selective transport through chiral molecules, using helical-
shaped molecules and dsDNA (Guo and Sun, 2012; Gutierrez
et al., 2012; Medina et al., 2012). The first models found in
literature share two important features: chirality is essential to
reach spin polarization, and a helical potential based on the
Rashba-like SOC term needs to be considered to calculate the SO
interaction (Naaman and Waldeck, 2012). Later on, Dalum and
Hedegard suggested a novel mechanism for CISS based on
perturbative approach calculations, that need to be concretized
to specific systems (Dalum and Hedegård, 2019). First-principle
calculations were used by Gutierrez and coworkers to study the
geometry-dependent spin polarization using an atomistic model
of oligoglycine. The helical symmetry displayed a much higher
spin polarization than the β-strand conformation, highlighting
the role of helical geometry in the CISS effect (Maslyuk et al.,
2018). In this sense, Herrmann et al. analyzed the crucial role of
the imaginary terms in the Hamiltonian matrix for nonvanishing
spin polarization in helical structures (Zöllner et al., 2020).

Furthermore, recent studies remark the important role of
phonons and polarons to reach high spin polarization.
Fransson showed the importance of cooperation of electron-
phonon and spin-dependent couplings to get an exchange
splitting between the spin channels that is reasonable for CISS
(Fransson, 2020). In particular, he investigated systems of chiral
molecules coupled to metals, where molecular vibrations
(phonons) represent a mechanism able to break the spin
symmetry of the molecule (Fransson, 2021). On their side,
Zhang et al. assessed spin polaron transport in chiral
molecules and, unlike previous theoretical explanations, their
results showed that both type of polarons (spin-up and spin-
down) can traverse the chiral molecule, although with different
spin dynamics, i.e., the ones with antiparallel orientation
experiment spin switching (Zhang et al., 2020).

Overall, there is not a general consensus as of now that
theoretically rationalizes the astounding value experimentally
observed for the CISS effect. Nevertheless, the investigations
mentioned above suggest several reasons to explain this effect
that range from the buildup of spin polarization at the interface to
the electron-phonon interactions and polaron transport, and very

recently, to the topological orbital texture combined with SOC in
the substrate (Liu et al., 2021).Further theoretical investigations
are currently ongoing that are expected to give more insights into
these theoretical points.

Experimental Measurements
There are multiple experimental methods to investigate the CISS
effect (Naaman and Waldeck, 2015). Photoelectron spectroscopy
has been used to characterize spin orientation through a SAM of
chiral molecules adsorbed in a gold substrate when irradiating
with circularly polarized light. The spin of the transmitted
electrons is detected using a Mott polarimeter (Göhler et al.,
2011). Conductive-probe atomic force microscopy (cp-AFM) is
another technique that measures the spin-dependent conduction
through single molecules (Xie et al., 2011; Kettner et al., 2015;
Bullard et al., 2019). With this technique, the current-voltage
(J-V) curves are registered on a SAM of chiral molecules adsorbed
on a ferromagnetic substrate (normally nickel), while gold
nanoparticles are attached to the tail of some of these
molecules. It can be considered one of the best techniques to
evaluate the real spin selectivity as it does not detect electrons
from non-covered areas of the surface.

Spin polarization Hall devices measure Hall voltage and cyclic
voltammetry response on chiral SAMs (Kumar et al., 2017;
Bullard et al., 2019). The sign of the observed Hall voltage
depends on the chirality of the molecule.

Recently, a technique that combines time-resolved microwave
conductivity (TRMC), electron paramagnetic resonance (EPR)
and optical spectroscopy has been used to study charge carrier
mobility and spin state in p-type semiconductors (Tsutsui et al.,
2018). Chemical doping using iodine vapors generates radicals
that allow to determine the species with different spin state
present in the sample.

CHIRAL SUPRAMOLECULAR
π-CONJUGATED MATERIALS. SPIN AND
OPTOELECTRONIC PROPERTIES
The importance of chirality and the spin state in organic
electronics has been reported in many literature examples even
if they were not connected to the CISS effect. Yet, the number of
works linking conductivity to chirality is still scarce despite the
emergent properties observed in organic semiconductors as a
consequence of chirality (Yang et al., 2017). For instance, Zhu
et al. reported optically active chiral electronic wires based on
oligo-arylene-ethynylene and 1,1′-bi-2-naphthol (BINOL) (Zhu
et al., 2006). The (R)- and (S)-derivatives were prepared and self-
assembled onto gold surfaces. The electrical transport properties
were studied measuring the J-V curves for the pure enantiomers
and different enantiomeric mixtures, finding that the optically
pure compounds exhibited greater conductivity than the
mixtures. The authors hypothesized that the result could be
due to very different packing structures between homochiral
and heterochiral molecules. Later on, several works were
reported on the influence of stereoisomerism on the
crystallization, optoelectronic properties and device efficiency
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of π-conjugated materials functionalized with asymmetric
branched alkyl chains. Liu et al. reported (Liu et al., 2013) the
differences among the mesomer, the RR-isomer and the SS-
isomer of diketopyrrolopyrrole (DPP) molecules functionalized
with asymmetrical branched alkyl chains. The stereoisomers,
isolated by a HPLC equipped with a chiral column, were also
compared to the as-synthesized compound. The enantiomers
showed very similar crystal structures, thin film morphology
and field effect transistor (FET) properties, and they were the
best structures to grow single crystals, while the mesomer had the
greatest crystallization tendency in spin-cast films. The latter
resulted in the highest charge carrier mobilities due to a coplanar
conjugated backbone that favors intermolecular π−π stacking
compared to the twisted backbone of the RR- and SS-isomers.
Similarly, Zerdan et al. reported the influence of the solubilizing
chain stereochemistry on photovoltaic devices made with small
molecules and fullerene derivatives (Zerdan et al., 2014). In this
case, the authors reported DPP derivatives with RR-, SS- and RS-
ethylhexyl alkyl tails. Bulk heterojunction solar cells were
fabricated with the pure isomers and compared to isomer
mixtures from the purchased derivative. The authors found
that when crystallization was induced by thermal annealing,
important differences were found in the molecular packing
between the different stereoisomers. Later on, Stolte et al.
showed the impact of ethylhexyl stereoisomers on organic thin
film transistors of π-conjugated materials (Stolte et al., 2016). In
this case, the highest mobility is found for dyes bearing 2-
ethylhexyl substituents that include a mixture of (R,R) (S,S)
and (R,S) stereoisomers. The authors argue that this was
possible due to the superior π−π contacts between DPP dyes.
The result agreed with the previous studies pioneered by Liu and
collaborators (Liu et al., 2013). The same group reported the
impact of 2-ethylhexyl stereoisomers on single crystal field-effect
transistors (FET) (He et al., 2018). In this case, the (R,S) mesomer
was the most promising stereoisomer, being the mobility values
superior to those of the pure enantiomers.

Other systems showing the influence of chirality in π-conjugated
materials are optically active polymers (Grenier et al., 2007;
Vanormelingen et al., 2008; Kane-Maguire and Wallace, 2010,
2010), thiophene-based block copolymers (Van den Bergh et al.,
2010; Verswyvel et al., 2011), copolymers of chiral poly
(ethylenedioxythiophene) (PEDOT) (Jeong and Akagi, 2011),
supramolecular helical nanostructures (Hafner et al., 2018) and,
tetrathiafulvalene systems (Pop et al., 2013, 2014).

Likewise, the role of the spin state was highlighted in other
series of works. The spin state is a very important parameter in
the kinetic control of recombination in organic photovoltaics
(Rao et al., 2013) and in charge transfer (CT) states (Chang et al.,
2015). While cascade structures allow the spatial separation of
photogenerated electrons and holes in biological systems, the
photogenerated excitons in organic photovoltaic devices are
dissociated exclusively at the donor-acceptor heterojunction.
However, the nanoscale morphology of photovoltaic devices
promotes the encounters of charges and hence, recombination.
Yet, there are examples of organic photovoltaic devices with
quantum efficiency close to unity (Park et al., 2009), meaning
that recombination can be avoided. Rao et al. (2013)

demonstrated using time-resolved spectroscopy that the
recombination of bound states is mediated not only by
energetics, but also by the spin delocalization, allowing free
carriers to be formed again and suppressing recombination.
Along the same lines, Janssen et al. demonstrated that the
spin-based particle reactions happening in polymer-fullerene
blends can be tuned using magnetoresistance lineshapes and
voltage dependencies (Janssen et al., 2013). The authors
showed non-spin-polarized organic semiconductor devices,
which in the absence of magnetic elements presented large
room temperature magnetoresistance effect at small magnetic
fields. This effect is known as organic magnetoresistance
(OMAR) and it is very appealing because it can unravel
unknown phenomena happening due to the intrinsically
magnetic field-dependent charge transport properties of
organic semiconductors. The authors explored the possible
mechanisms to explain OMAR, categorized as reactions of
polarons with the same charge into bipolarons, reactions of
polarons with opposite charge into excitons, and reactions of
triple excitons with polarons or with other triplet excitons. As a
result of their study, the authors conclude that by choosing the
right materials to alter the alignment of triplet excitons and CT
states, important effects on the reaction pathways and the
resulting OMAR can be achieved, influencing the device
physics and efficiency.

MAIN SUPRAMOLECULAR STRUCTURES
WHERE CISS EFFECT HAS BEEN STUDIED

One of the main research areas of the CISS effect has been
understanding its role in electron transfer in biology-related
systems. It explains not only why it is so efficient in biological
processes such as photosynthesis or respiration, but also the
reasons for preferred enantioselective recognition in living
organisms (Michaeli et al., 2016). In addition, other processes
in which electrons are transferred in a way that only one spin state
prevails are interesting for many applications in chemistry and
electronics, since it enables the fabrication of electronic devices
using chiral organic molecules instead of ferromagnets (Dor et al.,
2013; Mathew et al., 2014; Koplovitz et al., 2017; Mtangi et al.,
2017; Mondal et al., 2021).

In the next paragraphs we will describe the main
supramolecular π-conjugated systems where the CISS effect
has been studied.

Peptides
Since the identification of the CISS effect, big efforts have been
made to understand it in a wide variety of molecular systems,
including biologically relevant molecules as DNA and peptides
(Naaman and Waldeck, 2015). Only recently, several key
parameters in spin polarization and its magnitude have been
disclosed. The dependence of spin selectivity on the molecular
length was demonstrated by varying the number of amino acid
residues in oligopeptide sequences using cyclic voltammetry
(Figure 2A) and cp-AFM (Kettner et al., 2015; Kiran et al.,
2017), finding that spin selectivity decreases when increasing
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the tip-loading force. Following these studies, Aragonès and
coworkers proved current asymmetry in chiral single
molecular junctions by scanning tunneling microscopy break-
junction (STM-BJ). They used 22-mer L- and D-oligopeptide
systems, a magnetized nickel tip and a gold electrode (Aragonès
et al., 2017). The spin selectivity in electron transfer was also
noted when 12-mer oligopeptides were attached to ferrocene,
where oxidation or reduction were favored depending on the L-
or D-enantiomer and the direction of the magnetic field
(Tassinari et al., 2018). Importantly, a polyproline chiral
system (Pro8) conjugated to zinc porphyrins showed that the
spin-polarized generated currents were further transmitted over
distances surpassing the length of chiral molecules (Bullard et al.,
2019). Very recently, ds peptide nucleic acids (PNAs) have been
proposed to study the CISS effect. Their spin-filtering capabilities
were directly correlated to the molecular helicity, highlighting the
worth of the dsPNAs for systematic studies of the CISS effect
(Möllers et al., 2021).

DNA
The helical structure of dsDNA is very attractive in spintronics
because it has played a critical role in charge transport processes

through long molecular distances (Kiran et al., 2017). In 2011,
Göhler and collaborators presented the first example of spin
filters based on DNA. They obtained spin polarization exceeding
60% at room temperature measured by Mott polarimetry with
dsDNA monolayers adsorbed on gold (Göhler et al., 2011).
Densely packed single stranded (ss) and dsDNA films with a
redox-active probe adsorbed on a gold-capped nickel surface were
analyzed by cyclic voltammetry. Only the dsDNA films displayed
variations of up to 16% in the electrochemical reduction
depending on the orientation of the magnetic field. This states
that the chiral supramolecular organization prevails over the
chirality of the individual components (Zwang et al., 2016).
The linear dependence of the spin polarization on the length
of dsDNA oligonucleotides has also been demonstrated by cp-
AFM using lengths of 20 up to 50 base pairs (Mishra et al., 2020a)
(Figure 2B). Later, Banerjee-Ghosh et al. proved experimentally
that there is an enantiospecific interaction between chiral
molecules and perpendicularly polarized substrates. They
followed the kinetics of the enantioselective adsorption of
dsDNA on a magnetized Ni/Au surface, finding that the rate
of absorption was considerably different for up and down
magnetization of the substrate (Banerjee-Ghosh et al., 2018).

FIGURE 2 | Examples of CISS effect in different supramolecular systems. (A) Cyclic voltammograms for the mM K4 [Fe(CN)6]/K3 [Fe(CN)6] redox couple in a 0.4 M
KCl supporting electrolyte, aqueous solution. The working electrode is Ni coveredwith a self-assembledmonolayer of oligopeptides AL5, AL6 and AL7, whose sequence
is indicated. Red and blue curves indicate the two directions of magnetic field (conventionally up and down, respectively), which is normal to the surface of the working
electrode. Reprinted with permission from Kettner et al. 2015. Copyright 2015 American Chemical Society. (B) Left: schematic representation of mc-AFM setup
used to measure spin polarization in self-assembled monolayers of double stranded DNA. Right: Spin polarization results for various lengths of DNA and oligopeptides.
Adapted with permission from Mishra et al. (2020a). Copyright 2020 American Chemical Society. (C) Schematic representation of the unidirectional rotation cycle of an
overcrowded alkene driven by external stimuli. During the cycle, the chirality changes 4 times which results in a switch of the spin polarization direction of the electrons
that are preferentially transported in the system. Reprinted with permission from Suda et al. 2019. Copyright 2019 Nature. (D) Supramolecular polymers where self-
assembled helical structures (M or P) are formed by using chiral molecules in achiral solvents. The panel represents how coating the anode with the chiral molecules
shown in the panel improves water splitting thanks to the CISS effect (vs. achiral ones), by avoiding the formation of hydrogen peroxide. Adapted with permission from
Mtangi et al. 2017. Copyright 2017 American Chemical Society. (E) Supramolecular polymers where self-assembled helical structures (M or P) are formed from achiral
molecules in the presence of chiral solvents. Adapted with permission from Mondal et al. 2021. Copyright 2021 American Chem Society.
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Additionally, researchers have investigated the effect of oxidative
damage on the spin transport through monolayers of dsDNA
using a Hall device (Bullard et al., 2019). Unexpectedly, dsDNA
having one and two oxidative damages in the base pairs had
higher spin polarization than undamaged dsDNA films. It seems
that due to the damage of the bases most of the conduction goes
through the backbone of the DNA structure, which is chiral and
hence, more spin selective.

Helicenes and Overcrowded Alkenes
Helicenes are fully conjugated molecules without stereogenic
carbons. The repulsion between the termini of these molecules
makes the helicenes adopt permanent helical conformations with
M (left-handed enantiomer) and P (right-handed enantiomer)
configurations (OuYang and Crassous, 2018). Kiran et al. have
shown that cationic [4] helicenes behaved as spin filters when
they were uniformly absorbed and oriented on a pyrolytic
graphite surface (Kiran et al., 2016). Spin polarizations of
more than 40% were obtained with preferred opposite spin
orientation for P and M configurations. In another report,
monolayers made of enantiopure [7] helicenes were deposited
on Cu (332), Ag (110), and Au (111) surfaces, which have a wide
range of SOC values (Kettner et al., 2018). Very similar results of
spin selectivity were obtained, proving the dominant role of
chirality in the spin filtering ability of helicenes over the SOC
of the surfaces. Interestingly, some authors have pointed out
improved charge transport properties on racemic mixtures of
helicenes compared to enantiopure composition in organic
electronic devices (Yang et al., 2017). Important morphological
differences between the racemic and enantiopure systems were
found, as well as an 80-fold increase in hole mobility in FETs. On
the other hand, Josse et al. compared device efficiency fabricated
with enantiopure and racemic naphthalimide end-capped [6]
helicenes as electron acceptors (Josse et al., 2017), observing a
two-fold increase in electron mobility, and a five-fold increase of
the power conversion efficiency in devices fabricated with the
enantiopure material compared to the racemic. These
contradictory results emphasize the need to further investigate
the impact of solid-state organization in chiral supramolecular
systems in organic electronic devices. In 2019, it was presented for
the first time the change of spin selectivity by modifying the
handedness of chiral molecules by external stimuli (Suda et al.,
2019) (Figure 2C). An artificial molecular motor based on an
overcrowded alkene was synthesized. It was able to switch its
chirality generating a unidirectional rotation cycle driven by
temperature or light, with spin selectivity values of up to 44%.

Conjugated Polymers/π-Conjugated
Molecules Incorporating Amino Acids
(Chirality)
Chirality has been demonstrated crucial for spin filtering also in
different polymers and π-conjugated molecules, as for example in
organic light emitting diodes (OLEDs). Thanks to the CISS effect,
chiral polymers represent a great alternative for spin polarization
and injection with high spin selectivity. For instance, thin films of
thiophene-based polymers incorporating cysteine exhibited high

spin filter ability at room temperature, as shown using a solid-
state device to determine magnetoresistance and electrochemical
measurements (Mondal et al., 2015). Another intriguing example
illustrating the importance of selective spin transport in
supramolecular structures is the improvement in water
splitting by avoiding the formation of hydrogen peroxide
(Figure 2D). In this case, the anode was coated with a helix-
forming chiral organic semiconductor that enhanced the desired
process thanks to the CISS effect (Mtangi et al., 2017). Later on,
the importance of supramolecular chirality rather than the
number of chiral centers present in the molecule was
demonstrated using coronene bisimide and porphyrin-like
polymers with chiral (or achiral) alcoxyphenyl chains
(Kulkarni et al., 2020). In principle, supramolecular helicity is
expected to be inverted depending on the stereoconfiguration of
the chiral centers in the π-conjugated molecule or polymer.
However, it was shown that both, M and P chiral helicity can
also emerge from a monomer with the same chirality (e.g.,
L-derivative). In this sense, the secondary arrangement can be
inverted by changing the temperature (+20°C or −10°C)
(Kulkarni et al., 2020), or by using a different solvent (Mishra
et al., 2020b). More recently, spin polarization was identified in
achiral polymers with a preferred helical arrangement induced by
the use of chiral solvents. The authors used triphenylene-2,4,10-
tricarboxamide derivatives, whose supramolecular chirality is
biased to get either P- or M-helices when using chiral solvents
(Mondal et al., 2021) (Figure 2E). The inversion of
supramolecular chirality by means of temperature and solvent
when using the same enantiomer affects spin selectivity, and
confirms the importance of supramolecular orientation in
selective spin transport. In fact, very recently, Meijer and
coworkers claimed the pivotal role of chiral supramolecular
order rather than the number of chiral centers in discrete
molecules in the CISS effect using squarine dyes (Rösch et al.,
2021).

Inorganic and Hybrid Inorganic-Organic
Materials
Inorganic and hybrid inorganic-organic materials have shown as
well properties as spin filters. Hybrid materials of perovskites
frameworks integrating a chiral organic sublattice have presented
spin selectivity much larger than previously reported in SAM
systems (Waldeck et al., 2021). Recently, Lu et al. achieved spin
polarizations of up to 86% in oriented R- and S-chiral 2D-layered
Pb-iodide hybrid organic-inorganic perovskite (HOIP) films.
Weak thickness dependence was displayed in films from
20–100 nm (Lu et al., 2019) In another report, Huang et al.
demonstrated that chiral-HOIPs are capable of changing the
magnetization of an adjacent NiFe ferromagnetic substrate.
The sign of the magnetization studied by Magneto-optic Kerr
rotation effect depended on the chirality of the HOIP (Huang
et al., 2020). Recently, a spin-polarized LED at room temperature
without magnetic or ferromagnetic contacts, which are normally
required has been reported (Kim et al., 2021). Furthermore,
bioinspired chiral metal-organic Cu(II) phenylalanine (D- or
L-) crystals have shown to present CISS electron conduction
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over long ranges (300 nm) at room temperature measured by
magnetic cp-AFM. Interestingly, the authors also reported a
thermally activated ferromagnetic behavior, which had only
been identified in inorganic materials(Huang et al., 2020).

In 2019 Ghosh et al. prepared copper oxide films capable of
spin polarize photoelectrons and act as electrocatalyst for the
conversion of water to oxygen. The spin filtering ability of chiral
CuO avoids the generation of side products such as H2O2 (Ghosh
et al., 2019). In another example by the same group, chiral cobalt
oxide films used as electrocatalysts in the oxygen evolution
reaction achieved a 1.4-fold increase in the production of
oxygen(Ghosh et al., 2020).

FUTURE DIRECTIONS IN THE FIELD

The CISS effect has been identified and studied in many different
systems, especially over the last 20 years. Although it is still at its
infancy, experimental studies of this phenomenon and the
attempts to give an accurate theoretical explanation have
paved the way for a better understanding of the effect itself.
Over the next years, its application in the fabrication and the
development of novel devices is expected, where miniaturization
and reduction of energy consumption can be envisaged, as the use
of ferromagnets, and more complicated interfaces can be avoided.
The goal is to achieve the proper supramolecular organization to
ensure spin polarization and filtering, either using pure chiral
entities or in combination with achiral molecules where

supramolecular chirality can be achieved as described by the
“sergeants-and-soldiers” effect. Overall, the study and application
of the CISS effect can revolutionize spin-based devices in the
organic electronics field.
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