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ABSTRACT
Background: The oral microbiome, which consists of various habitats, has been shown to be
influenced by smoking. However, differences in the tongue microbiomes of current and
former smokers, as well as their resultant functional consequences, have rarely been inves-
tigated in East Asian populations.
Methods: We used 16S rRNA amplicon sequencing of tongue-coating samples obtained from
East Asian subjects who were current, former, or never smokers to identify differences in their
tongue microbiomes and related metagenomic functions. Two sets of participants from 2016
to 2017 (n = 657 and n = 187, respectively) were analyzed separately.
Results: We found significant differences between the overall microbiome compositions of
current versus never smokers (p = 0.0015), but not between former versus never smokers
(p = 0.43) based on the weighted UniFrac distance. Twenty-nine of 43 investigated genera
showed significantly different expression levels in current versus never smokers. Neisseria and
Capnocytophaga were less abundant, and Streptococcus and Megasphaera were more abun-
dant in current smokers. Moreover, the abundances of metagenomic pathways, including
those related to nitrate reduction and the tricarboxylic acid cycle, were significantly different
between current and never smokers.
Conclusions: The tongue microbiomes and related metagenomic pathways of current smo-
kers differ from those of never smokers among East Asians.
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Cigarette smoke contains many toxicants that can
affect the oral cavity environment, which is the first
body part to come into direct contact with smoke.
The oral microbiome is known to play an important
role in many systemic diseases including diabetes
mellitus, rheumatoid arthritis, and stroke [1–3].
Thus, changes to the oral microbiome that are
induced by external factors, including cigarette
smoke, are of great interest.

The relationship between the oral microbiome
(which consists of several different habitats) and
cigarette smoking has gained increasing attention.
Wu et al. explored this relationship in a large
American cohort by sampling expelled mouthwash
[4] and showed that certain pathways related to anae-
robic, aerobic, and xenobiotic metabolism were influ-
enced by the smoking behavior. While studies that
investigated the relationship between smoking and

the tongue microbiome have been performed [5,6],
the detailed differences in the metagenomic function-
ality of the tongue microbiome in East Asian popula-
tions due to smoking have scarcely been investigated.
Moreover, research using the exact sequence variants-
based approach, which was found to be superior in
terms of reproducibility and resolution compared to
the operational taxonomic units-based approach, has
never been performed in the context of exploring the
relationship between the tongue microbiome and
smoking.

Oral microbiomes were reported to have ethnicity-
specific signatures in another study [7], and genetic
variations of the host were reported to influence oral
microbiomes’ structure [8,9]. In addition, the predo-
minant oral microbiota were reported to be acquired
early and persist through life [10]. Therefore, the
effect of cigarette smoking on the overall oral
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microbiome structure could vary depending on geo-
graphic or ethnicity background.

The aim of this study was to investigate whether
differences exist in the tongue microbiomes of East
Asians based on their smoking statuses using exact
sequence variants-based 16S rRNA amplicon sequen-
cing. The metagenomic implications of differences in
the microbiota were also examined.

Materials and methods

Participants

This cross-sectional study was conducted according to
the principles expressed in the Declaration of Helsinki
and was approved by the Ethics Committee on Human
Research at Hirosaki University (approval number:
2016-028, 2017-026). From among participants in the
Iwaki Health Promotion Project, we selected those who
underwent tongue-coating analyses in 2016 (n = 1,139)
and 2017 (n = 1,059); tongue coating refers to the normal
mucosa present on the dorsal surface of the tongue. That
project aimed to gather annual comprehensive clinical
data from healthy individuals using over 2,000 question-
naires as well as collecting laboratory data, and has been
ongoing since 2005 with the goal of attaining insights
into the mechanisms of the onset of complex diseases.
Written informed consent was obtained from all partici-
pants prior to initiating the study.

Covariate assessment and participant selection

The participants’ covariate information was obtained
from questionnaires administered upon induction into
the study. Smoking status was classified as current, for-
mer, and never. Drinking status was classified as non-
drinker, former drinker and current drinker. For current
and former smokers, information on the ages at com-
mencing and (when applicable) ceasing the smoking
habit, as well as the number of cigarettes smoked
per day, were also collected. Body mass index (BMI)
was calculated based on height and weight of the partici-
pants. We also described the predicted percentage of
forced expiratory volume in one second and pack-year
index (the number of cigarettes smoked per day divided
by 20, multiplied by the number of years of smoking)
across the three groups. Pack-years index was reported to
be related to the risk of lung cancer [11]. Oral health
status was examined by dentists, and the natural tooth
number, presence of dental caries and periodontal status
were recorded. Dental caries was divided into two cate-
gories of either presence or absence. Periodontal status
was classified to suspected of having periodontal disease
or not, based on the findings of tartar, gum bleeding and
gingival pocket depth. The study’s exclusion criteria were
as follows: (1) Those who were younger than 20 years of
age or were 90 years or older; (2) those who were

prescribed oral antimicrobials or steroids on admission;
(3) those with estimated glomerular filtration rate below
30 mL/min/1.73 m2 as calculated from serum creatinine
levels and age at admission; (4) those who were on anti-
hypertensive drugs, who reported having hypertension;
(5) those whose hemoglobin A1c was 6.5% or above, who
were taking oral hypoglycemic agents, or who reported
having diabetesmellitus on their questionnaires; (6) those
who had no teeth; (7) those who had prescribing records
of probiotics; and (8) those with missing information
regarding any of their covariates.

Sample collection and microbiome assay

Tongue-coating samples were obtained via cotton swabs
on the morning of admission before breakfast and oral
brushing and were stored in a specimen tube containing
1 mL of 4 M guanidium thiocyanate, 100 mM Tris-HCl
(pH 8.0), 40 mM EDTA and 0.001% bromothymol blue
with the cotton swab inside. Samples were stored at 4°C
until use. The detailed library preparation method,
including PCR conditions, has been described pre-
viously [12]. Briefly, the samples were mixed with zirco-
nia beads using a FastPrep 24 instrument (MP
Biomedicals, Santa Ana, CA, USA). DNA was extracted
from the bead-treated suspensions using an automatic
nucleic acid extractor and MagDEA DNA 200 (GC) or
MagDEA Dx SV (Precision System Science, Chiba,
Japan). The 16S rRNA gene amplicons covering the
V3–V4 region were amplified using the universal primer
sets described previously [12]. Sequencing was per-
formed using a paired-end, 2 × 300-base pair cycle run
on an Illumina MiSeq sequencing system. Quality con-
trol, trimming, merging, and chimera detection were
performed using DADA2 (maxN = 0, maxEE = 1 for
both forward and reverse reads, truncQ = 2) [13].
Bacterial taxonomy was assigned using the Ribosomal
Database Project version 16 as a reference [14]. The
number of total denoised reads included in the analysis
was 19,392,711 sequences (mean ± standard deviation
[SD]: 29,517 ± 9,356 sequences per sample; range, 14,-
526–142,475). All sequences were aligned by the com-
puter program MUSCLE [15], and multiple sequence
alignments were filtered by the program Noisy [16]. The
phylogenetic tree was subsequently generated using
FastTree [17]; the tree was rooted using the outgroup
rooting method. We inferred the metagenomic function
of the microbial community using the PICRUSt2 [18]
algorithm, which used the following tools and algo-
rithms internally: HMMER [19], EPA-NG [20], gappa
[21], and castor [22]. The MetaCyc [23] pathway abun-
dances were predicted from ‘Enzyme Commission’
numbers abundances by MinPath [24]. The weighted
nearest sequenced taxon index (NSTI) values, which
show the phylogenetic distance of the samples and the
fully sequenced genome, were calculated for prediction
reliability.
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Statistical analyses

Continuous variables were compared using one-way
analysis of variance (ANOVA), while categorical
variables were compared using the chi-squared test
when assessing the participants’ background charac-
teristics. The alpha diversity was measured by the
observed species counts as well as Shannon’s and
Simpson’s diversity indices based on the rarefied
table for the sample with the minimum sequence
count, and was compared across the three groups
using a linear model. The overall microbiome differ-
ences were tested using permutational multivariate
ANOVA based on the Bray–Curtis dissimilarity, the
unweighted and weighted UniFrac distance [25] by
the adonis function in the R package vegan. The
unweighted, weighted UniFrac distances and Bray–
Curtis dissimilarity were calculated based on log-
transformed abundance with a pseudocount of 1.
We performed a pairwise comparison of groups by
assessing the beta diversity, whereupon the p-values
were adjusted for multiple comparisons. The ampli-
con sequence variants that were present in less than
15% of the total dataset were excluded, and the
remainder were then categorized into 9 phyla, 13
classes, 17 orders, 28 families, and 45 genera while
excluding unassigned taxa. The Wald test was used
to analyze the differential abundance of taxa and
inferred pathways using DESeq2 [26], which esti-
mates the log2 fold change between conditions
using generalized linear models with a negative bino-
mial distribution. For a differential abundance of
pathway analysis, the rounded pathways’ abundances
were tested for differences using DESeq2. Age was
divided into six categories partitioned by 20, 30, 40,

50, and 65 years old. The number of natural teeth
was divided into three categories partitioned by 1, 10
and 20. BMI was classified to four categories accord-
ing to World Health Organization criteria when
describing the participants’ background or incorpo-
rated into statistical models or tests. All models were
adjusted for possible confounders; age, sex, BMI,
drinking status, the number of teeth, presence of
caries, and periodontal status. We performed the
discovery study in the 2016 cohort and the validation
study in the 2017 cohort. All statistical tests were
two-sided, and a p-value or false discovery rate-
adjusted p-value of less than 0.05 were considered
statistically significant. All microbial and statistical
analyses were conducted using R 3.5.0 and the
R library phyloseq [27]. Figures were generated
using the R library ggplot2 [28].

Results

Microbiome diversity

We first analyzed the data of 657 participants who
were swabbed in 2016, the overall characteristics of
whom are shown in Table 1. There were statistically
significant differences between current and never
smokers (pseudo-F = 25.65, R2 = 0.045, p = 0.0015
for the weighted UniFrac; Figure 1) and between
current and former smokers (pseudo-F = 20.14,
R2 = 0.068, p = 0.0015 for the weighted UniFrac;
Figure 1). On the other hand, there was no statisti-
cally significant difference between former and never
smokers (pseudo-F = 0.89, R2 = 0.0017, p = 0.43 for
the weighted UniFrac). The results were similar when

Table 1. Overall participants’ background in 2016.

Clinival values
Never smokers

(n = 384)
Former smokers

(n = 129)
Current smokers

(n = 144) p-value

Age (years), mean (SD) 49.78 (15.21) 48.03 (11.27) 43.99 (10.87) <0.001
Sex: # female, % 283 (73.7) 60 (46.5) 51 (35.4) <0.001
eGFR (mL/min/1.73 m2), mean (SD) 81.69 (14.78) 81.13 (13.23) 83.53 (12.77) 0.304
HbA1c (%), mean (SD) 5.67 (0.30) 5.66 (0.28) 5.65 (0.30) 0.742
Systolic blood pressure (mmHg), mean (SD) 120.78 (17.15) 120.49 (15.69) 116.60 (15.50) 0.031
Diastolic blood pressure (mmHg), mean (SD) 73.88 (11.62) 75.50 (11.95) 73.58 (12.94) 0.342
Pack-year index, mean (SD) NaN (NA) 13.44 (15.52) 18.85 (12.36) 0.002
FEV1.0%, mean (SD) 82.73 (6.60) 81.72 (6.41) 81.35 (6.85) 0.063
BMI category # (%) 0.298
0–18.5 kg/m2 34 (8.9) 10 (7.8) 18 (12.5)
≥18.5–25 kg/m2 275 (71.6) 100 (77.5) 95 (66.0)
≥25–30 kg/m2 64 (16.7) 18 (14.0) 29 (20.1)
≥30 kg/m2 11 (2.9) 1 (0.8) 2 (1.4)

Number of teeth category # (%) 0.013
≥1–10 16 (4.2) 0 (0.0) 4 (2.8)
≥10–20 38 (9.9) 8 (6.2) 5 (3.5)
≥20 330 (85.9) 121 (93.8) 135 (93.8)

Drinking status # (%) <0.001
Non-drinker 253 (65.9) 25 (19.4) 53 (36.8)
Former drinker 12 (3.1) 10 (7.8) 1 (0.7)
Current drinker 119 (31.0) 94 (72.9) 90 (62.5)

Caries present # (%) 115 (29.9) 37 (28.7) 66 (45.8) 0.001
Suspected of having periodontal diseases #
(%)

271 (70.6) 94 (72.9) 122 (84.7) 0.004

Age, systolic and diastolic blood pressure, HbA1c, eGFR, FEV1.0%, and pack-year index were compared using one-way ANOVA, while
number of teeth, sex, drinking status, presence of caries, periodontal status and BMI category were compared using the chi-squared
test.
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comparison was made in unweighted UniFrac dis-
tance and Bray–Curtis dissimilarity (Table S1).

The observed counts of species showed no statis-
tically significant differences between former and
never smokers (beta = 14.16, standard error
(SE) = 8.30, p = 0.091) and current and never smo-
kers (beta = 9.44, SE = 9.07, p = 0.30). Furthermore,
there were no statistically significant differences
between former and never smokers according to
either Shannon’s diversity index (beta = 0.13,
SE = 0.098, p = 0.18) or Simpson’s diversity index
(beta = 0.0059, SE = 0.011, p = 0.60). However, there

were statistically significant differences between cur-
rent and never smokers according to Shannon’s
diversity index (beta = −0.23, SE = 0.11, p = 0.037)
and Simpson’s index (beta = −0.034, SE = 0.012,
p = 0.0067).

The abundance of each taxon was subsequently com-
pared across groups using DESeq2. Six phyla showed
significant differences between current and never smo-
kers: Actinobacteria (p < 0.001) and Firmicutes
(p < 0.001) were more abundant, while Bacteroidetes
(p = 0.010), Proteobacteria (p < 0.001), and Fusobacteria
(p < 0.001) were less abundant in current smokers

Figure 1. Overall microbiome composition.
A principal coordinate analysis was performed on the weighted UniFrac distance. The x- and y-axes represent the first and second principal
coordinates with the proportion of variance. The 95% confidence ellipse is shown for each group. There was no statistically significant
difference between former and never smokers; however, statistically significant differences were observed when comparing current versus
former (right) as well as current versus never smokers (left).

Table 2. Results of differential abundance of phyla in 2016.
Phylum Base Mean log2 FoldChange lfcSE Stat pvalue padj

Firmicutes 12084.30719 0.329331 0.052812 6.235921 4.49E-10 1.35E-09
Bacteroidetes 4805.37285 −0.22542 0.082985 −2.71639 0.0066 0.0099
Proteobacteria 3284.594671 −0.82262 0.110453 −7.44768 9.50E-14 4.27E-13
Fusobacteria 844.1792283 −0.69113 0.143631 −4.81187 1.50E-06 3.36E-06
Actinobacteria 2150.816342 0.651696 0.080319 8.113884 4.90E-16 4.41E-15
Tenericutes 4.223112698 3.648186 0.790434 4.615421 3.92E-06 7.06E-06

Base mean: the mean of normalized counts of all samples normalized for sequencing depth, lfcSE: standard error of log2 fold change, stat: Wald
statistics, padj: adjusted p-value.

Figure 2. The violin plot representing the relative abundances of the phylum.
The x-axis shows the smoking status and y-axis shows the relative abundance (log10 scaled).
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(Table 2, Figure 2). Additionally, 12 classes showed
significant differences between current and never smo-
kers: Bacteroidia, Betaproteobacteria, and Clostridia (all
p < 0.001) were less abundant in current smokers, while
Actinobacteria (p < 0.001) and Negativicutes (p < 0.001)
were more abundant in current smokers. Of the 43
genera, 29 showed significant differences between cur-
rent and never smokers: Streptococcus (p < 0.001),
Megasphaera (p < 0.001), Anaerovorax (p < 0.001),
and Atopobium (p = 0.0021) were more abundant,
while Neisseria (p < 0.001), Capnocytophaga
(p < 0.001), and Haemophilus (p = 0.017) were less
abundant in current smokers (Figure 3). There were

no significant differences between former and never
smokers. All ASVs presented in the 2016 cohort were
summarized in Table S2. The results of differential
genera abundance analysis and their representative
sequences are summarized in Table S3.

Functional analysis

A metagenomic analysis was conducted to determine
the functional consequences of different microbiota
compositions using the PICRUSt2 algorithm. The
mean ± SD of the overall weighted NSTI values was

Figure 3. The result of comparison of bacterial abundance at the genus level.
(a) The x-axis shows the shrinked log2 fold change of current smokers and standard error bars using never smokers as references, while the
y-axis shows the genera. (b) The relative abundances are visualized by the violin plots. The x-axis shows the smoking status and y-axis shows
the relative abundance (log10 scaled).
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0.063 ± 0.034. Among the 395 MetaCyc pathways
predicted by the Enzyme Commission number abun-
dance, 290 pathways existing in more than 15% of the
participants were tested; 189 pathways were signifi-
cantly different when comparing never smokers to cur-
rent smokers. Among these pathways were those
involved in denitrification, sulfate reduction, the tricar-
boxylic acid (TCA) cycle, glyoxylate cycle, aerobic
respiration, 2-methylcitrate cycle, and several compound
biosynthesis pathways such as ubiquinol, menaquinol,
L-arginine or L-ornithine. One pathway (mycolyl-arabi-
nogalactan-peptidoglycan complex biosynthesis) was
significantly different between former and never smo-
kers. The results of differential abundance analyses for
pathways are summarized in Table S4.

Validation study

The results from samples obtained from subjects
swabbed in 2016 were compared to those of 187 partici-
pants swabbed in 2017whomet the inclusion criteria; the
latter group was independent of the former and served as
a validation cohort. The number of total denoised reads
included in the validation study was 4,407,131 sequences
(mean ± SD: 23,568 ± 8,403 sequences per sample; range
10,136–56,680). The mean ± SD overall weighted NSTI
values in the 2017 analysis were 0.100 ± 0.043. The
analysis included 7 phyla, 11 classes, 14 orders, 25
families, and 38 genera. The overall characteristics of
the participants included in the validation study are
shown in Table S5. The overall microbial composition
was not significantly different between former and never
smokers (pseudo-F = 0.37, R2 = 0.0025, p = 0.96).

However, a significant difference was observed between
current and never smokers (pseudo-F = 4.85, R2 = 0.032,
p = 0.006) and current and former smokers (pseudo-F
= 3.23, R2 = 0.037, p = 0.017). When abundance on the
genus level was compared using DESeq2, 10 of the 38
genera showed significant differences between current
and never smokers: Atopobium (p = 0.016) and
Megasphaera (p = 0.020) were more abundant, while
Peptostreptococcus (p = 0.001) and Capnocytophaga
(p < 0.001) were less abundant in current smokers.
None of the genera showed significant differences
between former and never smokers. Metagenomic ana-
lysis showed that, among the 284 MetaCyc pathways
present in more than 15% of the participants, 82 showed
significant differences between current and never smo-
kers. There were no significant differences between for-
mer and never smokers in terms of the pathway
abundance. All ASVs presented in the 2017 cohort were
summarized in Table S6. The results of differential abun-
dances in the genera and of pathways in the validation
analysis are summarized in Tables S7 and S8. The com-
mon significant results of pathways for the two cohorts
were shown in Table S9. There were 75 pathways both
significant in the 2016 and 2017 cohorts, and 70 pathways
were changed to the same direction. Among these, the
pathways with highest and lowest 10 log2 fold change in
the 2016 cohort are shown in Figure 4 along with log2
fold change in the 2017 cohort.

Discussion

Our investigation of the relationship between the
tongue microbiome composition and smoking status

Figure 4. Log2 fold change in pathway abundance over never smoker levels.
The x-axis shows the log2 fold change and standard error bars using never smokers as references, while the y-axis shows the selected
pathways. The pathway above dotted line indicates these pathways were less abundant in current smokers, while the pathway below dotted
line indicates more abundant in current smokers.
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revealed that the tongue microbiomes and related
metagenomic pathways of current smokers differed
from those of never smokers, while no significant
differences were found between the tongue micro-
biomes of former and never smokers. Some of these
results reproduced when repeated with a -
different year’s cohort. Our study is valuable in that
it investigated subjects specifically from an East Asian
population who were relatively younger in mean age
than those in previous studies; moreover, newly
developed algorithms were used to profile the bac-
teria and determine their functionality.

There was a significant difference in the tongue
microbiome composition of current and never smokers.
The alpha diversity was lower in current smokers than
in never smokers, with a significantly different
Simpson’s index and Shannon’s index. These data indi-
cated differences in evenness and richness between
current and never smokers. Beta diversity differed sig-
nificantly in both analyses. Our findings of several dif-
ferences in the genera and pathways between these
groups are consistent with those of previous studies
conducted by Wu et al. (which sampled ejected
mouthwash) and Mason et al. (which sampled subgin-
gival plaque), where genera such as Neisseria and
Capnocytophagawere less abundant in current smokers
than in never smokers while Atopobium and
Megasphaera were more abundant [4,29]. Despite
such similarities, however, there have been too few
studies investigating the relationship between tongue
coating and smoking; moreover, the results of these
studies are not directly comparable because the micro-
bial composition of the oral cavity varies by anatomical
site [30]. The tongue and salivary microbiomes are
reported to be highly similar, although differences
exist with a small effect size [31]. Another study that
examined the microbiome of the tongue and other oral/
nasal sites as a function of smoking status found no
differences in microbiome composition [6].

The commensal bacterial genus Neisseria is consis-
tently found to be less abundant in current smokers in
most studies investigating the relationship between
smoking and oral microbiome. A smoking habit creates
an anaerobic environment in the oral cavity, which favors
anaerobic bacteria such as Atopobium over aerobic bac-
teria such asNeisseria [32]. Some species belonging to the
Neisseria and Streptococcus genera were reported to grow
more rapidly on natural teeth than on dentures [33].
Another study revealed a relationship between the con-
dition of the oral environment, such as the number of
natural teeth and percentage of carried teeth, and the
tongue microbiome composition [34]. In our current
study, we performed the analysis controlling for oral
health status.

The oral microbiome plays a key role in metabolism
and degradation. Our study specifically investigated the
functionality of the tonguemicrobiome using PICRUSt2,

by determining the involved MetaCyc pathways.
PICRUSt2 was reported to be more accurate than other
tools [18], and we utilizedMinPath to infer the function-
ality of themicrobiome, which is more stringent than the
naïve mapping approach that was used in other studies,
thus reducing the rate of false-positive results.
Metagenomic content analysis revealed that pathways
that differed between groups included those involving
denitrification or sulfate reduction. Moreover, some
aerobic respiration pathways such as the TCA cycle
were found to be less active in current smokers, which
is expected considering that aerobic bacteria were less
abundant in current smokers. Moreover, anaerobic bac-
teria were more present in current smokers, and anaero-
bic fermentation pathways like pyruvate fermentation to
acetate and lactate were more abundant in current smo-
kers. Additionally, the 2-methylcitrate cycle, which is
a pathway that metabolizes toxic propionyl-CoA into
pyruvate, was less abundant in current smokers [35].
These pathway changes included some key metabolic
pathways such as the TCA cycle and urea cycle, which
were confirmed in the validation study. A previous study
showed that the oral microbiomes and their associated
pathways in former and never smokers were generally
similar, and our study confirmed this to also be the case
in the tongue microbiome, as there were no significant
differences in taxonomic and pathway comparison.
Moreover, smoking-related tongue microbiome changes
appear not to be permanent [4].

The relationships between diseases and oral micro-
biome were previously investigated in several studies.
One showed that patients with periodontitis had less
abundant Neisseria in the oral mucosa [36], and another
showed thatCapnocytophaga andVeillonellawere signif-
icantly more abundant in patients with lung cancer, and
could, therefore, be potential biomarkers for this disease
[37]. Moreover, children with autism spectrum disorder
have less abundant Prevotella and Porphyromonas but
more abundant Streptococcus in their oral microbiomes
according to a recent analysis [38]. In the oral micro-
biomes of patients with colorectal cancer, genera such as
Neisseria, Prevotella, Haemophilus, and Streptococcus
were found to be less abundant than in controls [39].
The abundance of some of these genera whose quantities
were potentially associatedwith diseases differed between
current and never smokers in the tongue microbiome,
though the natures of these associations were not con-
firmed in the setting of the present study.

The strength of our study was a relatively large
sample size and the fact that we adjusted for possible
confounding variables. Moreover, we used the exact
sequence variant-based method, which is considered
superior to operational taxonomic units-based analy-
sis in terms of improved resolution and reproduci-
bility [40]. Additionally, compared to Wu et al.’s
cohort, ours comprised a relatively younger popula-
tion in mean age; this indicated that the previously
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reported differences between the oral microbiomes of
current and never smokers were also likely to be true
in a younger population [4].

Our study also had limitations. First, prescription
information (used for covariate adjustment) was
based on the subjects’ medication notebooks that
were checked on admission; therefore, the duration
of administration was unknown. Furthermore, infor-
mation regarding smoking history was based on the
participants’ recollection, which may have resulted in
recall and reporting bias. Moreover, it was not possi-
ble to determine if differences in genera or pathways
were directly related to the onset or pathogenesis of
various diseases or health consequences, and long-
itudinal data for causal inferences were lacking. The
discrepancies between the results we obtained for the
2016 and 2017 cohorts were presumed to be largely
due to the difference in sample size. We did not
sequence negative samples; therefore, the possibility
of contamination cannot be excluded. Prebiotics and
synbiotics information were lacking. Lastly, there are
various methods to compare the differential abun-
dance of compositional data, which were bench-
marked in some papers; we only used the DESeq2
in our current study [41,42].

In summary, we found differences in tongue-
coating microbiomes between never and current smo-
kers in a cohort of East Asians, which was consistent
with results from other studies that investigated differ-
ent oral microbiome sites. The present study cannot
provide clear evidence of any direct associations
between changes in the microbiome due to smoking
and specific diseases, however, several pathways
related to important metabolic processes are influ-
enced by smoking. Additional studies are required to
investigate the effects of these differences on health.
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