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Abstract: Improvement of methods for reliable and early diagnosis of the cellular diseases is necessary.
A biological selectivity probe, such as an aptamer, is one of the candidate recognition layers that can
be used to detect important biomolecules. Lung cancer is currently a typical cause of cancer-related
deaths. In this work, an electrical sensing platform is built based on amine-terminated aptamer
modified-gold electrodes for the specific, label-free detection of a human lung carcinoma cell line
(A549). The microdevice, that includes a coplanar electrodes configuration and a simple microfluidic
channel on a glass substrate, is fabricated using standard photolithography and cast molding
techniques. A procedure of self-assembly onto the gold surface is proposed. Optical microscope
observations and electrical impedance spectroscopy measurements confirm that the fabricated
microchip can specifically and effectively identify A549 cells. In the experiments, the capacitance
element that is dominant in the change of the impedance is calculated at the appropriate frequency
for evaluation of the sensitivity of the biosensor. Therefore, a simple, inexpensive, biocompatible,
and selective biosensor that has the potential to detect early-stage lung cancer would be developed.

Keywords: aptamer; lung cancer; self-assembly; impedance measurement; capacitive sensor

1. Introduction

During the past three decades, many diseases in humans have emerged strongly, including cancer.
Lung cancer is one of the most frequently-recognized cancers in both men and women, with over
1.5 million new cases occurring per year, accounting for about 13% of total cancer diagnoses [1].
The existing diagnosis methods, which are based on histological examinations of the suspicious tissue
in the context of its clinical and morphological features [2], are often very expensive, and require
advanced instruments. Moreover, they are not sensitive enough to diagnose the disease in its early
stages, and are non-specific for cancer classification. Cancer cells can be found in many different
states due to differences at the morphological and molecular levels [3,4]. The stages of cancer are
closely related to the change of cells, such as cell morphology, proliferation, and differentiation. Hence,
developing sensitive and specific approaches for the detection of cancerous cells is crucial. The A549
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cell line, a typical carcinoma subtype of non-small cell lung cancer, has been known as the circulating
tumor cell model of the early stage of cancer [5]. Enhancement of early detection and treatment of the
A549 cells is therefore essential for reducing mortality rates.

Developments is microfluidics and nanotechnology (for example, the development of good
indicators of the presence of a primary tumor) have improved the detection and capture capabilities
of tumor cells [6,7]. Recent advances of noninvasive tests based on surface-specific probes have
received significant attention for cancer diagnosis and for the identification of cancer subtypes. Several
biosensors that use enzymes, receptors, and antibodies have been reported [8–10]. One of the main
disadvantages of using antibodies is their instability due to irreversible denaturation. Aptamers are
single-stranded DNA or RNA oligonucleotides that have emerged as an alternative approach for
specific target recognition expressed on the surface membranes, with high affinity and selectivity [11].
Aptamer types are isolated through a selection process known as SELEX (systematic evolution of
ligands by exponential enrichment). Several studies relating to the aptamer-based biosensors for
the detection of proteins [12,13], enzymes [14], molecules [15,16], viruses [17], antibiotics [18], and
cancer cells [19–22] have been explored. An aptamer-coated silicon nanowire substrates for capturing
circulating tumor cells from blood samples was developed [23]. The device was capable of specifically
capturing A549 cells with over 90% efficacy. Another biosensor based on a MCU1 aptamer attached
onto gold nanoparticles was also designed for the sensitive and selective detection of A549 cell [24].
The sensor showed a high affinity for non-small lung cancer cells (A549) compared with the other
control cancer cells, including human prostate (PC3), normal lung (MRC-5), and liver tumor (HepG2)
cells. Aptamer molecules show several distinctive advantages because of their unique binding
properties. They are often stable in harsh biological environments, preserve their structures at high
temperatures, and can be easily produced in bulk [11].

In recent years, electrical impedance-based approaches have been gaining much attention in
biosensor research [25–27]. This type of sensor has many advantages, such as simplicity, miniaturizability,
fast analysis, sensitive response, low cost, and suitability for integrated microsystems [28–30]. One
example is electrical impedance spectroscopy (EIS), which is a label-free technique that allows for the
determination of the biological medium changes between the electrodes by measuring their interfacial
capacitance and resistance [31–35]. A silicon nanowire-based cell impedance sensor was developed
to monitor the spreading-induced electrical differences between cancerous and normal lung cells [36].
This method takes rather a long time to make measurements and for the maintenance the culture
conditions during cell growth process. A cheaper, faster, and simpler device with a circle-on-line
microelectrodes structure was built for distinguishing lung cell lines using a dielectrophoretic impedance
measurement method [37]. However, the examinations in these chips actually used a single type
of cell samples, and did not involve any specific target cell selection from the blood. Aptasensors
that combine aptamers and EIS have become a powerful method for the identification of the specific
cells in many works [38–42]. Impedance changes may arise when the target proteins or cells bind
to the receptor, becoming immobilized on the electrode surface, thereby displacing medium solution
molecules. Many aptasensors were used in fabricating the conjugation of the aptamers with magnetic
beads, nanostructures, nanoparticles, or nanomaterials to improve the surface-to-volume ratios and
sensitivity [41,43–45]. However, the use of self-assembly on microelectrodes has the advantage of a simple
surface immobilization process with high reproducibility and low cost [46]. DNA aptamer-modified gold
electrodes were shown to be capable of detecting lung cancer-related proteins in crude blood plasma
samples [47]. A sensitive and selective electrochemical sensor based on amine aptamer-functionalized
graphite screen printed electrodes was constructed for the detection of colorectal cancer (CT26) cells [39].

In this study, the combination of DNA aptamers and impedance measurements have been utilized
to build a simple microfluidic platform for the detection of the A549 human lung carcinoma cell
line. A process of self-assembled monolayers (SAMs) of the gold surface was given. The probes for
trapping target cells were prepared by the conjugation of the amino-labeled aptamers onto carboxylic
acid functionalized gold electrodes. The efficiency of trapping cells was expressed by monitoring
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the change of the microscopic images. EIS was performed at frequencies ranging from 0.1 kHz to
1 MHz to demonstrate the binding events. The capacitive response of the impedance was investigated
at different cell concentrations to evaluate the performance of the biosensor. The obtained results
promise a powerful method for the identification of cancer cell lines with high affinity, selectivity,
and specificity.

2. Materials and Methods

2.1. Chemicals and Reagents

Most of the chemicals, including DNA aptamer with 5′-thiol modification, thiol PEG
carboxylic acid (HS-PEG-COOH), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(EDC), N-hydroxysuccinimide (NHS), and phosphate-buffered saline solutions, were purchased from
Sigma-Aldrich (St. Louis, MO, USA). The aptamer was provided in a dried form, with the sequence
of 5′-ACGCT CGGAT GCCAC TACAG GGTTG CATGC CGTGG GGAGG GGGGT GGGTT TTATA
GCGTA CTCAG CTCAT GGACG TGCTG GTGAC-3′—NH2 and selective binding to A549 lung cancer
cells [48]. HS-PEG-COOH and EDC/NHS solutions were prepared in deionized water and 0.1 M
MES buffer, respectively. The stock aptamer was dissolved completely to the desired concentration
with a TE buffer (pH 8.0, 10 mM Tris, and 1 mM EDTA) and stored at −20 ◦C. The washing buffer
was prepared by adding 5 mmol MgCl2 and 4.5 g glucose into 1 L of 10 mM PBS (PBS 1× at pH 7.4)
without calcium and magnesium. The binding buffer was created by adding 0.1 mg tRNA and 1 mg
bovine serum albumin (BSA, Sigma, St. Louis, MO, USA) to 1 mL washing buffer [48]. These buffers
can be stored at 4 ◦C for up to 1 month. All aqueous solutions were diluted with deionized water
(18.2 MΩ cm) from a Direct-Q system (Milli-Q, Millipore Simplicity, Billerica, MA, USA).

2.2. Microchip Design and Fabrication

Figure 1 shows the dimensions and design of the proposed microfluidic chip. The microchip
consists of a polydimethylsiloxane (PDMS) channel, a glass substrate, and a gold microelectrodes
structure patterned on the glass surface.
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Figure 1. Schematic of the microfluidic chip. The aptamer-modified gold electrodes are utilized to
capture the target cells, while the non-target cells are washed out of the channel. The impedance
measurement could be performed within the chip to recognize the presence of the cells.

In this work, a coplanar two-electrode configuration was used. The advantages are its simplicity
of fabrication, and the ease with which it is possible to monitor the change of material properties inside
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the electric field between the electrodes based on electrode-solution interface impedance measurement.
The electrode surface was designed to be large enough for the convenient observation of captured
cells. The device was fabricated using a typical soft lithography procedure (Figure 2a), as reported
previously [49]. First, the gold-glass side was cleaned with piranha solution (96% H2SO4: 30% H2O2

by the volume ratio of 3:1) for 30 min, and then was rinsed with deionized water. Subsequently, the
photomask was aligned on the surface of the substrate coated with a layer of positive photoresist
(Shipley 1813, MicroChem Co., Ltd., Westborough, MA, USA). The photoresist was then exposed via
UV light to define the etching mask. Following a process of post-exposure baking, developing, hard
baking, and wet etching the microelectrode structure onto glass substrate was finally performed.

Using a cast molding technique, a SU-8 (2050, MicroChem Corp., Newton, MA, USA) master
mold with channel pattern on the surface of a silicon wafer was created. A degassed mixture of PDMS
prepolymer and curing agent (Sylgard-184 Silicone Elastomer Kit, Dow Corning, Midland, MI, USA)
at a weight ratio of 10:1 was poured onto the prepared master mold. Then, the PDMS block was baked
at 75 ◦C for 2 h, and was released from the SU-8 mold after curing. Finally, the PDMS piece punched
with fluidic ports was permanently bonded to the substrate using an oxygen plasma chamber (Model
PDC-32G, Harrick Plasma Corp., Ithaca, NY, USA). The obtained channel height and width were
approximately 50 µm and 1 mm, respectively. Figure 2b shows an image of the fabricated microchip.
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standard photolithography process.

2.3. Cell Preparation

Human epithelial adenocarcinoma cells including A549 (human non-small cell lung cancer cell
line), Hela (human cervical cancer cell line), MKN45 (human gastric cancer cell line), and Caco-2
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(human colorectal cancer cell line) were cultured for experimental demonstrations of the proposed
microfabricated device. Minimum Essential medium (MEM), Dulbecco’s Modified Eagle Medium
(DMEM), fetal bovine serum (FBS), L-Glutamine, and penicillin/streptomycin solutions for cell culture
were purchased from Gibco (Grand Island, NY, USA). All tumor cells were incubated in a humidified
atmosphere containing 5% carbon dioxide at 37 ◦C. The culture medium was replaced every 1 day
to 2 days. Prior to the experiments, the cells were collected from the cell culture dishes by standard
trypsinization. The cell samples were then washed three times by centrifugation in the buffer solution.
The cell concentration and viability were assessed by trypan blue dye exclusion using a hemocytometer
with two counting grids.

2.4. Aptamer on Self-Assembled Monolayers-Functionalized Gold Electrodes

The layer-by-layer assembly surface procedure is illustrated in Figure 3. The gold substrate
surfaces were first washed with the PBS washing buffer solution. The electrodes were covered with
0.1 mM HS-PEG-COOH solution and stored overnight at 4 ◦C from 12 h to 24 h. The gold–sulfur (Au–S)
interaction formed between thiols and the gold surface provided the binding forces to generate robust
SAMs for aptamer application. The modified electrodes were then continuously washed by the buffer
solution. Next, the carboxylic groups on the electrode surfaces were activated in a solution containing
0.1 M NHS and 0.4 M EDC for 30 min to prepare stable amine-reactive esters of carboxylate groups
for crosslinking with the amino-labeled aptamers. Subsequently, the initial 100 mM amine-labeled
aptamers was diluted to a specific concentration using the binding buffer. The mixture solution
was heated at 95 ◦C for 5 min. Then, tubes were left on the bench for 15 min at room temperature.
The electrodes were washed again with the washing buffer, followed by the addition of refreshed
aptamer solution onto the gold substrates for 1 h at room temperature. Finally, the cell sample at a given
concentration was injected into the channel to bind target cells on the electrode surfaces. The channel
was then washed by the buffer solution to remove nonspecific adsorbed biomolecules. The flow rate
below 10 µL/min that was supplied into the microfluidic channel was applied to all experiments.
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Figure 3. Illustration of aptamer immobilization procedure onto gold substrate for binding of
target cells.

2.5. Apparatus

The system for conducting experiments is schematically described in Figure 4. Electrochemical
Impedance Spectroscopy (EIS) measurements were performed in a wide frequency range using
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an impedance analyzer (Wayne Kerr 6420, New Boston, TX, USA). The electrodes of the aptasensor
were connected to the device by BNC cables. Used solutions were injected into the channel of the chip
using a syringe pump (Model KDS 101, KD Scientific Inc., Holliston, MA, USA). The observations
of cell samples were recorded using a fluorescence microscope (BX43, Olympus, Tokyo, Japan) with
a mounted CCD camera (DP71, Olympus, Tokyo, Japan) connected to a computer running Olympus DP
Controller image software. The electrical data were transferred to the computer via a digital interface
(GPIB-USB-HS, National Instruments Corporation, Austin, TX, USA). The impedance parameters of
the microchip were finally determined using LabVIEW software. All the impedance measurements
were carried out at room temperature in the 10 mM PBS buffer solution.
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3. Results and Discussion

3.1. Microscopic Responses of the Aptamer-Functionalized Gold Microelectrodes

Several investigations on the biochip were carried-out with various cell lines. In the current study,
we compared the specificity among these human adenocarcinoma cells from various tissues including
lung, cervix, stomach, and colon: A549 (human non-small cell lung cancer cells), Hela (human cervical
cancer cells), MKN45 (human gastric cancer cells) and Caco-2 (human colorectal cancer cells). A549
cells were chosen as the target cells, whereas Hela cells, MKN45 cells, Caco-2 cells, and red blood
cells (RBCs collected from volunteers) were the non-target cells used to evaluate the affinity and
selectivity of the sensing probes. Each cell line sample was prepared at the same cell concentration of
2 × 105 cells/mL. The cells captured onto the aptamer-modified gold electrodes surface were observed
using the microscope. The pictures were taken at the beginning of the cell incubation and after the
cell capture process. Microscopic images were obtained on the same objective scale, sensitivity, and
exposure mode. The control parameters were selected by Olympus DP Controller image software.
As seen in Figure 5, the device revealed a significantly high specificity toward A549 cells. A lot of A549
cells were captured stably, whereas nearly all the other cells were excluded by the aptamer-based gold
surfaces. The findings indicated the significantly higher specificity of this aptamer-based capacitive
sensing system for A549 isolation among these human adenocarcinoma cells.
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Figure 5. Microscopic images of the captured cells onto the aptamer-modified gold-glass substrates with
different cell samples at the same cell concentration of 2 × 105 cells/mL, and the same conditions of the
capture process: (a) Target cell sample, human non-small cell lung cancer cells (A549 adenocarcinoma
cells) at the beginning of the cell incubation and after the cell capture process. (b) Control cell samples
at the end of the cell capture process consist of red blood cells (RBCs), human cervical cancer cells
(Hela adenocarcinoma cells), human gastric cancer cells (MKN45 adenocarcinoma cells), and human
colorectal cancer cells (Caco-2 adenocarcinoma cells).

These microscopic responses also demonstrated successful immobilization of the SAM layers
onto the gold surface, and stable bonding of the aptamers to the SAM. In the practical surveys, various
parameters that affect the biosensor response could be analyzed to establish the optimal conditions
of the assay. In general, the response of the probes gradually enhanced with increasing the aptamer
concentration. The results indicated that a stable state was reached at concentrations of aptamer of
approximately 20 µM. The aptamer probes were normally operated in the media pH from 7.0 to 7.4 at
room temperature. In addition, the response of the aptasensor gradually increased with increasing
incubation time of cell samples, and reached stability at 1 min 30 s. However, a longer incubation time
could lead to a higher number of cells being stuck onto the part of the glass surface. Thus, an incubation
time of 90 s was chosen as the optimal incubation time of cell solution in subsequent experiments.
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3.2. Impedance-Based Observations

To confirm the SAMs generation procedure on the gold electrodes, the electrical impedance values
between the sensing electrodes was measured in the PBS buffer medium at an amplitude of 100 mV,
and the frequencies ranging from 0.1 kHz to 1 MHz. EIS responses were recorded at 40 points per
decade. Fluid flow in the channel was stopped during impedance measurements. Three investigations
were performed to compare the initial chip (bare gold), the chip after immobilization of aptamer
(aptamer-modified gold), and the chip after incubation of target cells with the subsequent washing
step (A549 cells on the aptamer-modified gold electrodes at the concentration of 2 × 105 cells/mL).
Figure 6 presents the measured impedance graphs in these three cases. Data were given in the form
of amplitude Z (Figure 6a) and phase angle θ (Figure 6b). Each experimental data point represents
the average value of at least three separate runs, and the error bar depicts the standard error of the
mean. The impedance magnitude decreases as the frequency increases in the applied frequency range.
The difference value at each frequency point increases up to tens of kilo Ohm between before and after
standing of the aptamers onto the gold electrodes. The variations were observed more clearly at lower
frequencies, especially after the cells were caught on the modified electrodes. The phase angle was
close to −5◦ at the high frequency range of the impedance spectrum, whereas it approached −55◦

in the low frequency range. Therefore, the resistive element of impedance is dominant at the high
frequency range, whereas the capacitance dominates the low frequency range where high magnitude
changes can be observed.
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Figure 6. Impedance responses of the chip as a function of frequency for bare gold microelectrodes,
aptamers-functionalized gold electrodes surface, and trapped A549 cells onto the modified electrodes
with a voltage amplitude of 100 mV, and a frequency range from 100 Hz to 1 MHz: (a) Impedance
magnitude, (b) Phase angle.

Figure 7 shows a simplified electrical equivalent circuit model of the impedance-based sensing
platform where the microfluidic channel is fully filled by the buffer solution to create conductivity
between the gold electrodes. The impedance of the biosensor consists of medium solution resistance
Rm, electrode-solution interface resistance Rs and capacitance Cs, and the parasitic capacitance Cp

and resistance Rp. The parasitic resistance and capacitance are related to the connecting wires and
the original electrode design. The other elements that depend on the conductivity and permittivity
coefficients of the trapped cells, SAMs on the electrode surfaces, and the medium solution, are
important parts of the sensor. By ignoring the parasitic impedance components, the total impedance Z
of the sensor can be expressed by the following equation:
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Z(ω) = Rm +
Rs

ω2R2
s C2

s + 1
− ωR2

s Cs

ω2R2
s C2

s + 1
j (1)

where, ω is the angle frequency, and j is the imaginary unit (j2 = −1). It can be seen that the impedance
Z is approximate Rm at high frequencies. Change in the total impedance mainly depends on the
changes of the surface impedance at the low frequency range, in which the capacitance is the dominant
component of the impedance. It is shown that the experimental data are in good agreement with the
theoretical model.
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Figure 7. An electrical equivalent circuit model of biosensor based on impedance measurement method.
The impedance is constructed of two main parts: surface impedance and resistance of salt media (PBS).

Various A549 cell samples were used in the experiments to evaluate the performance of the sensor.
The capacitance of the sensor was determined by the imaginary part of the impedance from the EIS
data. Figure 8a shows the capacitance graphs at different cell concentrations ranging from 1 × 105

to 5 × 105 cells/mL. It can be seen that the capacitance magnitude decreased with an increase in
cell concentration in the low frequency range. Subsequently, the capacitance change was calculated
as the decrease of the capacitance value of each test sample in comparison with the chip without
cells (the aptamer-modified gold electrodes). A highly linear relationship between the capacitance
variation and the cell concentration was found at a reliable frequency of 5 kHz. The linear regression
equation is expressed in Figure 8b, with the correlation coefficient (R2) up to over 99%. The limit of
detection could be calculated from the formula 3σ/slope, where σ is the standard deviation; the slope is
found from the linear response. Herein, a detection limit of the sensor was achieved at approximately
1.5 × 104 cells/mL. In the current study, the main operating principles of the biochip using the
aptamer-based assembly process on the gold electrodes for trapping target cells, and capacitance-based
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cell detection, have been expressed. The chip design, as well as the sensitivity of the sensor, can be
further improved in subsequent works.
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the aptamer-modified electrodes at frequency of 5 kHz.

The experimental results revealed that the aptamers were successfully cultured on the gold
substrate using the proposed functionalization method. Furthermore, EIS was proven to be a powerful
and simple tool to demonstrate each step of modification of the electrode. The hand-held electrical
measurement circuit board using cheap electronics components can be easily integrated with the
sensor [37]. Thus, this method can be expressed more conveniently than other different approaches
for the investigation of the immobilization of the aptamer. Other existing methods often require
complex and expensive equipment, such as quartz crystal microbalance (QCM) [50], atomic force
microscopy (AFM) [51], and surface plasmon resonance (SPR) measurements [52]. However, these
methods are useful in early studies due to the potential to monitor cell–surface interactions, and affinity
forces. In addition, in order to evaluate the storage stability of the sensing platform, aptamer-modified
electrodes were stored in PBS buffer at 4 ◦C. After 15 days, EIS still maintained more than 90% of its
initial signal response. The results indicated that the proposed sensor possesses an acceptable level of
simplicity, rapidity, selectivity, and stability. In previous works, EGFR-bound A549 cells were captured
by an electrode immobilized by anti-EGFR biomarker, and then the differential capacitance was
read to detect their presence [49]. This study enables us to continuously develop a dielectrophoresis
microfluidic enrichment chip combined with a highly sensitive impedance sensor for circulating tumor
cell detection.

4. Conclusions

A simple and sensitive approach for detecting human lung carcinoma cells based on amine-
terminated aptamer-modified gold microelectrodes was reported. An immobilization process onto
the gold electrodes surface was proposed. The responses of the biosensor were examined by optical
microscopic images and electrical impedance spectroscopy measurements. The equivalent circuit
model for impedance-based detection was used to demonstrate the measured results. The sensor was
confirmed to have high affinity against A549 cancerous cells as target cells compared with controls,
i.e., RBCs, Hela cells, MKN45 cells, and Caco-2 cells. The detection sensitivity of the sensor for A549
cells was evaluated through the measurement of capacitance variation. A higher detection efficiency
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of the sensor was observed at a frequency of 5 kHz. A linear relationship was found between the
capacitance variation and cell concentration in the range from 1 × 105 to 5 × 105 cells/mL, with the
correlation coefficient up to 99%. Although the detection capacity of the current sensor was still limited,
the biochip exhibited many attractive features, namely, simplicity, rapidity, low-cost, biocompatible,
selectivity, and sensitivity toward the diagnosis of lung cancerous cells. The electrode design, as well
as the impact parameters of the proposed method, should be continuously optimized for cancerous
cell quantification. Meanwhile, the electronic measurement circuit module for the sensor can be
further developed.
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