
REVIEW

Activation of toll-like receptor signaling pathways leading
to nitric oxide-mediated antiviral responses

Mohamed Sarjoon Abdul-Cader1 • Aruna Amarasinghe1 •

Mohamed Faizal Abdul-Careem1

Received: 2 January 2016 / Accepted: 17 May 2016 / Published online: 27 May 2016

� Springer-Verlag Wien 2016

Abstract Toll-like receptors (TLRs), well-characterized

pattern-recognizing receptors of the innate arm of the

immune system, are vital in detecting pathogen-associated

molecular patterns (PAMPs). The TLR-PAMP interaction

initiates an intracellular signaling cascade, predominantly

culminating in upregulation of antiviral components,

including inducible nitric oxide synthase (iNOS). After

activation, various TLR pathways can promote iNOS pro-

duction via the myeloid differentiation primary response-

88 (MyD-88) adapter protein. Subsequently, iNOS facili-

tates production of nitric oxide (NO), a highly reactive and

potent antiviral molecule that can inhibit replication of

RNA and DNA viruses. Furthermore, NO can diffuse

freely across cell membranes and elicit antiviral mecha-

nisms in various ways, including direct and indirect dam-

age to viral genomes. This review emphasizes current

knowledge of NO-mediated antiviral responses elicited

after activation of TLR signaling pathways.

Introduction

The innate immune system, which mounts host responses

against invading pathogens, is equipped with a broad range

of germ-line-encoded host receptors referred to as pattern-

recognition receptors (PRRs), including NOD-like recep-

tors (NLRs), toll-like receptors (TLRs), RIG-like receptors

(RLRs), and C-lectin-type receptors (CLRs) [94]. These

innate receptors are capable of recognizing microbial

pathogens (e.g., viruses, bacteria and fungi) due to the

presence of pathogen-associated molecular patterns

(PAMPs), molecules that are highly conserved among

microbes. Of the aforementioned PRRs, TLRs are well

characterized and indispensable in detecting PAMPs of

viruses and other pathogens [81]. When a TLR recognizes

a PAMP, that activates an intracellular signaling cascade

[117], culminating in upregulation of gene transcription for

production of innate antiviral components, including type-1

interferons (IFNs) and pro-inflammatory mediators,

including inducible nitric oxide synthase (iNOS) [137].

The latter enzyme promotes production of nitric oxide

(NO), which can inhibit viral replication, both directly and

indirectly [5, 120].

In the last two decades, our understanding of TLR

biology has progressed substantially and been the subject

of many reviews [1, 64, 117, 135, 137, 140]. However,

none of these reviews has focused on TLR-signaling-me-

diated production of NO leading to antiviral responses.

Therefore, the primary purpose of this review is to discuss

current knowledge of NO-mediated antiviral responses

elicited following activation of TLR signaling pathways.

Toll-like receptors

The first TLR, identified in an insect (Drosophila), was a

molecule with a critical role in antifungal responses. Sub-

sequently, 13 types of TLRs (TLR1, TLR2, TLR3, TLR4,

TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11,

TLR12 and TLR13) have been identified in mammals. It is

noteworthy that TLR1-9 are present in both humans and

mice, whereas TLR11, TLR12 and TLR13 are present only

in mice (Fig. 1) [117]. Finally, TLR10 was identified in
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humans; mice have a TLR10 gene, but it is interrupted and

nonfunctional [42]. In birds, TLR2a, TLR2b, TLR4, TLR5

and TLR7 are comparable to their counterparts in humans

and mice, whereas TLR1La, TLR1Lb and TLR15 are

exclusive to birds [17]. Furthermore, in birds, the TLR8

gene is apparently nonfunctional [106] and the TLR9 gene

is missing [136, 148]. That notwithstanding, TLR21, which

is unique in birds and fish, has functions similar to those of

TLR9 in mammals [16].

Expression of TLRs

TLRs are expressed on various immune and non-immune

cells, including macrophages, T and B lymphocytes, and

epithelial cells, [9, 53]. In addition, cells in muscle, heart,

brain and reproductive organs (testis, ovary, uterus and

placenta) also express TLRs [38, 91]. That preferential

expression of TLR types varies among cell types suggests

activation of specific TLR signaling pathways depending

on the type of cells involved. For example, most human

peripheral blood mononuclear cells (PBMCs) express

TLR1 and TLR6 [53], monocytes and B cells preferentially

express TLR2 and TLR10, respectively, and B cells and

subsets of dendritic cells highly express TLR7 and TLR9

[53]. Furthermore, TLR7 and TLR9 are highly expressed in

dendritic precursor cells following stimulation, and pre-

cursor cells of monocytes can be stimulated to upregulate

TLR2 and TLR4 [58].

Expression of TLRs varies among host cells; they are

expressed on the cell membrane, endosomal membrane, or

both, depending on the type of TLRs (Fig. 2). For example,

TLR1-2, 5-6 and 10-11 are expressed on the cell surface

and distinguish PAMPs on the surface of microbes [132],

whereas, TLR3, 7, 8, 9 and 21 are expressed intracellularly

on the membrane of the endosomal compartment, and they

strategically recognize microbial nucleic acid compo-

nents during replication [7, 47, 48]. Additionally, TLR4

can be expressed on both cellular and endosomal mem-

branes [133] and is capable of interacting with PAMPs that

are on the surface of the microbes or are exposed during

replication within the host cell.

TLR ligands

Each TLR binds to a unique set of ligands (PAMPs of

microbes or synthetic compounds) in order to activate
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Fig. 1 Common and specific

TLRs in humans, mice and

birds. In mammals, TLR2 can

dimerize with TLR1 or TLR6,

whereas in birds, TLR2 is

divided into TLR2a and TLR2b

and TLR1 is divided into

TLR1La and TLR1Lb (due to

gene duplication). TLR2s can

form a heterodimer complex

with TLR1Ls
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signaling pathways. Of the surface-expressing TLRs, TLR2

mainly recognizes the peptidoglycan and lipoteichoic acid

(LTA) present in Gram-positive bacteria [66, 138]. Addi-

tionally, TLR2 can recognize zymosan, a cell wall com-

ponent of yeast [119], hemagglutinin protein of measles

virus [14], core protein and nonstructural-3 protein of

hepatitis C virus [29], and surface glycoproteins (gH, gL

and gB) of herpes simplex virus (HSV) [79]. It appears that

TLR2 is mainly capable of recognizing lipoproteins or

lipopeptides; perhaps at least some of the other putative

TLR2 ligands were misclassified due to contamination with

highly active natural lipoproteins or lipopeptides [149].

Furthermore, TLR2 can form a heterodimer complex with

TLR1 or TLR6 and recognize lipopeptides present in var-

ious bacteria [121]. Similarly, TLR1 associated with TLR2

recognizes triacyl lipopeptides, whereas a TLR6-TLR2

complex recognizes diacyl lipopeptides [55]. In addition,

TLR4 binds to bacterial endotoxin and lipopolysaccharide

(LPS), a component of the cell wall of Gram-negative

bacteria [11]. However, for initiation of LPS signaling,

TLR4 requires association with another surface molecule,

myeloid differentiation factor 2 (MD-2) [124], and CD14

[109]. Moreover, TLR4 can recognize cell wall compo-

nents of viruses, fungi and helminths, including the

envelope protein of murine retroviruses, HIV-1 and human

endogenous retrovirus [96, 111, 114], the fusion protein of

respiratory syncytial virus [43], a-glucan and mannan of

fungus [15, 127], and lacto-N-fucopentaose III of hel-

minths [139]. Expression of TLR5 occurs in intestinal

epithelial cells, mainly at the basolateral surface; it
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Fig. 2 Illustration of potential synthesis of NO via TLR signaling

leading to NO-mediated antiviral activity. The TLRs are expressed on

the cell surface or inside cells. Among those expressed on the surface,

TLR2, 4, 5 and 11 are well studied with respect to iNOS expression.

TLR3, 7, 8 and 9/21 are expressed on the membrane of the endosomal

compartment and recognize nucleic-acid-based PAMPs, leading to

expression of iNOS (among many other mediators). Most of these

TLRs use MyD-88 for downstream signaling, but TLR3 uses TRIF

protein as an adaptor molecule. In downstream signaling, activated

NF-jB or AP-1 enters the nucleus and upregulates gene transcription

for iNOS, which facilitates conversion of L-arginine to L-citrulline

(using NADPH as an electron donor) to generate highly reactive NO,

which has various antiviral effects. TLR, toll-like receptor; LTA,

lipoteichoic acid; LPS, lipopolysaccharide; CpG, CpG motif of

unmethylated DNA; Poly I:C, polyinosine-polycytidylic acid; MyD-

88, myeloid differentiation primary response 88; TRIF, TIR-domain-

containing adaptor inducing IFN; IRAKs, IL-1 receptor-associated

kinases; TRAF, TNF-receptor-associated factor; TAK1, transforming

growth factor beta-activated kinase-1; IKKe, IkappaB kinase-epsilon;

RIP1, receptor-interacting protein kinase 1; NF-jB, nuclear factor

kappa B; AP-1, activator protein-1; iNOS, inducible nitric oxide

synthase; NADPH, nicotinamide adenine dinucleotide phosphate H;

NO, nitric oxide
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recognizes invading flagellated pathogenic bacteria by

identifying a protein called flagellin [33]. The amino acid

sequence of TLR5 appears to be similar to those of TLR11

and TLR12 [115]; the latter two TLRs form a complex and

recognize profilin-like proteins in Toxoplasma gondii

(protozoan parasite) [108]. Finally, TLR10 may sense

ligands derived from within the host rather than from

microbes [102].

Considering endosomal TLRs, TLR3 binds to viral

double-stranded RNA (dsRNA) and polyinosinic poly-

cytidylic acid (polyI:C; a synthetic compound, structurally

similar to viral dsRNA) [86], whereas TLR7 and 8 bind to

viral single-stranded RNA (ssRNA) [47]. Two receptors,

TLR9 in mammals and TLR21 in birds, are the only ones

known to detect both bacterial and viral DNA containing

unmethylated cytosine-guanosine deoxynucleotides (CpG)

motifs, which are generally methylated in vertebrate gen-

omes [48]. Consequently, the frequency of CpG motifs is

negligible in vertebrate DNA, although it occurs with high

frequency in microbial genomes [71]. Differences in

methylation and the prevalence of unmethylated CpG

motifs in DNA of microbes (bacteria, fungus and viruses)

allow selective host responses against DNA of microbial

origin. CpG DNA has three major classes (A, B and C)

based on structural variations and effects on PBMCs [25].

Class A CpG DNA (also known as ODN 2216) predomi-

nantly activates dendritic cells and natural killer (NK)

cells, with effects mediated via interferon regulating factor

(IRF) 7 signaling pathways from early endosomes that

promote production of type 1 IFN. Class B (ODN 2007) is

a strong activator of B cells and monocytes and operates

via nuclear factor kappa (NF-j) B signaling pathway from

late endosomes, leading to production of pro-inflammatory

mediators. Finally, class C CpG DNA has characteristics of

both class A and B [72] in terms of both structure and

function.

Detailed understanding of TLR structure and signaling

mechanisms have enabled development of specific syn-

thetic ligands with therapeutic potential [144]. In that

regard, these ligands can be used to manipulate the host

immune system [51, 144].

Structure and signaling mechanism of TLRs

Structure of TLRs

The TLRs are in the type 1 transmembrane protein family.

Structurally, each TLR expressed on a cell membrane

consists of a cytoplasmic C-terminal domain, a trans-

membrane component, and an N-terminal domain that is

exposed to the outside of the cell [37]. In direct contrast, in

endosomal TLRs, the N-terminal region is exposed

internally and the C-terminal region is exposed externally

[55]. The C-terminal domain is conserved and is homolo-

gous to the internal domain of an interleukin 1 receptor (IL-

1R) named Toll/IL-1R (TIR); therefore, TLRs are classi-

fied as a subfamily of the interleukin-1 receptor/toll-like

receptor superfamily [100]. Although the N-terminal

domain of most TLRs has a horseshoe shape, extracellular

regions of TLR8 and TLR9 are ring-shaped [101, 134]. The

extracellular component of TLR2 can form a heterodimer

with the extracellular domain of TLR1 or TLR6, although

other TLRs can form only homodimers [28]. Furthermore,

before and after ligand binding, TLR9 is a monomer and a

dimer, respectively [101]. Cluster of differentiation-14

(CD-14) molecules can be associated with TLR4, TLR1/

TLR2 or TLR2/TLR6 [12], and a concerted effort is

required for recognition of certain ligands. Conversely, the

curved N-terminal domain of TLRs interacts with ligands,

and the ligand binding sites consist of many leucine-rich

repeats (LRR). The length and the sequence of LRRs vary

among TLRs [20]. In contrast to other TLRs, TLR7,8 and 9

contain a long insertion loop region (Z-loop) of *40

amino acids between LRR14 and 15 [134]. Recognition of

various PAMPs by the N-terminal domain causes TLR

molecules to undergo conformational changes in the TIR

domain that facilitate binding of various intracellular

adaptor molecules with the TIR domain, thereby triggering

a cascade signaling mechanism [99].

Initially, TLR9 is present in the endoplasmic reticulum

(ER) [78], but after exposure of host cells to PAMPs, it

migrates to endosomes [77]. In general, TLRs expressed in

an endosomal membrane need to interact with a trans-

membrane protein of the ER, namely, Unc-93 homolog B1

(UNC-93B) as a prerequisite for endosomal translocation

from the ER and subsequent recognition of PAMPs [22].

Such translocated TLRs, particularly TLR7 and TLR9,

need further activation through cleavage of their N-termi-

nal domain by endosomal proteases [31]. Activation of

TLR9 is mediated by binding a stimulatory sequence of

microbial DNA containing CpG motifs; however, a non-

stimulatory sequence of microbial DNA can competitively

block this activation [77, 110].

TLR signaling pathways

Activation of TLR signaling pathways results in matura-

tion, differentiation and expansion of a number of immune

cells, including macrophages, B cells, NK cells and T cells.

Innate mediators activated downstream of TLR signaling

coordinate recruitment of immune cells. In a recent study

using a microarray to evaluate thousands of genes, CpG

DNA treatment of host cells upregulated 77 genes,

including IFNs, tumor necrosis factor-a (TNF-a), inter-

leukin (IL)-6, IL-10, IL-12, cyclooxygenase-2 (COX-2),
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iNOS and granulocyte-macrophage colony-stimulating

factor (GM-CSF) [62].

A TLR-ligand interaction initially stimulates confor-

mational changes in the TIR domain, facilitating recruit-

ment of various adaptor molecules, e.g., myeloid

differentiation primary response-88 (MyD-88) protein, TIR

domain-containing adaptor protein (TIRAP), and a TIR-

domain-containing adaptor inducing IFN (TRIF) to initiate

downstream signaling [52, 128]. Furthermore, MyD-88 is a

key adaptor molecule involved in most of the activating

signaling pathways of cell-surface and endosomal TLRs

that are denoted MyD-88-dependent signaling pathways

(Fig. 2) [88]. However, in studies with MyD-88 knockout

mice/cell lines, NF-jB was not activated following TLR2,

TLR7 and TLR9 stimulation [49, 63, 122]. However,

ligands of TLR3 and TLR4 produce type 1 IFNs and delay

activation of NF-jB, suggesting involvement of a MyD-

88-independent signaling pathway [7, 30]. Furthermore, a

TRIF protein is a key adaptor molecule for TLR3 activa-

tion pathway (designated as a TRIF-dependent signaling

pathway or MyD-88-independent signaling pathway)

[128]. In contrast, TLR4 may initiate both MyD-88-de-

pendent and TRIF-dependent signaling pathways in mam-

mals [152]. In chickens, TLR4 activation may upregulate

TRIF mRNA expression [59], although an LPS-TLR4

interaction selectively activates only a MyD-88-dependent

signaling pathway in chickens, and not both signaling

pathways, as in mammals [65].

In the MyD-88-dependent signaling pathway, signaling

initiated by TLR-associated MyD-88 molecules activates

many cytoplasmic mediators, including IL-1 receptor-as-

sociated kinases (IRAKs) and TNF receptor-associated

factor (TRAF) 6, resulting in activation of transforming

growth factor beta-activated kinase-1 (TAK1). The latter

protein ultimately has a dual role, activating either NF-jB
or activator protein (AP) 1 through a series of reactions

(Fig. 2) [145]. Thereafter, NF-jB or AP-1 enters the

nucleus and upregulates gene transcription of innate and

pro-inflammatory mediators including iNOS, IL-1, TNF-a
and IL-6 (Fig. 2) [4, 145]. Furthermore, activation of the

MyD-88-IRAK-TRAF6 complex by endosomal TLRs

sequentially activates an additional pathway via activation

of TRAF3, IRAK1 and IkappaB kinase-a (IKKa), ulti-

mately leading to activation of IRF-7 [20, 141], which

enters the nucleus and upregulates gene transcription for

type 1 IFNs (potent antiviral cytokines) [142].

In the MyD-88-independant pathway (TRIF-dependent

signaling pathway) [128], the activated TIR domain binds

to TRIF (an adaptor molecule), which recruits receptor-

interacting protein kinase 1 (RIP1) and TRAF6 molecules

to activate TAK1, ultimately leading to activation of NF-

jB, as in the MyD-88-dependent pathway [7, 147]. Alter-

natively, TRIF can activate the TRAF3-TANK-binding

kinase 1 (TBK1)-IKKe complex, causing phosphorylation

and activation of IRF3 and IRF7 [30, 118], which move

into the nucleus and upregulate transcription for antiviral

type-1 IFNs [118].

Cellular production and antiviral mechanisms
of NO

NO production

It is well known that NO is a highly diffusible free radical

molecule derived from L-arginine via NO synthase (NOS)

enzyme activity in the presence of NADPH [95] and that it

is widely involved in the regulation of various physiolog-

ical mechanisms, including the immune, circulatory and

nervous systems (Fig. 2). There are three isoforms of NOS:

neuronal NOS (nNOS or NOS1), endothelial NOS (eNOS

or NOS2) and inducible NOS (iNOS or NOS3) [143]. Both

nNOS and eNOS are classified as constitutive NOS; they

are less responsive to stimulation, have calmodulin/cal-

cium-dependent enzyme systems [6], and produce low

concentrations of NO [5]. Conversely, iNOS is mainly

involved in the innate arm of the immune system, and its

enzyme activity is calmodulin/calcium-independent

[6, 87]. Furthermore, immunological stimulation (e.g.,

TLR signaling) is necessary for it to produce NO [87].

However, once stimulated, iNOS produces large quantities

of NO for prolonged intervals, thereby facilitating innate

host responses [75, 120].

Activation of TLR signalling pathways leading

to NO production

Production of NO in host cells can be activated via various

TLR pathways (Fig. 2). Of the cell-membrane-expressed

TLRs, TLR2, 3, 4 and 5 are involved in signaling leading

to NO production via activation of the MyD-88-dependent

pathway [45]. Binding of LPS to TLR4 induces a strong

NO response [45]. In a mouse macrophage cell line, LPS in

combination with IFN-c elicited production of much more

NO than LPS alone [84], suggesting that mouse macro-

phages require priming with IFN-c to enhance NO pro-

duction. Similarly, in avian macrophages, priming with

IFN-c [23] or a viral infection [90] is a prerequisite for an

LPS-mediated NO response. Gram-negative bacterial

flagellin induces NO production in macrophages by a

pathway involving both TLR4 and TLR5. Furthermore,

TLR4 may promote binding of flagellin to TLR5/TLR4

complexes, as flagellin failed to induce NO production in

cells with non-functional TLR4 [93]. The TLR2 ligand

LTA induces iNOS expression and NO release from mouse

macrophage cell line (RAW 264.7), and this is mediated

TLR signaling leading to NO-mediated antiviral response 2079
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via two pathways leading to NF-jB activation. An early

response (minutes) is mediated by NF-jB activation via

phosphatidylcholine-phospholipase activation, whereas in

a late response (hours), NF-jB production is promoted by a

COX2-prostaglandin E2-mediated pathway [19].

Of the endosomal-membrane-expressed TLRs, both

TLR9/21 signaling and TLR3 signaling induce NO pro-

duction. The presence of DNA containing CpG motifs,

which serve as TLR9/21 ligands, induces NO production in

macrophage cell lines; the stimulatory effect is positively

correlated with a number of motifs in CpG DNA, e.g.,

GTCGTT [44]. Production of NO by avian macrophages

was studied using various classes of CpG, viz. CpG 2216,

CpG 2395, CpG 1826 and CpG 2007. Nearly all CpG

classes (except CpG 2216) induced significant production

of NO in comparison to non-CpG controls [8]. Further-

more, poly I:C, the TLR3 ligand, stimulated mouse bone

marrow macrophages to produce NO [76], and it also

activated iNOS in human monocyte-derived macrophages

[125].

In addition to TLR signaling using single TLR ligands,

additive effects of induction of multiple TLR pathways

for NO production have been reported. For example,

production of NO in avian PBMCs was higher with a

combination of ligands than with only a single ligand,

confirming previous observations [46]. Also LPS and

microbial DNA had a synergistic effect in enhancing

iNOS expression and production of NO in macrophages

[36]. Similarly, a combination of recombinant flagellin

and LPS synergistically induced NO production in avian

PBMCs [40]. In addition, peptidoglycan (PepG) and LTA

from Staphylococcus aureus synergistically induce iNOS.

Finally, the level of NO production by murine macro-

phages in response to PepG, LTA and PepG plus LTA

was much higher if two or more of these ligands were

present [27].

Antiviral mechanisms of NO

A highly reactive free radical, NO has key roles in innate

immune responses against numerous viruses [13, 24, 120]

that infect mammals and birds [41, 70, 146]. It is well

documented that induction of iNOS expression or provid-

ing NO by adding NO donors such as S-nitroso-N-

acetylpenicillamine (SNAP) inhibits replication of various

RNA or DNA viruses. Due to its hydrophobicity, NO dif-

fuses freely across cell membranes (without receptors or

carrier proteins) [21, 83]. An unpaired electron makes NO

highly chemically reactive, and its antiviral mechanism is

mainly a paracrine effect [73]. After diffusion through the

cell membrane, NO may have several antiviral mecha-

nisms. First, viruses with a DNA genome may undergo

direct damage via nitrosation of primary amines [97, 131]

in addition to indirect damage by endogenously produced

NO-mediated N-nitrosamines, including N2O3 [92]. Sec-

ond, NO indirectly reduces synthesis of viral genome and

viral proteins in host cells by inactivating or modifying

molecules involved in viral replication, including viral

proteases [120], ribonucleotide reductase [80], reverse

transcriptase [21, 104], transcriptional factors [123], and

tyrosine- or heme-containing enzymes [54], through

nitrosylation of these enzymes (Fig. 2) [130, 151].

This NO-mediated inhibition has been demonstrated

in vitro against several viruses, including influenza virus

[112, 113], dengue virus [129], herpes simplex virus

[24, 89], vesicular stomatitis virus (VSV) [13], Japanese

encephalitis virus [82], infectious laryngotracheitis virus

[41], Marek’s disease virus (MDV) [146], coxsackievirus

[34, 151], vaccinia virus [60], porcine respiratory coron-

avirus [57], rhinovirus [116], flavivirus [70], and hantavirus

[67]. Similarly, based on in vivo studies, NO-mediated

antiviral responses have been demonstrated against influ-

enza virus [56], dengue virus [32], herpes simplex virus

[10, 35], mouse hepatitis virus [74], Friend murine leuke-

mia virus [3], hepatitis B virus [39], respiratory syncytial

virus [126], infectious bursal disease virus [107], murine

cytomegalovirus [98], MDV [146], coxsackievirus

[34, 85], hantavirus [67], adenovirus [18] and VSV [69].

Antiviral responses observed in those in vitro and in vivo

studies were based on exogenous NO supplied via NO

donors. In addition to an antiviral effect, NO also has

cytostatic effects in infected host cells, including inhibition

of host DNA synthesis, protein synthesis and mitochondrial

metabolism [105].

TLR activation leading to NO-mediated antiviral

activity

Although there are numerous reports regarding NO-medi-

ated antiviral responses, there is a paucity of literature on

TLR-signaling-induced NO (endogenously produced)-

mediated antiviral responses in mammals [3, 24, 50, 68,

85, 89] or birds [41, 105, 146]. A few in vitro studies have

described NO-mediated antiviral activity following

administration of TLR4 ligand against many viruses,

including MDV, herpes simplex virus, infectious laryngo-

tracheitis virus, coxsackievirus, and reovirus (Table 1).

Similarly, an in vitro experiment with IRF3-/-IRF9-/-

mouse embryo fibroblasts demonstrated NO-mediated

antiviral activity using the TLR3 ligand poly I:C. In that

study, iNOS inhibitors, including aminoguanidine

hydrochloride (AMG) and N6-(1-iminoethyl)-L-lysine

dihydrochloride (L-NIL), reversed the antiviral effect of

poly I:C [89]. In an in vivo study in mice, coxsackievirus

infection in combination with LPS (TLR4 ligand) induced

expression of iNOS in macrophages. In addition, inhibition
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of NO production by NG-monomethyl-L-arginine

(NMMA) increased viral load and mortality [85].

Viral constituents that activate the TLR pathways

leading to NO-mediated antiviral responses are shown in

Figure 3. In addition to viral nucleic acid, components of

viral envelopes are also capable of inducing NO

production, leading to antiviral activity. Induction of NO

following viral replication in the host may curtail ongoing

viral replication. However, prior induction of NO- medi-

ated antiviral responses via induction of the TLR pathway

appears to be more effective in preventing virus-induced

pathology.

NO and influenza virus

Although the role of NO against influenza virus infection is

not well defined, in vitro, there are clearly beneficial effects

of NO against influenza virus infections. Adding SNAP (an

NO donor) to Madin-Darby canine kidney (MDCK) cells

immediately after infection with influenza A and B viruses

inhibited replication of both viruses in a dose-dependent

manner during initial stages of infection [113]. Similarly,

when the MDCK cell line was exposed to gaseous NO

before and after infection with influenza A and B viruses,

there was inactivation of viral neuraminidase activity and

inhibition of viral infectivity by both pre- and post-infec-

tion NO exposures [112]. Unfortunately, studies conducted

in vivo do not necessarily support observations made in

in vitro systems. In a mouse model of influenza infection,

inhalation of NO prior to influenza infection may decrease

mouse survival, with no change in lung viral loads [26].

Using iNOS-knockout and wild-type mice, it was shown

that NO production is not essential to clear infections with

influenza virus A and reduce pulmonary pathology. In that

GlycolipidsGlycoproteins

Nucleic acids

ssRNA dsRNA DNA

TLR2 TLR7/8 TLR3 TLR9 TLR4

Avian TLRs

Mammalian TLRs

TLR2 TLR7 TLR3 TLR21 TLR4

NO

Antiviral effects

Fig. 3 Viral components that activate TLRs signaling leading to NO-

mediated antiviral activity in mammals and birds. In birds, TLR8 and

TLR9 are absent; however, TLR21 replaces the function of TLR9 in

mammals. TLR3, TLR7, TLR8, TLR9 and TLR21 are endosomal

TLRs that recognize viral nucleic acids, whereas TLR2 and TLR4 are

surface TLRs that detect viral surface molecules

Table 1 Viruses that activate TLR signaling pathways leading to NO-mediated antiviral activity

Virus name Type of
virus

Common
host

Model Ligand
(TLR)

Outcome Reference

Herpes simplex

virus-1

dsDNA Humans In

vitro

LPS

(TLR4)

TLR4 (LPS)-mediated, NO-dependent antiviral response in a

murine macrophage cell line

[24]

Poly I:C

(TLR3)

TLR3 (Poly I:C)-mediated, NO-dependent antiviral response

in murine embryonic fibroblasts

[89]

Herpesvirus of

turkeys

dsDNA Birds In

vitro

LPS

(TLR4)

TLR4 (LPS)-mediated, NO-dependent antiviral response in

avian embryonic fibroblasts

[146]

Marek’s disease

virus

dsDNA Birds In

vitro

LPS

(TLR4)

TLR4 (LPS)-mediated, NO-dependent antiviral response in

avian embryonic fibroblasts

[146]

In

vivo

LPS

(TLR4)

TLR4 (LPS)-mediated, NO-dependent antiviral response

Coxsackie

virus

ssRNA Humans In

vitro

LPS

(TLR4)

TLR4 (LPS)-mediated, NO-dependent antiviral response in

murine macrophage cell line.

[50]

In

vivo

LPS

(TLR4)

TLR4 (LPS)-mediated NO dependent antiviral response

shown in a mouse model

[85]

Friend murine

leukemia virus

ssRNA Murine In

vitro

LPS

(TLR4)

TLR4 (LPS)-mediated, NO-dependent antiviral response in

murine macrophages

[3]

Laryngo-

tracheitis virus

dsDNA Birds In

vitro

LPS

(TLR4)

TLR (LPS)-mediated, NO-dependent antiviral response in an

avian macrophage cell line

[41]

Reovirus dsRNA Birds In

vitro

LPS

(TLR4)

TLR (LPS)-mediated, NO dependent antiviral response in an

avian macrophage cell line

[105]
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experiment, wild-type mice that produced NO had severe

pneumonitis [61], suggesting that NO was a detrimental

factor exacerbating pneumonia during influenza virus

infection [2]. Apparent discrepancies in observations

between in vitro and in vivo studies regarding the benefits

of NO against influenza virus infection in mammalian

models may be explained by NO-mediated increases in

pulmonary inflammation, which could be detrimental to the

host in vivo [150]. Perhaps an appropriate balance between

antiviral and inflammatory effects of NO is required for

successful protective immunity against influenza virus

infection in vivo [103].

Conclusions

Of the two TLR signaling pathways, the MyD-88-depen-

dent signaling pathway is the one that predominantly

leads to NO-mediated antiviral responses. Analysis of the

current knowledge in the area of TLR-signaling-mediated

NO-dependent antiviral responses revealed knowledge

deficits in three major areas. Firstly, despite many reports

regarding antiviral activity of NO against numerous

mammalian and avian viruses based on the use of external

NO donor compounds, there is a paucity of information

on activation of TLR signaling pathways resulting in

endogenous NO production leading to innate antiviral

responses in mammalian and avian hosts. Secondly, of the

studies that describe activation of TLR signaling pathways

leading to NO-mediated antiviral responses, there are very

few on NO-mediated antiviral responses in vivo [85].

Consequently, the therapeutic or prophylactic potential of

activation of TLR signaling leading to NO-mediated

antiviral responses is not well defined for either mammals

or birds. Finally, although various MyD-88 signaling

pathways are potentially capable of eliciting a NO

response, most studies have focused on TLR4 and TLR3

signaling leading to NO-mediated antiviral responses, and

further studies are therefore required to clarify the role of

other MyD-88 signaling pathways in NO-mediated

antiviral responses.
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