
Vol.:(0123456789)1 3

Interdisciplinary Sciences: Computational Life Sciences (2021) 13:153–175 
https://doi.org/10.1007/s12539-021-00431-w

REVIEW

COVID‑19 in the Age of Artificial Intelligence: A Comprehensive Review

Jawad Rasheed1   · Akhtar Jamil2 · Alaa Ali Hameed2 · Fadi Al‑Turjman3 · Ahmad Rasheed4

Received: 29 September 2020 / Revised: 3 April 2021 / Accepted: 9 April 2021 / Published online: 22 April 2021 
© International Association of Scientists in the Interdisciplinary Areas 2021

Abstract
The recent COVID-19 pandemic, which broke at the end of the year 2019 in Wuhan, China, has infected more than 98.52 
million people by today (January 23, 2021) with over 2.11 million deaths across the globe. To combat the growing pandemic 
on urgent basis, there is need to design effective solutions using new techniques that could exploit recent technology, such 
as machine learning, deep learning, big data, artificial intelligence, Internet of Things, for identification and tracking of 
COVID-19 cases in near real time. These technologies have offered inexpensive and rapid solution for proper screening, 
analyzing, prediction and tracking of COVID-19 positive cases. In this paper, a detailed review of the role of AI as a decisive 
tool for prognosis, analyze, and tracking the COVID-19 cases is performed. We searched various databases including Google 
Scholar, IEEE Library, Scopus and Web of Science using a combination of different keywords consisting of COVID-19 and 
AI. We have identified various applications, where AI can help healthcare practitioners in the process of identification and 
monitoring of COVID-19 cases. A compact summary of the corona virus cases are first highlighted, followed by the applica-
tion of AI. Finally, we conclude the paper by highlighting new research directions and discuss the research challenges. Even 
though scientists and researchers have gathered and exchanged sufficient knowledge over last couple of months, but this 
structured review also examined technological perspectives while encompassing the medical aspect to help the healthcare 
practitioners, policymakers, decision makers, policymakers, AI scientists and virologists to quell this infectious COVID-19 
pandemic outbreak.
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1  Introduction

COVID-19 is a highly contagious epidemic disease caused 
by novel coronavirus (SARS-CoV-2) which has been 
declared as pandemic by WHO. Researchers across the 
globe are working round the clock to find solutions and 
design strategies to control the pandemic and minimize its 
impact on human health and economy [1]. One of the large 
family of viruses is called Coronaviruses, which may affect 
and endanger humans’ lives by causing acute ailment [2]. A 
virus is an infectious microorganism constitutes a specific 
genome wrapped in a protein layer with the ability to repli-
cate inside living cells. These billions of tiny but powerful 
viruses, smaller than human cells, can cause viral infection 
when entered in living creature by hijacking the host cells 
and forcefully turning those to virus-making factory. This 
may lead to severe health problems, such as blindness due 
to smallpox virus or fatal inflammation of the brain or spinal 
cord by rabies virus [3, 4].

These viruses are either pandemic or epidemic that 
lasts over a definite duration of time [5]. A pandemic is an 
occurrence of huge morbidities and mortalities caused by 
the proliferation of infectious disease at vast geographical 
area. Contrarily, when a disease is spread in limited region 
over time [6]. Many epidemics and pandemics occurred over 
a period, but the mortality rate shows that pandemics had 
effects that are more devastating in the history of human life. 
Such as a decade ago, SARS epidemic virus infected around 
8096 humans causing deaths of more than 770 humans. 
Beside such small epidemic, years ago, a famous pandemic 
known as smallpox affected millions of lives and eventually 
ended up with 500 million fatalities across the globe [7]. 
Few of the viruses that caused epidemic and pandemic over 
last 102 years are depicted in Fig. 1.

The novel Coronavirus is the recent pandemic, officially 
known as SARS-CoV-2 and member of broader family of 
infectious viruses, which can affect the respiratory system 
of humans [8]. In 2002, the first pathogen, SARS emerged 
in Guangdong (China) that caused mild infection in humans. 
Another pathogenic member of coronavirus family, known 
as MERS-CoV, discovered in 2012 around Middle East 
regions that caused panic due to high infection rate which 
affected 2494 humans with 858 deaths [9]. Last December 
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(2019), the deadly COVID-19, the seventh strain of corona-
virus, originated in Huanan Seafood Market, Wuhan state 
of Hubei province, China, that quickly gained global atten-
tion due to fast transmission among species and caused res-
piratory problems [10, 11]. COVID-19 being an infectious 
disease has high transmission rate among humans as res-
piratory droplets of infected patient are inhaled by humans 
around [12]. Tiredness, cough, fever, and loss of smell are 
considered as most common symptoms, while headache, 
aches, rash on skin, diarrhea and sore throat are less com-
mon symptoms observed in patients affected by COVID-19. 
Besides these normal looking symptoms, it can cause severe 
respiratory problems that can damage several human organs, 
which eventually causes death [13, 14].

On January 30, 2020, due to high horizontal transmis-
sion rate among humans of 18 different countries, WHO 
announced it a PHEIC [15]. Keeping in view the sharp 
incline of COVID-19 cases around the world in succeeding 
2 months, health organizations stated it as global pandemic 
due to its hazardous effect on human life [16]. Since the 
first outbreak of highly pathogenic in China, the pandemic 
has affected 213 countries and territories around the world 
according to figures compiled by Worldometer [17]. As 
reported by John Hopkins University this particular virus 
has infected more than 98,529,820 humans around the globe, 
while the tally of confirmed deaths is over 2,116,101 [18], 
thus becoming the greatest pandemic of all time. As per John 
Hopkins data, a total number of infections and deaths in top 
10 disease burden countries are shown in Fig. 2.

The early identification of COVID-19 cases is momen-
tous as it not only helps start treatment of the cases imme-
diately, but also facilitates containing the virus by isolating 

the patient from other humans. Presently, RT-PCR is con-
sidered as the established procedure to identify the positive 
cases of COVID-19. To further speed up the identification 
operations, there is still room for the advancement of better 
auxiliary alternative diagnostic tools to enhance the identi-
fication and tracking at earliest and start the cure right away 
[19, 20]. As this deadly pathogen is spreading sustainably, 
easily, and exponentially among mankind, the healthcare 
workers and medical staff to quell this are severely limited. 
Due to this scarcity, radiologists are overwhelmed and in 
severe need of digital tools to take the workload off them. 
AI experts have suggested a more feasible solution to keep 
pace in battling this disease by developing ML and DL tech-
niques. Such systems are founded on predicting and diagnos-
ing pneumonia image modalities and scans of the chest thus 
aiding physicians.

AI-based techniques have shown promising results for 
various CV tasks, such as image classification, speech rec-
ognition, machine translation, object recognition etc. The 
recent progress in AI techniques is driven by advent of 
deeper network architectures, availability of powerful com-
putation platforms and accessibility to large scale benchmark 
data sets [21]. The DL methods have produced more promis-
ing results for various complex CV tasks compared to tradi-
tional ML approaches due to their capabilities to learn and 
represent features automatically. This eliminates the need to 
manually engineer features based on human expertise and 
hence obtain higher accuracies for different classification 
and regression tasks.

Although DL-based methods have been successful in 
solving various problems, yet they suffer from two main 
problems: (1) they are extremely difficult to train, and (2) 

Fig. 1   Deadliest viruses over last 102 years (as of August 28, 2020)
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they require large amount of training data. The first prob-
lem is usually solved by implementing and running highly 
optimal code on powerful GPU-based computers. The later 
problem can also be alleviated by using data generation tech-
niques, such as GANs. The main objective of GAN is to 
generate additional data that is similar as much as possible 
to the original training data. This data along with original 
data is then used to train the DL networks.

Motivated from CV community, the AI methods have also 
been adopted for medical image analysis.

In addition to the known established procedure to detect 
COVID-19-infected humans, there is urgency to develop 
auxiliary tools that can be exploited for identification and 
monitoring of positive cases. The availability of CT and 
CXR images of lungs provide certain characteristics linked 
with COVID-19 [22, 23]. The DL algorithms, such as CNN, 
incrementally learn the patterns in such images by passing 
the input data though a sequence of convolutional layers. 
Initial layers of the network capture low-level features, such 
as edges, lines, corners etc. while the later layers derive 
highly abstract features, which can help to capture the most 
prominent feature that can distinguish between COVID-19 
and other cases.

Practicing AI systems for investigation, prediction and 
analysis of diseases is long-established. The first-ever adop-
tion of such program was fashioned in 1976 called MYCIN 
which operated and prescribed antibiotics for a bacterial 
illness [24]. Many healthcare experts have been employ-
ing such methods not only to identify diseases but also for 
formulating drugs, analyzing medical images collected for 
clinical trials and pandemic prediction.

Many examples of ML and AI medical tools for diag-
nosis of non-infectious (diabetic, cancer, Parkinson’s, heart 
diseases etc.) [25–29] and contagious diseases (HIV, Ebola, 

SARS, and COVID-19) [30–33] were developed. In a recent 
series, ML methods have been successfully used for Ebola 
outbreak estimation. The purpose of obtaining a better out-
come was achieved by conducting experiments on ten dis-
tinctive classifiers giving accuracy results of approximately 
90.95% with 5.39% MAE and 42.41% RMSE value [34].

1.1 � Comparisons to Similar Surveys

The COVID-19 pandemic have turned the center of research 
activities as scientists and researchers are focusing more to 
mitigate this disease by proposing various methods in AI-
based domain. Meanwhile, experts have presented various 
review and survey articles based on role of AI in COVID-
19 to help policy makers and medical practitioners. These 
peer reviewed published surveys can be categorized into 
two inculcation; problem-based AI solutions, and AI-frame-
works applied on different COVID-19 problems. Such as 
Pham et al. and Rasheed et al. [35, 36] presented a survey 
that categorizes the tasks in respond to COVID-19 pandemic 
by outlining the applications of big data and AI but mostly 
investigated the papers that have not been peer-reviewed. 
Moreover, the open research challenges are neither men-
tioned nor discussed. Similarly, Bansal et al. [37] briefly out-
lined the role of AI approaches used for identification, pre-
diction and management of COVID-19. However, it did not 
cover all aspects, such as death rate and severity assessment. 
In addition, Kumar et al. [38] succinctly generalized the role 
of DL- and ML-based networks to quell COVID-19 though 
it did not inspect the papers based on COVID-19 diagnosis 
through clinical data or respiratory waves. Besides, Lalmua-
nawma et al. [39] analyzed AI-based applications from vari-
ous aspects but inspected few papers.

Fig. 2   Top 10 most affected 
countries by COVID-19
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Contrarily, Hussain et al. [40] overviewed basic AI-based 
frameworks and Big Data applications applied to combat 
COVID-19. It elaborated various AI classified learning tech-
niques with cursory details of COVID-19 clinical data analy-
sis and results. Similarly, Swapnarekha et al. [41] catego-
rized the review into type of DL, ML and statistical models 
to quell COVID-19-related issues. The survey covered vast 
area, from origin of COVID-19 virus to AI-based models, 
but focused less on comparative analysis of implemented 
techniques. A very short survey on COVID-19 detection and 
prediction is presented in Ref. [42] by analyzing work of 
only 10 articles.

Beside these, Jamshidi et al. [43] only examined the 
publication based on advanced DL methods, such as GAN, 
Extreme Learning Machine, RNN and LSTM for COVID-19 
diagnosis and treatment. It just presented the implemented 
models without comparative analysis. Likewise, Shinde et al. 
[44] delineates statistical and AI-based forecasting mod-
els only, whereas Albahri et al. and Ahmad et al. [45, 46] 
reviewed only ML and data mining techniques for detection 
of COVID-19. Similarly, Monshi et al. [47] mainly focused 
on taxonomy of advanced DL-based methods for generating 
radiology reports. Some articles reviewed only specific type 
of data set, such as Jalaber et al. [48] set forth with role of 
CT images to handle COVID-19 suspected patients at large, 
severity signs and presentation of lesions, and in the end 
inspected five articles to describe the role of AI for COVID-
19 diagnosis. Shaikh et al. [49] investigated AI approaches 
and landscape of radiographic imaging modalities (CXR, 
CT and PET) in few articles with limited information about 
obtained results. Likewise, Dong et al. [50] mainly high-
lighted CT and PET-CT imaging characteristics presented 
in different articles and later compared the AI techniques 
implemented for COVID-19 detection, while Shi et al. [51] 
accentuated AI approaches to diagnose COVID-19 that 
segments CXR and CT images. Articles like Refs. [52, 53] 
discussed the aspects of IoT and biosensors in COVID-19 
management.

The study shows that most of above mentioned review 
articles either focused on single aspect of COVID-19 man-
agement or delineated one type of data set. In addition, 
majority of these surveys presented little comparative analy-
sis and investigated less than fifty articles, which includes 
high number of papers that have not been peer-reviewed. Our 
paper mostly covers peer-reviewed articles that presented AI 
techniques to accomplish tasks, such as COVID-19 diagno-
sis, prediction, survival assessment and disease prediction, 
pandemic outbreak forecasting, and drug discovery. Fol-
lowing are the points, which differentiate this study from 
aforementioned review and survey papers.

•	 Covers majority of aspects and problems to manage 
COVID-19 pandemic, such as diagnosis, prediction, 

disease severity and survival assessment, outbreak fore-
casting, protein sequence formation and drug discovery.

•	 Focuses on both ML- as well DL-based models and 
frameworks.

•	 Incorporates all types of data, such as radiographic 
images (CXR, CT, and ultrasound images), clinical 
blood samples data, respiratory and coughing waves, 
time series and other textual data.

•	 Detail comparative performance analysis of various AI-
based techniques implemented to combat COVID-19.

•	 A comprehensive analysis mostly based on peer-reviewed 
articles (90% are peer-reviewed published papers).

1.2 � Scope and Contribution of the Survey

The primary aim of this comprehensive study revolves 
around the in-depth analysis of AI-based approaches and 
models used to quell and combat COVID-19 pandemic by 
mitigating the virus in various prospects, such as prognosis 
and diagnosis, drug discovery and molecular structural for-
mation. This review will provide a meaningful and compact 
knowledge both for medical computer scientist and experts 
to further broaden the research direction to deal with this 
deadly virus. The main contributions of this study are as 
follows:

•	 The short summary of history, patterns, and characteris-
tics of infectious viruses including COVID-19 are pre-
sented.

•	 AI techniques and tools adopted to mitigate COVID-19 
pandemic in various prospects, such as prognosis and 
diagnosis of SARS-CoV-2 disease, drug discovery and 
molecular structural formation, are highlighted

•	 An extensive information regarding approaches to diag-
nose COVID-19 using radiography images, breathing 
and coughing wave samples, and clinical blood samples 
are described in details.

•	 A comprehensive summary on issues and recommenda-
tions to overcome this infectious virus is provided that 
can timely facilitate effective decision making.

•	 A detailed discussion on open research challenges regard-
ing COVID-19 is also provided.

The remaining paper is managed as follows. Section 2 
focuses on the novel ML and DL techniques that are in prac-
tice for diagnosis through various modes. Furthermore, it 
explores the potential ML- and DL-based tools to predict 
survival and mortality rate, discover vaccine and forecast 
the COVID-19 pandemic outbreak. Section 3 presents the 
issues and recommendation to overcome virus, while Sect. 4 
outlines the open research challenges regarding COVID-19 
and presents counter-measures to layout a firm groundwork 
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for further research. Finally, the conclusion to summarize the 
overview of this review is presented in Sect. 5.

2 � AI‑Based Applications to Quell COVID‑19

The inevitable infectious pandemics are unpredictable and 
can inflict huge agonies and mortalities across the world. 
The newly emerged SARS-CoV-2 virus may just be a small 
capsid but too powerful that requires great efforts and better 
countermeasures by society to mitigate its negative impact. 
At the time of this COVID-19-related global emergency, 
AI researchers had responded the threat by strategically 
applying various ML and DL techniques in a wide range of 
applications that not only detect and classify the COVID-19 
cases but also forecast the outbreak, tracks the transmission 
pattern, discovers the effective drugs, predicts the mortality 
rate and assess the disease’s severity.

AI is a wide-ranging scientific area concerned with mim-
icking human intellectual processes by smart devices. ML is 
sub-domain of AI that uses statistical models to learn from 
examples (also known as instances) in data to predict future 
outcomes without prior knowledge and explicit program-
ming [54]. Whereas, DL is the most tangible manifestation 
of ML that exploits artificial neural networks for classifica-
tion or detection task by discovering useful representations 
from raw data within the predefined space of possibilities. 
As COVID-19 pandemic is under the spotlight in medical 
research and AI-based technologies are one of panacea, this 
section encompasses various novel applications established 
on ML and DL methods to combat ongoing SARS-Cov-2 
pandemic crisis. Figure 3 unfolds the general approach used 

to incorporate AI techniques that requires clinical blood 
samples and radiography images for identification, classifi-
cation and diagnosis of COVID-19. Various repository are 
built to store and share data sets regarding COVID-19. Later 
on, besides data mining, various pre-processing techniques, 
such as noise removal, data cleaning, feature extraction, 
segmentation and feature analysis, are mostly employed to 
enhance the data set and transform it to more meaningful 
and effective representation. Finally, AI-based techniques 
and tools are defined to utilize the data sets for COVID-19 
segregate COVID-19 affected patients from others.

2.1 � Radiography Image‑Based COVID‑19 Diagnostic 
Tools

Saving precious lives is the topmost priority in emergencies, 
but that requires early detection of disease. The outbreak of 
this pandemic created a new landscape and requirements 
of rapid diagnostic tools for early disease detection. Early 
ailment detection leads to immediate treatment, which can 
save many lives and helps in halting the pandemic spread. 
The standard RT-PCR technique limits the early detection 
of COVID-19 due to low sensitivity and high procedural 
and experimental time. Contrarily, AI-based health care 
systems provide outstanding support for efficient screening, 
early identification and fast diagnosis by analyzing Clinical 
blood sample data and radiology images, such as CT and 
CXR, thus providing a sigh of relief for radiologists.

Researchers and scientists effectively adopted several 
ML approaches and techniques to curb the COVID-19 ail-
ment, such as Sethy et al. [55], developed automatic tool that 
predicts COVID-19 infection in CXR images by employing 

Fig. 3   Illustration of computer vision and AI based model for COVID-19 diagnosis and prediction
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SVM. To segregate the patients affected by COVID-19 
among normal and other pneumonia affected patients, they 
exercised thirteen different pre-trained state-of-the-art mod-
els (VGG19, VGG16, AlexNet etc.) to extract features from 
381 CXR. Each class/label (normal, COVID-19, bacterial 
pneumonia) has 127 CXR to balance the data set. Later, 
SVM classified COVID-19-infected patients by exploiting 
the extracted deep features. By comparative analysis, author 
demonstrated that SVM with ResNet50 model achieved 
95.33% average accuracy with a data split ratio of 80:20% 
while training and testing, respectively. Moreover, it also 
accomplished better performance in terms of F1-score and 
sensitivity of 95.34% and 95.33%, respectively. A combina-
tion of data over-sampling, image augmentation techniques 
with ML-based classifier has been introduced in Ref. [56]. 
The researcher first extracted the features by GLCM and its 
variants, and then used SMOTE for balancing class distri-
bution. The model consists of SVM classifier with stacked 
AE and PCA to exhibit an accuracy of 94.23%, precision 
of 96.73%, sensitivity of 91.88%, F1-score of 93.99%, and 
specificity of 98.54% on CXR.

An alternative technique has been proposed by Ref. [57] 
to show the effectiveness of multi-view representation learn-
ing that transform original features into latent representation 
of class space for COVID-19 diagnosis. In pre-processing 
step, V-Net model [58] extracted pulmonary segments and 
lung lobes from CT images to segment the infected lesions. 
They further divided the obtained 189-dimensional features 
into two radiomic features (Gray, and Texture) using GLCM 
and its variants, and five handcrafted features (histogram, 
number, intensity, volume, and surface). The CPM-Nets 
[59] learnt the later features. Later, they trained Latent-rep-
resentation Regressor model followed by several ML-based 
classifier models (LNR, SVM, Gaussian Naïve Bayes, KNN, 
and logistic regression) for COVID-19 prediction. With the 
incorporation of proposed model, the model achieved an 
overall accuracy, specificity and sensitivity of 95.5%, 93.2% 
and 96.6%, respectively, on 2522 CT images, among which 
1495 samples belong to patients affected by COVID-19). 
Table 1 represents ML-based approaches and classifiers, 
such as DT, KNN, LNR, and LD used to screen and detect 
COVID-19 cases by analyzing medical radiology images.

Table 1   Adopting radiography images for COVID-19 diagnostic applications based on machine-learning approaches

P precision, Sp specificity, Se sensitivity, F1 f1-measure, A accuracy, CXR chest X-ray images, CT computed tomography images
*Values related to classification of COVID-19 class only

Ref Name of algorithm/model Problem/assignment Type of data Classes P Sp Se A

[55] ResNet50 for deep feature extraction and 
SVM as classifier

COVID-19 detection CXR 3 – – 95.3 95.3

[56] SMOTE for feature oversampling, 
stacked Auto-encoders and Principal 
Component Analysis for feature extrac-
tion and SVM for classification

Classification of COVID-19 CXR 6 96.7 98.5 91.8 94.2

[57] Multi-view representation learning tech-
nique with ML-based classifiers (LNR, 
SVM, KNN, NN, and Gaussian Naïve 
Bayes)

COVID-19 screening CT 2 – 93.2 96.6 95.5

[60] Adaptive Feature Selection guided Deep 
Forest based on Random Forest

Classification of COVID-19 from other 
community acquired pneumonia by 
extraction location specific features

CT 2 93.1 89.9 93.0 91.7

[61] Majority voting-based classifier ensemble 
of SVM, KNN, Decision Tree, Naïve 
Bayes, ANN, and Binary Gray Wolf 
Optimization

COVID-19 screen by extracting radiomic 
texture descriptors

CXR 2 99.7 99.5 99.8 99.6

[62] Decision Tree based on CNN Detection of COVID-19 CXR 2 94.0 93.0 97.0 95.0
[63] SVM for classification with Social 

Mimic Optimization, SqueezeNet and 
MobileNetV2

Detection of COVID-19 CXR 2 98.8* 99.6* 98.3* 99.2*

[64] Various ML classifiers including kNN, 
DT, RF, SVM and MLP with Clus-
HMC

Identifying COVID-19 in multiclass and 
hierarchical schemes

CXR 7 – 89.0 – –

[65] Five ML classification algorithms with 
IRF-based ResExLBP for feature 
extraction/selection

Diagnosis of COVID-19 CXR 2 – 100 98.8 99.6

[66] DT, kNN, SVM, kNN, ensemble and 
three-naïve Bayes as classifiers

Identification of COVID-19 CT 2 90.6 90.3 93.5 91.9
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The costly RT-PCR tests kits are short in supply; there-
fore, AI scientists have proposed various cost-effective 
solutions by attempting various DL models in prediction, 
diagnosis and prognosis of SARS-CoV-2 due to outstanding 
performance in handling and processing complex biologi-
cal and medical data. Such as Apostolopoulos and Mpesi-
ana [67] exploited transfer learning technique with various 
state-of-the-art CNN-based frameworks including Inception, 
Inception ResNet v2, MobileNet v2, VGG19 and Xception 
to isolate SARS-CoV-2-infected patients among 1427 CXRs 
images. The analyzing, author concludes that MobileNet 
v2 surpassed other frameworks by securing sensitivity of 
99.10%, specificity of 97.09%, accuracy of 97.04% on two-
class problem, while on three-class classification task, it 
achieved an accuracy of 92.85%. Moreover, they tested the 
implemented models on second data set that contains 224 
COVID-19-infected cases images, 714 CXRs of patients 
with viral pneumonia, and 504 CXRs of healthy person. On 
this data set, for three-class problem, MobileNet v2 attained 
accuracy of 94.72%, while for two-class problem, it secured 
98.66% sensitivity, 96.46% specificity, 96.78% accuracy. 
Similarly, Brunese et al. [68] implemented DTL approach 
with fine-tuned DL-based customized VGG16 framework 
to differentiate between pulmonary diseases patients and 
health person (model-1), and then figures out COVID-
19-infected patients among discovered pulmonary diseases 
patients (model-2). The suggested model uses 6523 CXRs, 
among which 250 CXRs correspond to COVID-19-infected 
patients, 2753 CXRs belong to pulmonary diseases patients 
and 3520 images of healthy patients to diagnose COVID-
19 while highlighting the potential-infected region due to 
SARS-CoV-2 virus. Model-1 accomplished a sensitivity, 
f1-score, specificity, and accuracy, of 96%, 94%, 98%, and 
96%, respectively. The experimental finding yields that sec-
ond model, disease classification model, attained sensitivity, 
specificity, accuracy and f1-score of 87%, 94%, 98%, and 
89%, respectively. Apart from using the DTL approaches 
and pre-trained models, authors of Ref. [69] designed and 
trained a CNN-based network that utilizes features extracted 
through PCA. The authors further proposed a GAN model 
to eliminate the class imbalance issue and enhance the data 
set. The incorporation of PCA not only significantly reduced 
the computational time but also improved the accuracy to its 
maximum extent.

Besides CXRs, researchers also focused on CT images, 
such as Xu et al. [70], designed a 3-D CNN-based frame-
work to isolate patients affected by COVID-19 among 
healthy and IAVP in timely manner. They segmented 219 
COVID-19-infected CT images, 224 IAVP CT images, and 
175 normal cases CT images and extracted meaningful 
features by incorporating ResNet model. Finally, location-
attention classification framework achieved an overall pre-
diction accuracy of 86.7%. Jaiswal et al. [71] presented an 

alternate state-of-the-art CNN-based model to distinguish 
COVID-19-infected humans using chest CT images. It 
employed pre-trained DenseNet201 with DTL approach to 
analyze 1230 CT images of patients other than COVID-19, 
while 1262 CT images are of SARS-CoV-2 positive cases. 
The proposed model achieved precision, sensitivity, speci-
ficity, accuracy and f1-score of 96.29%, 96.29%, 96.21%, 
96.25%, and 96.29%, respectively. Table 2 lists performance 
details of COVID-19 diagnostic tools and applications based 
on DL-guided methods that may aid concerned personnel 
while selecting an appropriate architecture for SARS-CoV-
2-infected patient’s identification.

2.2 � Routine Clinical Data‑Based Diagnostic Tools

Due to expensive radiographic imaging machines, several 
developing countries and states lacks in CT, CXR and 
ultrasound machines but has basic blood testing facilities. 
Keeping in view such scenarios, scientists and program-
mers have developed AI-based applications and tools to 
screen COVID-19 positive case using Clinical blood reports. 
Batista et al. [119] implemented five various ML classifiers, 
such as RF, NN, LR, SVM, and gradient boosting trees to 
segregate COVID-19-infected patients by collecting a 235 
adult patients blood sample data from hospital in Brazil. 
The collected data set contains 125 samples of COVID-19 
negative patients, while 110 samples belong to COVID-
19-infected patients. Each data instance had 15 attributes 
that includes CRP, mean corpuscular hemoglobin, MCV, 
mean corpuscular hemoglobin concentration, age, gender, 
hemoglobin, RDW, red blood cells, leukocytes, monocytes, 
platelets, lymphocytes, basophils, and eosinophils. From 
experimental findings, it is noted that SVM outperformed 
other ML approaches by securing a sensitivity, specificity, 
accuracy, F1-score, NPV, PPV and brier score of 67.7%, 
85.0%, 84.7%, 72.4%, 77.3%, 77.8% and 16.0%, respectively, 
when tested and trained under tenfold cross validation. 
Table 3 lists COVID-19 diagnostic applications empowered 
by various AI approaches, which analyzes data related to 
routine clinical blood samples.

2.3 � Coughing Waves and Respiratory Pattern‑Based 
Diagnostic Tools

Beside diagnostic applications for COVID-19 based on 
radiography images or clinical blood samples data, Wang 
et al. [124] presented a classification network (BI-AT-GRU) 
which effectively utilizes the respiratory patterns of patients 
[125]. In addition to the stimulated data, it adequately uses 
real-world data. The framework discovers and differentiates 
the respiratory pattern known as Tachypnea (an occurrence 
of more speedy respiration) among six other patterns of viral 
infections. Due to scarcity of respiratory data, authors used 
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RSM to generate stimulated breathing patterns. From dis-
cussion, it concludes that BI-AT-GRU framework outper-
formed other state-of-the-art models, such as GRU, LSTM, 
and BI-AT-LSTM by accomplishing a precision of 94.4%, 
recall of 95.1%, accuracy of 94.5%, and f1-measure of 94.8% 
when tested on real-world data obtained from depth camera. 
Table 4 illustrates various ML- and DL-based COVID-19 
diagnostic tools and applications that uses coughing or res-
piratory data.

2.4 � Disease Severity and Survival‑Mortality 
Assessment Models

The timely knowledge about the severity of disease 
facilitates the attending staff in dealing patients priority 
wise and utilizing the hospital facilities accordingly. A 
very rare work has been observed on lung’s ultrasound 

data, such as Carrer et al. [129], proposed a unsuper-
vised method based on Viterbi algorithm and Hidden 
Markov model for localization and detection of pleural 
line in LUS data. Later it evaluates the severity level 
of patient using SVM. From results, it is observed that 
pleura detection model achieved an accuracy of 94% and 
84% for linear and convex probes, while SVM classifier 
evaluated the severity with an accuracy of 94% and 88% 
for linear and convex probes. Zhou et al. [130] proposed 
machine-agnostic quantification and segmentation tech-
nique to cater 3D segmentation problem in CT images 
for severity identification of COVID-19-infected regions. 
The proposed simulator decreases the model parameters 
by using symmetry properties of lungs and tissues that 
decomposes 3D segmentation into three 2D ones (along 
y–z, x–y, and x–z planes) thus reduces time complexity. 
The three independent 2D U-Nets segmented infectious 

Table 3   Artificial intelligence-based diagnostic tools for COVID-19 using data related to clinical blood samples

P precision, Sp specificity, Se sensitivity, A accuracy

References Name of algorithm/model Problem/assignment Type of data Classes P Sp Se A

[120] Several machine learning classifiers 
(DT, SVM, kNN, RF, LR, and Naïve 
Bayes)

Diagnosis of COVID-19 diagnosis using 
hemato-chemical values obtained from 
blood examination

Text 2 83.0 65.0 92.0 82.0

[121] Various machine learning-based models 
(LR, RF, DT, and Gradient-boosted 
DT)

Diagnosing COVD-19 by considering 
regular laboratory tests

Text 2 – 80.8 76.1 –

[122] Feature engineering using TF-IDF with 
seven different supervised machine 
learning classifiers (DT, Stochastic 
Gradient Boosting, LR, RF, Adaboost, 
SVM, and Multinomial Naïve Bayes)

Classifying COVID-19 cases among 
various viral pneumonia with the use 
of use of clinical reports

Text 4 94.0 – 96.0 96.2

[119] LR, RF, and SVM COVID-19 diagnosis Text 2 77.8 85.0 67.7 84.7
[123] Random Forest Identifying COVID-19 cases by con-

sidering 49 different parameters of 
clinical data

Text 4 96.9 95.1 95.9

Table 4   Artificial intelligence-based diagnostic tools for COVID-19 using respiratory data

P precision, Sp specificity, Se sensitivity, A accuracy
*Values related to classification of COVID-19 class only

References Name of algorithm/model Problem/assignment Data-type/modality Classes P Sp Se A

[126] Deep Transfer-Learning-
based Multiclass classi-
fier (DTL-MC)

Analyzing irregularities of 
pathomorphological muta-
tion in respiratory process to 
diagnosis COVID-19

Sound waves/coughing 2 91.4 91.1 94.5 92.8
4 89.9* 96.6* 89.1* 92.6*

[127] Feature extraction using 
VGGish with LR and 
SVM for classification

Analyzing coughing samples to 
diagnose COVID-19

Sound waves/coughing and 
breathing

2 80.0 – 72.0 –

[128] Bi-AT-GRU​ Identifying COVID-19 cases 
by examining RBG and ther-
mal videos

Thermal videos/breathing 2 – 76.3 90.2 83.6

[124] BI-AT-GRU​ Detecting positive COVID-19 
cases

Patterns of breathing 2 94.4 – 95.1 94.5
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regions along three orthogonal directions and later inte-
grated these entire masks together with Mask R-CNN to 
produce final segmentation. The tool achieved an average 
dice of 76.4%, 82.3% and 87.5% on early, progressive and 
severe cases for segmentation problem, while it attains a 
96.7% Pearson correlation coefficient for quantification 
task.

Bai et al. [131] proposed a hybrid DL-based network 
with multivariate LR classifier to predict COVID-19 
malignant progression. The model converts statistical 
instances (75 clinical data characteristics) to 40-D feature 
vector using MLP. Finally, it predicts high-risk patients 
using quantitative CT sequences, obtained at different 
time interval, along with these transformed multi-dimen-
sional feature vectors with the help of LSTM. The pro-
posed severity assessment tool secured an AUC of 95.4% 
and overall accuracy of 89.1% when evaluated on data set 
of 133 patients under fivefold cross-validation. Similarly, 
an ML-based MCDM has been proposed in Ref. [132] 
to optimize the treatment strategy. The network detects 
the severely infected SARS-CoV-2 patients and prior-
itized them for relevant convalescent plasma transfusion. 
Table 5 shows the severity and fatality assessment models 
based on conventional ML and advanced DL techniques.

2.5 � COVID‑19 Outbreak Forecasting Models

The widespread of COVID-19 outbreak has created panic as 
a human community is still at risk, while hospitals are full, 
people are facing financial issues as governments are strug-
gling to pass critical decisions, mortality rate is increasing 
exponentially, whereas social activities are halted. In this 
high uncertainty, experts have applied various DL and ML 
techniques to design outbreak-forecasting models that would 
help decision makers to recommend new preventive strate-
gies and develop critical measures for future possibilities. 
Such as Carrillo-Larco and Castillo-Cara [144] suggested 
an unsupervised ML-based model that uses k-means cluster-
ing algorithm to classify the countries sharing same number 
of confirmed COVID-19 cases. In this study, researchers 
considered different attributes, such as prevalence of tuber-
culosis and HIV/AIDS diseases in 156 countries, social–eco-
nomic parameters, such as gross domestic production as 
social–economic parameters and other health system metric, 
such as air quality along with COVID-19 prevalence data 
(confirmed cases, death etc.). It concludes that the integra-
tion of PCA with k-means-based model successfully stratify 
countries into five and six groups. The researchers conclude 
that model works well for countries stratification based on 
confirmed SARS-CoV-2 cases but not able to classify in 
terms of SARS-CoV-2 fatality cases.

Table 5   Mortality and survival rate prediction with disease severity assessment of patients using artificial intelligence-based application

CXR chest X-ray images, CT computed tomography images, CD clinical data, TS time series

References Name of algorithm/model Problem/assignment Type of data

[133] 2 stage 3D U-Net for lobe segmentation and 
3D-inflated modified variant of Inception for 
COVID-19 Reporting and Data System (CO-
RADS) score prediction

Severity assessment of COVID-19-infected patients 
by automatic segmentation of pulmonary lobes of 
lung

CT

[134] 3D CNN-based network with VB-Net COVID-19 quantification and detection CT
[135] Deep neural network based on six dense layers Mortality prediction in COVID-19 patients using 

clinical data
Text

[136] VGG16 Analyzing and assessing severity of COVID-19 infec-
tion in lungs

Radiography images

[137] Various machine learning classifiers (Elastic Net, RF, 
Adaboost Pregressor, DT, SVM, and Huber Regres-
sion etc.)

Analyzing COVID-19 transmission by examining the 
humidity and atmospheric temperature

Textual and TS

[138] Customized CNN framework with fractal techniques 
for feature extraction

Assessing COVID-19 disease severity CXR

[139] DenseNet model To find the severity of COVID-19 lung and the 
degree of opacity in lung

CXR

[140] Fine-tuned RF with AdaBoost Predicting disease severity to highlight chances of 
death or recovery

Text

[141] Various LNR models Diagnosing COVID-19 cases and predicting its 
volume and severity

CT and CD

[142] SVM Predicting recovery cases Text
[143] SVM Critical cases detection among patients with mild 

symptom
Text
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To assist policymaker, Kavadi et al. [145] presented a 
PDR-NML framework that predicts SARS-CoV-2 trans-
mission patterns in India. The proposed statistical model, 
PPDLR, normalizes it by searching the best features, which 
are then fed to a support Kuhn–Tucker-based nonlinear 
global pandemic ML model to forecast the future outbreak 
of COVID-19 pandemic cases. The presented model outper-
formed LNR and other famous AI-base models by securing 
99.7% accuracy. Hu et al. [146] attempted modified AE that 
uses real-time data for pandemic outbreak forecasting in 
large geographical area by considering the interventions and 
measures to curb the pandemic. The framework use data of 
confirmed COVID-19 cases happened between January 20, 
2020 to March 16, 2020 in 152 countries to forecast future 
cases, as well as pandemic peak and end time. It consists of 
2 single AEs each comprised of 3 feed-forward NN layers 
that performed well while estimating the daily new cases 
in China as compared to SEIR model. The model attained 
error of 0.00134 and recommended that early precautionary 
measures would eliminate 99.4% of potential cases.

Other than the conventional ML algorithm, experts also 
used advanced DL techniques to determine the unseen forth-
coming cases. Authors in Ref. [147] forecasted global pan-
demic outbreak by using multivariate spatiotemporal model 
based on convolutional LSTM framework. They used the 
data of Italy and USA, and transformed spatial features into 
clusters. The proposed forecasting tool predicted number of 
potential cases for the next 5 days with an MAPE of 5.57% 
and 0.3% for USA and Italy, respectively. Table 6 illustrates 
more AI-based applications/tools to assess the risk and pre-
dict the pandemic outbreak.

2.6 � COVID‑19 Protein Sequence Formation 
and Drug Discovery Models

In this panic-stricken era of COVID-19, rapid drug discov-
ery in accordance with the exact virus genome is crucial to 
saving thousands of lives. Still many genomes and peptides 
of this noxious virus are being identified on a regular basis. 
To bring the effective drug-making process up to speed, 

Table 6   COVID-19 outbreak prediction and risk assessment using artificial intelligence-based applications

TS time series

References Name of algorithm/model Problem/assignment Type of data

[148] Several ML-based classifiers (DT, LR, SVM and RF) Forecast COVID-19 spreading patterns in 42 countries Text
[149] ARIMA, Bi-LSTM, LSTM, and SVM Forecast death, recovery rate and potential cases in major 

countries
TS

[150] ARIMA and Least square-SVM Estimate COVID-19 cases for the next month TS
[151] RNN, Bi-LSTM, LSTM, GRU, LSTM, and VAE Predict (on short term) the new contaminated and recov-

ered patients
TS

[152] FbProphet COVID-19 epidemic trend prediction TS
[1] ANN-based adaptive incremental network Monitor and analyze the disease’s growth stimulation for 

forecasting and population Compartmentalization based 
on its risk

TS

[153] Polynomial Regression. LNR, and SVM Predict the migration type, growth and transmission rate Text
[154] LNR, MLP and Vector autoregression method COVID-19 spread prediction in India TS
[155] Various ML-based models (SVM, LNR, Exponential 

Smoothing, and Least Absolute Shrinkage and Selec-
tion Operator)

Forecast cases, deaths and recoveries due/from COVID-
19 in the next 10 days

TS

[156] Unsupervised-SOM Spatially cluster the countries having similar COVID-19 
cases

TS

[157] Cloud computing with ML-based approach Predict the growth and analyze potential threat related to 
COVID-19

TS

[158] LSTM with LNR Forecast COVID-19 outbreak trends in Iran TS
[159] Wavelet transform approach with Regression tree COVID-19 outbreak prediction/forecasting in various 

countries and assessing the risk
TS

[160] Fuzzy rule induction with Composite Monte Carlo Future possibilities prediction TS
[161] LSTM with Curve fitting Analyze the effect of social distancing and lockdown on 

predicting COVID-19 cases
TS

[162] SEIR Examine the effect of control measures while predicting 
COVID-19 outbreak

TS

[163] Customized SEIR with LSTM Analyze and predict COVID-19 pandemic curve for 
China

TS
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many ML models are in process to master the viral struc-
tural analysis. In the interest of seeking probable vaccine 
possibilities for SARS-CoV-2, Ong et al. [164] established 
a machine learning-based Vaxign-ML reverse vaccinology 
system. Their research based on a system equipped with 
five conventional ML algorithms (XGB, SVM, RF, kNN 
and logistic regression) applied on extracted protein data 
set, subsequent to fivefold cross-validation, defined fur-
ther with biological and physicochemical characteristics,. 
From findings, it can be noted that XGB model indicated an 
F1-measure of 94%. The results of the system indicated con-
servancy of SARS-CoV-2 N protein sequence with SARS-
CoV and MERS-CoV only. While discussing the crucial 
matters of virus attacking and attaching itself to the host, 
the responsible adhesions proteins found were the S protein 
along with non-structural proteins; nsp3, 3CL-pro, and nsp8-
10. Moreover, high protective antigenicity causing inferred 
by the designed Vaxign-ML system was attributed to three 
proteins namely S, nsp3, and nsp8 as potential vaccine can-
didate based on high protegenicity score. This particularly 
tailored vaccine aptitudes for designing a reliable and com-
petent COVID-19 vaccine.

Magar et al. [165] founded a machine learning idea envi-
sioned to identify synthetic COVID-19 inhibitory antibod-
ies. The ML strategies segregated the data of virus-antibody 
sequences via graphical diagrams and reported 8 stable 
antibodies with the ability to perform as COVID-19 inhibi-
tors. The way that led the COVID-19 antibody identifica-
tion starts with gathering and maintaining the data for the 
devised system. Then comes the featurization, embedding 
and benchmarking ML designs and screening for the best 
model available. Later on, a hypothetical antibody group is 
assembled and ML screening is done for obliteration. Lastly, 
the validity of the suggested antibodies is evaluated. Such 
generalized flowchart makes fast and facile screening of 
probable antibodies having an immense potential to defeat 
COVID-19. Table 7 depicts other AI-empowered applica-
tions used to detect protein sequence and discover to tackle 
COVID-19 pandemic.

3 � Discussion

In this survey, we not only presented an analysis of clini-
cally utilized AI tools providing assistance against COVID-
19 but also presented a detailed historical account of the 
virus and related family. The detailed investigation reveals 
several ML and DL approaches so far lending help to a great 
extent, initiating from image diagnostics and going up to the 
presentation of prospective models for methodical anticipa-
tion of the epidemics outbreaks. Therefore, this study can 
facilitate healthcare and research operatives to efficiently 
and effectively cope the COVID-19 pandemic. With timely 
and precise analysis, approach at hand for the desired solu-
tion an immediate response against the disease can be lead. 
This survey concentrates mainly on the obstacles faced so 
far while executing AI and ML-based arrangements for 
COVID-19 prognosis. Moreover, some suggested plans and 
quick fixes to resolve those issues are also covered.

The foremost inaccuracy fails to arise from not constitut-
ing diagnostic programs, which segregates on the basis of 
symptoms. Thus, to have robust and well-generalized pre-
dicting tools, various other aliments (liver, heart, diabetes, 
etc.) and patient’s information (gender, age, etc.) must be 
considered. In comparison with known community acquired 
and viral pneumonia, these aspects (patient’s information 
and aliments) have significantly influences the severity of 
COVID-19 disease in a human. Thus, leading to an instan-
taneous identification of the virus. An enormous amount of 
data is laid out there by several countries severely hit by the 
pandemic. If those statistics are attained in the right way, 
schemes for the prediction can efficiently generate smart and 
uncomplicated results.

Then, there comes the issue of urgency. Since the govern-
ment needs statistics right away to regulate quarantine laws 
for constraining the disease expansion. Therefore, the sci-
entific data sets are constructed on hasty calculations. Thus, 
providing ineffective and non-reproducible structures. In 
pursuance of productive and quick implementation of policy 
models, the data set must be fixed and generate reproducible 

Table 7   Protein sequence detection and drug discovery using artificial intelligence-based applications

References Name of algorithm/model Problem/assignment

[164] DTL-based Vaxign-machine-learning reverse vaccinology tool Candidate vaccine prediction for SARS-CoV-2 virus
[166] LSTM and semi-supervised VAE Discover drug by detecting SMILE fingerprint of molecules
[167] GAN Designing the drug compound (non-CoV)
[168] A pre-trained network based on AI approach, called Molecule-

Transformer-Drug-Target-Interaction
Determine the availability of antiviral drug to tackle SARS-COV-2

[165] SVM, RF, MLP, LR, and XGBoost Potential antibodies discovery for COVID-19
[169] MLP and ANFIS Detect nucleic acid based on CRISPR
[170] GAN Develop formation of drug compound for COVID-19
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outcomes and solve the urgent problem as well. In design-
ing the analysis applications based on statistical approach, 
one of the most important and challenging task is availabil-
ity of high-quality samples at real time. In circumstances, 
where data are rapidly changing at faster pace, the reliability 
of produced tools are minimized. Therefore, to tackle this 
problem, regular updating the data based on region-specific 
values are decisive.

For planning any systems for prediction studies, attaining 
large data is the crucial requirement that needs to be ful-
filled. Deep learning-based systemization needs big data sets 
of clinical images and statistical numerals. A large amount 
of data can be produced for better training of deep learning 
approaches if obtained sets are not divided on the basis of 
geography. Regulation of data sources needs to be addressed 
as well while handling massive data to avoid misunderstand-
ings. Yet, another challenge that arises while training and 
designing such AI systems is due to little or almost no asso-
ciation of researchers with medical experts. While assessing 
the medical data, such as X-ray or scans relatable medical 
personnel, must be present to make a definitive opinion.

A better and definitive estimation of potential patients and 
the number of deaths that are going to happen in future is 
a top priority in the current situation. This can be achieved 
by gathering and structuring the data of heavily affected 
countries and utilizing it with accurate and robust AI-based 
models as better equipment against an upcoming alarming 
situation.

4 � Open Research Challenges

The COVID-19 pandemic has unequivocally affected both 
individuals and economies everywhere in the world. This 
led to various systemic challenges in various field, such as 
health, governance, trade, education, technology etc. This 
section highlights some of the challenges to combat the cur-
rent pandemic.

4.1 � Research Collaboration and Data Sharing

The COVID-19 is a family of viruses that has various 
forms and has different behavior on people living in various 
regions around the globe. This requires a cross examina-
tion of the cases in multi-folded perspectives. There must 
be some agreements reached among various entities includ-
ing civil society, private and public sectors to share data 
and conduct research to expedite the process for finding 
an ultimate solution. This envisions the authorities about 
expected abiding transformations, and motivates them to 
revamp the condition of the world by taking advantages of 
this moments.

It is critical for combating the disease to do research col-
laboration to accelerate the process towards normalizing the 
life and overcome the pandemic. This requires high-level 
decision making to remove obstacles in free flow of research 
ideas and make availability of research data for more critical 
decision making. Infrastructure should be developed to share 
and collaborate the research data globally, which is still a 
challenging task. This also requires policy to be defined for 
integrity of the patient data by introducing some defined set 
of rules and measures, interoperability and co-ordination, in 
conjunction with quality and interpretation of data.

4.2 � Lack of Technology Infrastructure

Availability of IT infrastructure is crucial for early detection, 
tracking and monitoring of the patients. In China, ubiqui-
tous availability of IT infrastructure help finding hotspots 
and crowd gathering, thus assisted the administrators to take 
faster decision making and implementation. Developing 
countries are suffering from serious lack of infrastructures 
to fully utilize the ability of AI for both detection and previ-
ous strategies.

4.3 � Development of Vaccines

AI is inevitable in almost all fields of life. Multidisciplinary 
research should be conducted for development of vaccine for 
COVID-19. The use of AI for drug delivery, design, devel-
opment and efficacy will eventually speed up the drug test-
ing in real time. Policies should be designed to take advan-
tage of this.

4.4 � Increased Pressure on Hospitals

There has been sharp increase of patient admissions in hos-
pitals across the globe that overwhelmed the healthcare pro-
fessionals due to high workload. To increase the efficiency 
and properly managing the critical patients, AI should be 
used from patients’ admission, testing and monitoring. This 
will reduce the pressure and workload for medical staff.

4.5 � Adopting Models from Developed Countries

Some countries, such as South Korea, flattened the curve of 
COVID-19 by adopting digital technology and combining it 
with other strategies, such as early detection, free treatment, 
and isolation of COVID-19 cases. No severe lockdowns were 
placed; however, they used technology to monitor trends and 
hotspots to take early action. In addition, the public aware-
ness and participation was very good. Adopting such model 
in the developing countries need these three important com-
ponents: digital infrastructure, healthcare infrastructure, and 
public awareness.
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4.6 � Transparent Disclosing all Information

Accurate information sharing is crucial for public safety and 
crucial decision making. Governments should develop strat-
egies for sharing the accurate information about the COVID-
19 cases, through press briefing, to make awareness among 
mankind about ways to minimize the transmission of virus, 
and the impact of the social distancing.

Finally, the developing countries must cautiously and 
gently relaxes the restrictions related to immigration and 
quarantine keeping in view the global transmission rate of 
disease and corresponding healthcare situation/facilities of 
the country. Countries should also aim for assistance and 
capacity building in communal institutions. International 
associations and societies must collaborate and join the 
developing countries to cope with this pandemic.

4.7 � Lesson Learning from this Pandemic

This may not be the last pandemic, as world has witnessed 
many similar challenges in the past. Learning some lessons 
from current pandemics and preparing for future challenges 
is a crucial step now. The models and preparedness should 
be done keeping future perspective in mind. Creating aware-
ness among people and balanced distribution of wealth can 
highly reduce the risks of spread of such diseases.

5 � Conclusion

The recent advancements in AI techniques have played an 
important role in biomedical sciences providing a handy 
role in diagnosis and monitoring of various diseases. For 
COVID-19 pandemic, it is essential to detect it as early as 
possible by collecting and analyzing related information to 
predict, where this virus will affect in the future. In this 
paper, we report the recent active role of AI for combating 
the COVID-19 and highlighted new research directions and 
main challenges in adopting a robust solution for this pan-
demic. The paper spans over two main domains, medical and 
technological. In the first domain, this review covered the 
global transmission patterns of COVID-19 and brief history 
of various other viruses. Then, it described the advances 
in AI tools to diagnose, assess the severity of disease, pre-
dict the mortality rate, and discover the drug compounds. 
Furthermore, an analysis of recently applied techniques for 
various biological and computing approaches have been 
presented. This work will help decision makers to better 
understand the role of AI for combating COVID-19, so that 
better decisions can be taken to properly handle and take 
precautionary steps by designing instructions in pandemic 

stricken regions. Subsequently, computer-aided platforms 
are in operation for smart utilization of medical facilities 
on a priority basis.
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