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ABSTRACT Campylobacter jejuni is the leading pathogen that causes foodborne
infections. Here, we report the complete genome sequences of four C. jejuni strains
isolated from retail chicken meat and broiler feces samples. Genes encoding type VI
secretion and antibiotic resistance were detected among these isolates.

Campylobacteriosis, caused by Campylobacter jejuni, is one of the major foodborne
infections that cause human gastroenteritis, and poultry is considered the major

reservoir host (1–6). Therefore, to understand the variation in molecular characteristics
of C. jejuni poultry isolates, whole-genome sequencing was performed to determine
detailed information about the virulence and antimicrobial resistance genes (6–8).

Four C. jejuni strains isolated and identified in our previous study (9) were further
utilized. Each C. jejuni strain was cultured in Bolton broth (Thermo Fisher Scientific,
USA) and incubated under microaerophilic conditions for 48 h at 42°C; genomic DNA
was then extracted using the GeneJET genomic DNA purification kit (Thermo Fisher
Scientific). For long-read sequencing, genomic DNA was fragmented using a g-TUBE
device (Covaris, USA) and the fragments size selected to a mean of 8 to 12 kb using
AMPure XP beads (Beckman Coulter, USA) for library preparation. A multiplexing library
pool was prepared and barcoded using a genomic DNA ligation kit (SQK-LSK109) and
the native barcoding genomic DNA kit (SQK-NBD104), respectively; the library was
sequenced on an R9.4 MinION flow cell using the Nanopore GridION sequencer
(Oxford Nanopore Technologies, Oxford, UK) for 48 h. For short-read sequencing,
Illumina TruSeq DNA PCR-free (insert size, 350 bp) library preparation and sequencing
using the paired-end 150-bp (PE150) method was performed by Novogene on the
HiSeq X Ten sequencer (Illumina, USA). The raw Nanopore reads were assembled into
contigs using Canu v1.9 (10). The first 1,000 bp of each contig was mapped to the
entire contig using blastn from the BLAST1 v2.9.0 tool suite (11); then, the overlapping
regions were removed using SAMtools v1.9 (12). The start of each circular contig that
had an overlapping region was moved upstream of the dnaA gene, when present, or
upstream of the gene closest to the middle of the contig using Circlator v1.5.5 (13).
The junction site of circular contigs was verified using PCR amplification and Sanger
sequencing (14). The Illumina and Nanopore reads were mapped to the assembled
contigs using BWA v0.7.17-r1188 (15) and minimap2 v2.17 (16), respectively. Any con-
tig without supporting Illumina data was removed. The remaining contigs were pol-
ished using Pilon v1.23 (17). The genome sequences were annotated using Prokka
v1.13 (18).

The genome sizes and number of protein-coding DNA sequences of the isolates
range from 1.63 Mb to 1.84 Mb and 1,421 to 1,552, respectively, and two isolates

Editor Steven R. Gill, University of Rochester
School of Medicine and Dentistry

Copyright © 2022 Poudel et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Li Zhang,
l.zhang@msstate.edu.

The authors declare no conflict of interest.

Received 29 August 2022
Accepted 5 September 2022
Published 15 September 2022

October 2022 Volume 11 Issue 10 10.1128/mra.00898-22 1

GENOME SEQUENCES

https://orcid.org/0000-0001-5421-4256
https://orcid.org/0000-0002-7696-5947
https://orcid.org/0000-0002-3933-5794
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mra.00898-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00898-22&domain=pdf&date_stamp=2022-9-15


(MS2005 and MS2058) contain one plasmid each. The respective fold coverages for
Illumina and Nanopore ranged from 541 to 864 and 440 to 851, and the N50 values
ranged from 9,302 to 10,256 bp, respectively. In silico prediction of antimicrobial resist-
ance genes using CARD v3.1.0 (19) identified aph(39)-IIIa, sat-4, and blaOXA-61 genes in
the chromosomes, whereas plasmid pMS2058 contains the tet(O) gene. Using SecReT6
(20), the presence of type VI secretion genes was predicted in the chromosomes of
three C. jejuni strains MS2005, MS2058, and MS2167 (Table 1). The genome information
obtained in this study can be further utilized for the identification of potential vaccine
candidates and functional analysis of type VI secretion genes.

Data availability. The genome sequences and raw data are available at NCBI
GenBank under the BioProject accession number PRJNA655459. The specific parameters
and code used for sequencing can be found at https://github.com/IGBB/campylobacter
_jejuni.
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TABLE 1 Summary of genome assembly and genotype characteristics of four C. jejuni isolates

Strain Source

GenBank
accession
no. Size (bp)

Illumina Nanopore
GC
content
(%)

No. of
CDSsa ARG(s)b Virulence genes

No. of
reads

Avg per-base
coverage (×)

No. of
reads

Avg per-base
coverage (×) N50 (bp)

C. jejuni
MS2005c

Retail chicken
meat

CP084080 1,757,242 3,476,551 571 164,000 736 10,111 30.5 1,541 aph(39)-IIIa,
sat-4, cmeR

tssA, tssB, tssC,
tssD, tssE,
tssF, tssG, tssI,
tssJ, tssK, tssL,
tssM

C. jejuni
MS2005d

Retail chicken
meat

CP084081 5,208 6,746 405 28.5 6

C. jejuni
MS2058c

Retail chicken
meat

CP084082 1,758,823 5,455,985 890 104,000 472 10,256 30.5 1,552 aph(39)-IIIa,
sat-4, cmeR

tssA, tssB, tssC,
tssD, tssE,
tssF, tssG, tssJ,
tssK, tssL, tssM

C. jejuni
MS2058d

Retail chicken
meat

CP084083 40,825 1,086 231 28.5 41 tet(O)

C. jejuni
MS2074c

Retail chicken
meat

CP084084 1,629,343 5,376,179 986 144,000 691 9,909 30.7 1,491 blaOXA-61, cmeR

C. jejuni
MS2167c

Broiler feces CP084085 1,711,301 5,762,419 1,007 220,000 951 9,302 30.5 1,491 cmeR tssA, tssB, tssC,
tssD, tssE,
tssF, tssG, tssI,
tssJ, tssK, tssL,
tssM

a CDSs, protein-coding DNA sequences.
b ARG(s), antimicrobial resistance gene(s).
c Chromosome.
d Plasmid.
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