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Emergent second law for non-equilibrium
steady states

José Nahuel Freitas 1,2 & Massimiliano Esposito1,2

The Gibbs distribution universally characterizes states of thermal equilibrium.
In order to extend theGibbs distribution to non-equilibrium steady states, one
must relate the self-information I ðxÞ= �logðPssðxÞÞ of microstate x to mea-
surable physical quantities. This is a central problem in non-equilibrium sta-
tistical physics. By considering open systems described by stochastic
dynamics which become deterministic in the macroscopic limit, we show that
changesΔI = I ðxtÞ � I ðx0Þ in steady state self-information along deterministic
trajectories can be bounded by the macroscopic entropy production Σ. This
bound takes the formof an emergent second law Σ+ kbΔI ≥ 0, which contains
the usual second law Σ ≥0 as a corollary, and is saturated in the linear regime
close to equilibrium. We thus obtain a tighter version of the second law of
thermodynamics that provides a link between the deterministic relaxation of a
system and the non-equilibrium fluctuations at steady state. In addition to its
fundamental value, our result leads to novel methods for computing non-
equilibrium distributions, providing a deterministic alternative to Gillespie
simulations or spectral methods.

When a system is at equilibrium with its environment (i.e., when no
energy currents are exchanged) the probability of a givenmicrostate x
is given by the Gibbs distribution1–3

PeqðxÞ= e�βΦðxÞ=Z , ð1Þ

where β= ðkbTÞ�1 is the inverse temperature of the environment,
Φ(x) is the free energy of microstate x (for states with no internal
entropy, Φ(x) is just the energy), and Z =∑x expð�βΦðxÞÞ is the
partition function. This central result of equilibrium statistical
physics has universal validity and its relevance in most areas of
physics cannot be overstated. A natural question is whether or not a
similar result also holds for nonequilibrium steady states (NESSs),
when the system is maintained out of thermal equilibrium by
external drives and subjected to constant flows of energy or matter.
In this case, one can always write the steady state distribution over

microstates as

PssðxÞ= e�IðxÞ ð2Þ

in terms of the self-information I ðxÞ, also known as fluctuating
entropy4,5. In order to provide a useful generalization of the Gibbs
distribution to NESSs one must relate the self-information I ðxÞ to
measurable physical quantities. This quest has a long history, starting
with the seminal contributions of Lebowitz and MacLennan6–8 and
followed by other works9–15. However, it still remains an open problem
in non-equilibrium statistical physics, since previous formal results are
simply not practical in computations, due to the fact that they involve
averages over stochastic trajectories.

In this work we prove, for a very general class of open systems
displaying a macroscopic limit where a deterministic dynamics
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emerges, the following fundamental bound on changes of self-
information:

Σa � Σ + kbðI ðxtÞ � I ðx0ÞÞ ≥ 0, ð3Þ

where Σ=
R t
0 dt

0 _Σðxt0 Þ=T is the entropy production along a determi-
nistic trajectory from microstate x0 to microstate xt. For example, let
us consider the case of chemical reaction networks. The concentra-
tions x = (x1, x2,⋯ ) of different chemical species reacting in a solution
are stochastic quantities, and their evolution is therefore described by
aprobability distribution Pt(x) at time t. As the volumeVof the solution
is increased, the distribution Pt(x) becomes strongly localised around
themost probable values xt for the concentrations at time t, and these
values follow a deterministic dynamics that is in general nonlinear
(given in this case by the chemical rate equations). An analogous
situation is encountered in electronic circuits, where the state vari-
ables x are now the voltages at the nodes of a circuit, and the macro-
scopic limit corresponds to increasing the typical capacitance C of the
nodes (as well as the conductivity of the conduction channels con-
necting pairs of nodes). The remarkable feature of the result in Eq. (3)
is that it provides a link between the deterministic dynamics that
emerges in the macroscopic limit and the fluctuations observed at
steady state. For example, in an electronic circuit powered by voltage
sources and working at temperature T, the entropy production rate is
_Σ= � _Q=T , where� _Q is the rate of heat dissipation by the conductive
elements of the circuit, that canbeeasily evaluated at thedeterministic
level. Then, by Eq. (3), the quantity �Σ=kb =

R t
0 dt

0 _Qðxt0 Þ=ðkbTÞ pro-
vides a lower bound to the change of steady state self-information
I ðxtÞ � I ðx0Þ along a trajectory. To arrive at our main result in Eq. (3)
we consider stochastic systems with a well defined macroscopic limit
in which the self-information I ðxÞ can be shown to be extensive, and
Eq. (3) is strictly valid in that limit. However, as we also show, our
results can be applied to micro or mesoscopic systems whenever sub-
extensive contributions to I ðxÞ can be neglected. We interpret our
result as an emergent second law of thermodynamics, that is stronger
than the usual second law Σ ≥0. This last inequality is recovered from
Eq. (3) by considering the fact thatΔI = I ðxtÞ � I ðx0Þ≤0 (to dominant
order in the macroscopic limit, the steady state self-information is a
Lyapunov function of the deterministic dynamics16). In addition to its
conceptual value, our result offers a practical tool to approximate or
bound non-equilibrium distributions, that can typically only be
accessed via stochastic numerical methods (for example the Gillespie
algorithm). In contrast, Eq. (3) only requires to know the deterministic
dynamics of the system, which is directly given by the well known
network analysis techniques commonly applied in electronic circuits
and chemical reaction networks. Furthermore, the inequality in Eq. (3)
is saturated close to equilibrium, leading to a powerful linear response
theory17. As an example, we apply our results to a realistic model of
non-equilibrium electronic memory: the normal implementation of
SRAM (static random access memory) cells in CMOS (complementary
metal-oxide-semiconductor) technology. Thesememories have a non-
equilibrium phase transition from a monostable phase to a bistable
phase that allows the storage of a bit of information. As we will see, the
transition is well captured by Eq. (3), which also allows to bound the
probability of fluctuations around the deterministic fixed points.
Finally, we show that a general coarse-graining procedure generates
equivalent models with minimal entropy production, and that in this
way the bound in Eq. (3) becomes tighter. When applied to the CMOS
memory, this improved bound enables the full reconstruction of the
steady state distribution arbitrarily away from equilibrium.

Results
To obtain Eq. (3) we consider stochastic systems described by auton-
omous Markov jump processes. Thus, let fn 2 Nkg be the set of pos-
sible states of the system, and λρ(n) be the rates at which jumps

n→n +Δρ occur, for ρ = ± 1, ± 2,⋯ and Δ−ρ = −Δρ (ρ indexes a possible
jump and Δρ is the corresponding change in the state). Each state has
energy E(n) and internal entropy S(n). Thermodynamic consistency is
introduced by the local detailed balance (LDB) condition18,19. It relates
the forward and backward jump rates of a given transition with the
associated entropy production:

σρ = log
λρðnÞ

λ�ρðn + ΔρÞ
= � β Φðn + ΔρÞ � ΦðnÞ � W ρðnÞ

h i
: ð4Þ

In the previous equation,Φ(n) = E(n) − TS(n) is the free energy of state
n, and Wρ(n) is the non-conservative work provided by external
sources during the transition. For simplicity, we have considered
isothermal conditions at inverse temperature β= ðkbTÞ�1, and there-
fore the system is taken away from equilibrium by the external work
sources alone.More general situations in which a system interacts with
several reservoirs at different temperatures can be treated in the same
way, this time in terms of a Massieu potential taking the place of
βΦ(n)18. Important classes of systems accepting the previous descrip-
tion are chemical reaction networks and electronic circuits, which are
powered by chemical or electrostatic potential differences, respec-
tively. Note that, by energy conservation, the heat provided by the
environment during transition n→n +Δρ is Qρ(n) = E(n +Δρ) − E(n) −
Wρ(n), and therefore kbσρ = −Qρ(n)/T + S(n +Δρ) − S(n).

The probability distribution Pt(n) over the states of the system at
time t evolves according to the master equation

∂tPtðnÞ= ∑
ρ

λρðn � ΔρÞPtðn � ΔρÞ � λρðnÞPtðnÞ
h i

: ð5Þ

From the master equation and the LDB conditions one can derive the
energy balance

dt Eh i= h _W i+ h _Qi, ð6Þ

and the usual version of the second law:

_Σ= _Σe +dt Sh i

=
kb

2
∑
ρ,n

ðjρðnÞ � j�ρðn + ΔρÞÞ log
jρðnÞ

j�ρðn + ΔρÞ
≥ 0,

ð7Þ

where jρ(n) = λρ(n)Pt(n) is the current associated to transition ρ. In the
previous equations, hSi=∑nPtðnÞ SðnÞ � kb

�
logðPtðnÞÞ is the entropy of

the system, hEi=∑nEðnÞPtðnÞ is the average energy, and _Σe is the
entropy flow rate, given by

T _Σe = �h _Qi= �∑
ρ,n

QρðnÞjρðnÞ ð8Þ

where we also defined the heat rate h _Qi (the work rate h _W i is analo-
gously defined as h _W i=∑ρ,nW ρðnÞ jρðnÞ). Finally, Eq. (7) can be also
expressed as:

T _Σ= �dthFi+ h _W i ≥ 0 ð9Þ

where Fh i= Eh i � T Sh i is the non-equilibrium free energy.

Adiabatic/nonadiabtic decomposition
If the support of Pt(n) can be restricted to a finite subspace of the
state space, the Perron-Frobenius theorem states that the master
equation in Eq. (5) has a unique steady state Pss(n). Once the steady
state is attained, the entropy production rate _Σmatches the entropy
flow rate _Σe. An interesting decomposition of the entropy production
rate can be obtained by considering the relative entropy
D=∑nPtðnÞ logðPtðnÞ=PssðnÞÞ between the instantaneous distribution
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Pt(n) and the steady state distribution Pss(n). Then, it is possible to
show that _Σ= _Σa + _Σna, where

_Σa =
kb

2
∑
ρ,n

ð jρðnÞ � j�ρðn + ΔρÞÞ log
jssρ ðnÞ

jss�ρðn + ΔρÞ
, ð10Þ

and

_Σna =
kb

2
∑
ρ,n

ðjρðnÞ � j�ρðn + ΔρÞÞ log
PtðnÞPssðn + ΔρÞ
PssðnÞPtðn + ΔρÞ

= �kbdtD

ð11Þ

are the adiabatic and non-adiabatic contributions to the entropy
production rate _Σ, respectively. In Eq. (10) we have introduced the
steady state probability currents jssρ ðnÞ= λρðnÞPssðnÞ. The non-
adiabatic contribution _Σna is related to the relaxation of the system
towards the steady state, since it vanishes when the steady state is
reached. This is further evidenced by the identity in the second line
of Eq. (11): a reduction in the relative entropy between Pt(n) and
Pss(n) leads to a positive non-adiabatic entropy production. The
adiabatic contribution _Σa corresponds to the dissipation of ‘house-
keeping heat’20,21, and at steady state matches the entropy flow rate
_Σe. An important property of the previous decomposition is that
both contributions are individually positive: _Σa ≥ 0 and _Σna ≥ 022–25.
Thus, the last inequality and the second line in Eq. (11) imply that
the relative entropy D decreases monotonically, and since D is
positive by definition, it is a Lyapunov function for the stochastic
dynamics.

Macroscopic limit
In the following we will assume the existence of a scale parameter Ω
controlling the size of the system in question. For example, Ω can be
taken to be the volume V of the solution in well-mixed chemical
reaction networks, or the typical value C of capacitance in the case of
electronic circuits (see the example below). In addition, we will assume
that for large Ω i) that the typical values of the density x ≡n/Ω are
intensive, ii) that the internal energy and entropy functions E(Ωx) and
S(Ωx) are extensive, and iii) that the transition rates λρ(Ωx) are also
extensive. Under those conditions, the probability distribution Pt(x)
satisfies a large deviations (LD) principle17,26,27:

PtðxÞ � e�ΩIt ðxÞ, ð12Þ

which just means that the limit ItðxÞ � lim
Ω!1

� logðPtðxÞÞ=Ω is well

defined. Then, It(x) is a positive, time-dependent ‘rate function’, since it
gives the rate at which the probability of fluctuation x decays with the
scale. Note that, by Eq. (12), the steady state self-information
introduced in Eq. (2) satisfies I ðxÞ=ΩIssðxÞ to dominant order in the
macroscopic limit. In other words, the large deviations principle states
that the instantaneous self-information I tðxÞ � �logðPtðxÞÞ is an
extensive quantity26, and we can think of the rate function as the
self-information density. Thus, in the following we will consider the
ansatz PtðxÞ= e�ΩIt ðxÞ=Zt , with Zt � ∑xe

�ΩIt ðxÞ, as an approximation to
the actual time-dependent distribution. This amounts to neglecting
sub-extensive contributions to the instantaneous self-information. As
explained below, It(x) takes its minimum value It(xt) = 0 at the
deterministic trajectory xt, which is equivalent to Pt(x) = δ(x − xt) for
Ω→∞. Plugging theprevious ansatz in themaster equationof Eq. (5)we

note that λρðx � Δρ=ΩÞPtðx � Δρ=ΩÞ ’ λρðxÞPtðxÞeΔρ �∇It ðxÞ to dominant

order inΩ→∞. Noting also that logðZtÞ is sub-extensive, it is possible to
see that It(x) evolves according to

∂t ItðxÞ= ∑
ρ
ωρðxÞ 1� eΔρ�∇It ðxÞ� �

, ð13Þ

where ωρðxÞ � limΩ!1 λρðΩxÞ=Ω are the scaled jump rates17,28. In a
similar way, in themacroscopic limit the LDB conditions in Eq. (4) take
the form

log
ωρðxÞ
ω�ρðxÞ

= �β Δρ � ∇ϕðxÞ �W ρðxÞ
h i

, ð14Þ

in terms of the free energy density ϕðxÞ � lim
Ω!1

ΦðΩxÞ=Ω (internal

energy and entropy densities ϵ(x) and s(x) satisfying ϕ(x) = ϵ(x) − Ts(x)
can be defined in the same way). For the work contributions in Eq. (14)
we are abusing notation bywritingW ρðxÞ= lim

Ω!1
W ρðn=ΩxÞ. Note that

we assume that work contributions are intensive. This is justified since
they are given by the product of two intensive quantities: a thermo-
dynamic force (for example a potential difference), and the change in a
conserved quantity (mass, charge, etc) during a single jump29. How-

ever, note also that the work rate h _W i will be extensive in general due
to the extensivity of the transition rates.

Many classes of systems satisfy the previous scaling assumptions
besides the examples alreadymentioned. Additional examples include
non-equilibrium many-body problems like the driven Potts model30,31,
reaction-diffusionmodels32,33, and asymmetric exclusion processes32,34.

From Eq. (12) we see that as Ω is increased, Pt(x) is increasingly
localised around the minimum of the rate function It(x), which is the
most probable value. Also, deviations from that typical state are
exponentially suppressed in Ω. Thus, the limit Ω→∞ is a macroscopic
low-noise limit where a deterministic dynamic emerges. In fact, from
Eq. (13) one can show that the evolutionof theminimaxtof It(x) is ruled
by the closed non-linear differential equations

dtxt =uðxtÞ, with uðxÞ � ∑
ρ>0

iρðxÞΔρ, ð15Þ

where iρ(x) ≡ωρ(x) −ω−ρ(x) are the scaled deterministic currents17. The
vector field u(x) corresponds to the deterministic drift in state space.
For chemical reaction networks the dynamical equations in Eq. (15) are
the chemical rate equations, while for electronic circuits they are
provided by regular circuit analysis.

In the following sectionweobtain bounds for the steady state rate
function Iss(x), that according to Eq. (13) satisfies:

0 = ∑
ρ
ωρðxÞ 1� eΔρ�∇IssðxÞ

� �
: ð16Þ

Emergent second law
The positivity of the adiabatic and non-adiabatic contributions to the
entropy production, _Σa ≥ 0 and _Σna ≥ 0, in addition to the usual sec-
ond law _Σ ≥ 0, have been called the ‘three faces of the second law’23.
In28, the inequality _Σna = �kbdtD ≥ 0 was put forward as an ‘emergent’
second law. There, F = kbD was interpreted as an alternative non-
equilibrium free energy, with a balance equationdtF = _Σa � _Σ ≤0 (note
the analogy with Eq. (9)). Then, the adiabatic contribution _Σa was
interpreted as an energy input, which at steady state balances the
dissipation _Σ. Although this point of view is compelling, it is hindered
by the fact that there is no clear interpretation of _Σa away from the
steady state, that would allow to compute this quantity in terms of
actual physical currents. In this work we take the other possible road,
and investigate the interpretation and consequences of _Σa ≥ 0. We
begin by rewriting Eq. (10) using the LDB conditions of Eq. (4) and the
definition of I in Eq. (2), obtaining:

_Σa = _Σ+ kb dt Ih i � dt Ssh
� �

≥ 0, ð17Þ
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where we have defined Ih i=∑nI ðnÞPtðnÞ as the average of the steady
state self-information I ðnÞ= �logðPssðnÞÞ and Ssh

� �
= � kb

∑nPtðnÞ logðPtðnÞÞ as the Shannon contribution to the system entropy,
computed over the instantaneous distribution. Eq. (17) has been
already obtained in22–24, although it was not explicitly written in terms
of the self-information I . It is important to note that Ssh

� �
is sub-

extensive inΩ (according to Eq. (12), it grows as logðΩÞ), and therefore
can be neglected in the macroscopic limit. Thus, changes in average
self-information can be bounded by the entropy production, that can
in turn be computed or measured in terms of actual energy and
entropy flows (see Eqs. (7) and (8)). However, the result in Eq. (17) is not
yet in a useful form, since the average Ih i does not depend only on
I ðnÞ, the unknown quantity we are interested in, but also on the
instantaneous distribution Pt(n), that is also typically unknown. This
issue is circumvented in the macroscopic limit, since in that case Pt(x)
is strongly localised around the deterministic values xt, and therefore
Ih i ’ ΩIssðxtÞ to dominant order in Ω→∞. Thus, in the same limit, Eq.
(17) for the adiabatic entropy production rate _Σa reduces to

_σaðxtÞ= _σðxtÞ+ kb dtIssðxtÞ ≥ 0, ð18Þ

where we have defined _σðxtÞ= lim
Ω!1

_Σ=Ω as the scaled macroscopic

limit of the entropy production rate ( _σaðxtÞ is defined in a similar way).
Eq. (18) is amore rigorous version of our central result in Eq. (3), which
is obtained by integrating Eq. (18) along deterministic trajectories
(satisfying Eq. (15)) and multiplying by the scale factor. It is also useful
to write down the first and second laws in the macroscopic limit. The
energy balance in Eq. (6) reduces to

dtϵðxtÞ=uðxtÞ � ∇ϵðxtÞ= _wðxtÞ+ _qðxtÞ, ð19Þ

where the scaled heat and work rates for state x are defined as
_qðxÞ=∑ρ>0iρðxÞQρðxÞ and _wðxÞ=∑ρ>0iρðxÞW ρðxÞ, respectively.
Finally, again neglecting the sub-extensive Shannon contribution
Ssh
� �

, the second law in Eq. (7) reduces to

_σðxtÞ= � _qðxtÞ=T +dtsðxtÞ

= kb ∑
ρ>0

ðωρðxtÞ � ω�ρðxtÞÞ log
ωρðxtÞ
ω�ρðxtÞ

≥ 0:
ð20Þ

Linear response regime
We will now show that to first order in the work contributions Wρ(x)
the inequality in Eq. (18) is saturated. In first place we rewrite Eq. (18)
using the macroscopic first and second laws in Eqs. (19) and (20):

_σaðxtÞ=kb =uðxtÞ � ∇ðIssðxÞ � βϕðxÞÞ ∣x =xt
+β _wðxtÞ, ð21Þ

where we also used ϕ(x) = ϵ(x) − Ts(x) and that dtF(xt) =u(xt) ⋅ ∇ F(xt)
for any function F(x). Secondly, we note that in detailed-balanced
settings (i.e., if Wρ(x) = 0∀ ρ, x) the steady state rate function is just
Iss(x) = βϕ(x) (up to a constant), in accordance to theGibbsdistribution
(this follows from Eqs. (14) and (16)). Thus, the difference g(x) ≡ Iss(x) −
βϕ(x) appearing in Eq. (18) quantifies the deviations from thermal
equilibrium. Expanding Eq. (16) to first order in Wρ(x) and g(x), it can
be shown that

uð0ÞðxÞ � ∇gðxÞ= �β _wð0ÞðxÞ+O W 2
ρ

� �
, ð22Þ

where uð0ÞðxÞ=∑ρ >0i
ð0Þ
ρ ðxÞΔρ and _wð0ÞðxÞ=∑ρ>0i

ð0Þ
ρ ðxÞW ρðxÞ are the

lowest-order deterministic drift and work rate, respectively17. These
are defined in terms of the detailed-balanced deterministic currents
ið0Þρ ðxÞ=ωð0Þ

ρ ðxÞ � ωð0Þ
�ρðxÞ constructed from the scaled transition rates

evaluated atWρ(x) = 0 that, according to the LDBconditions of Eq. (14),

satisfy logðωð0Þ
ρ ðxÞ=ωð0Þ

�ρðxÞÞ= � βΔρ � ∇ϕðxÞ. Comparing the result of
Eq. (22)with Eq. (21), we see that _Σa =0 to linearorder inWρ(x). Then, in
the linear response regime we can write:

IssðxtÞ � Issðx0Þ ’ �
Z t

0
dt0 _σð0Þðxt 0 Þ=kb

=β ϕðxtÞ � ϕðx0Þ �
Z t

0
dt0 _wð0Þðxt0 Þ

	 

:

ð23Þ

where the integration is performed along trajectories solving the
detailed-balanced deterministic dynamics dtxt = u(0)(xt).

Example: an electronic memory
In order to illustrate our results we will consider the model of a low-
power CMOS memory cell developed in35,36, that we review in the
Supplementary Note 1. This model involves two CMOS inverters con-
nected in a loop, and each inverter is composed of two MOS transis-
tors. There are two degrees of freedom: voltages v1 and v2, that can
take values spaced by the elementary voltage ve = qe/C, where qe is the
positive electron charge and C is a value of capacitance that increases
with the scale of the MOS transistors. Thus, in this context the scale
parameter canbe taken tobeΩ =VT/ve, whereVT = kbT/qe is the thermal
voltage. In the following all voltages will be expressed in units of VT.
Figure 1 shows a typical steady state distribution in the bistable phase,
and three different deterministic trajectories. The logical state of the
memory is codified in the sign of the variable x = v1 − v2. The rate
function Iss(x) along the x axis in Fig. 1 can be computed exactly36:

IssðxÞ= x2 + xVdd +
2n
n+ 2

Lðx, VddÞ � Lðx,� VddÞ
� �

, ð24Þ

where Vdd is the powering voltage that takes the memory out of
thermal equilibrium, Lðx,VddÞ=Li2 � expðVdd + xð1 + 2=nÞÞ

� �
, and Li2( ⋅ )

is thepolylogarithm functionof secondorder. Also, n ≥ 1 is a parameter
that characterizes the transistors (the slope factor), and that will be
fixed to n = 1 in the following. In the Supplementary Note 1 we show
that the rate function in Eq. (24) provides an essentially exact
description of the steady state distribution for scale parameters as low
as Ω = 10 (i.e., states with at most tens of electrons are appreciably
populated). Thus, sub-extensive contributions to the self-information
can be safely neglected in this case, even away from the strict
macroscopic limit.

In Fig. 2a we show that there is a non-equilibrium transition froma
monostable phase into the bistable phase that allows the storage of a

Fig. 1 | Steady state and deterministic trajectories for the CMOSmemory. Exact
steady state distribution for Vdd = 1.4 and ve =0.1. The orange, cyan and grey lines
show three deterministic trajectories for the same parameters and different initial
conditions, with the arrows indicating the direction of motion.
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bit of information, occurring at the critical powering voltage
V *

dd = lnð2Þ. We also compare the exact rate function in Eq. (24) with
the linear response approximation obtained from Eq. (23) for different
powering voltages. Remarkably, despite it is only expected to be valid
close to equilibrium, the linear response approximation captures the
transition to bistability and continues to be a reasonable approxima-
tion well into the bistable phase. The reason is that in this case the
second order non-equilibrium correction vanishes (as can be checked
by expanding Eq. (24) in Vdd), and therefore the linear response
approximation is actually valid up to order V3

dd.
In Fig. 2b the exact rate function Iss(xt) along a deterministic tra-

jectory xt is compared with the lower bound Issðx0Þ �
R t
0 dt

0 _σðxt 0 Þ=kb,
for two different trajectories starting at x0 = 2 and x0 = 4, with y0 = 0 in
both cases (as shown in Fig. 1, deterministic trajectories initialized in
the x axis remain in it). In both cases the trajectory xt approaches the
fixed point x*≃Vdd = 3. We see that Issðx0Þ �

R t
0 dt

0 _σðxt 0 Þ=kb is indeed a
lower bound to Iss(xt), in accordancewith Eq. (18). Note that this bound
diverges when the trajectory approaches the fixed point x*. The reason
is that once xt≃ x*, the entropy production

R t
0 dt

0 _σðxt0 Þ just con-
tinuously integrates the steady state heat dissipation rate � _qðx*Þ (see
Eq. (20)). The linear response approximation avoids this issue since the
lowest-order work rate _wð0ÞðxÞ vanishes at the equilibrium fixed point
(see Eq. (23)). The divergence can be also avoided by the coarse-
grainingprocedurediscussed in thenext section. Alternatively, Eq. (18)
canbe considered anupper bound to I(x0) for afixed final point xt. This

is shown in Fig. 2c, for final points xt = x* ± 2δ, where δ = 1=
ffiffiffiffiffiffiffi
2Ω

p
esti-

mates the variance of the fluctuations around the fixed point.
The fact that in Fig. 2b, c the bounds are much tighter to one side

of the fixed point than the other can be traced back to the different
speeds at which the fixed point is approached. To show this, in Fig. 3
we have plotted the entropy production rate _σ and the speed ∣dx/dt∣ as
a function of x for Vdd = 3. In Fig. 3a we see that _σ is minimized close to
thedeterministicfixedpoints (this is a design featureof CMOSdevices,
in order to minimize the static power consumption, which is however
not zero). Also, we see that _σ is actually lower to the left of the fixed
point at x≃ 3 than to the right. However, in Fig. 3b we see that the
speed dx/dt at which the fixed point is approached is also lower to the
left side, resulting in a larger total entropy productionR t
0 dt

0 _σðxt0 Þ=
R xt
x0

dx _σðxÞ=ðdx=dtÞ, and a looser bound in Fig. 2b, c.

Tightening the bound
Ourmain result in Eq. (18) allows toobtain information about the steady
state fluctuations by just measuring the physical entropy production
along deterministic trajectories. However, if we consider the mathe-
matical problem of bounding the steady state fluctuations given the
transition rates λρ(n), then the full power of our result is achieved by
considering a ‘coarse-grained’ entropy production that is in general a
lower bound to the actual physical one, as we now explain. In first place
we notice that different sets of transition rates {λρ(n)} might lead to the
samemaster equation (Eq. (5)) and consequently the same steady state
and emerging deterministic dynamics (Eq. (15)), while giving rise to
different entropy production rates (Eq. (7)). This is due to the fact that
the entropy production depends on how a given stochastic dynamics is
split into thermodynamically distinct processes, each of them satisfying
a different LDB condition. In particular, the entropy production is not
invariant under coarse-graining of the transition rates23,37. Specifically,
consider that we lump together all transitions going from state n to
state n+ ~Δρ into a single transition with rate

~λρðnÞ � ∑
ρ=Δρ = ~Δρ

λρðnÞ: ð25Þ

In this way, the jump vectors f~Δρg associated to the coarse-grained
rates ~λρðnÞ are all distinct (~Δρ ≠ ~Δρ0 if ρ≠ρ0). It is easy to check that rates
f ~λρðnÞg and {λρ(n)} lead to the same master equation. However, the
entropy production rate _Π corresponding to the rates f ~λρðnÞg is always
a lower bound of the original one23:

_Π=
kb

2
∑
ρ,n

ð~jρðnÞ �~j�ρðn + ~ΔρÞÞ log
~jρðnÞ

~j�ρðn + ~ΔρÞ
≤ _Σ ð26Þ

Fig. 2 | Rate function of the CMOS memory. a Rate function Iss(x) for different
values of the powering voltage Vdd. We also compare Iss(x) with the linear response
approximation obtained from Eq. (23) for Vdd = 1.2. b Illustration of the bound to
I(xt) in Eq. (18) for two different deterministic trajectories starting at x0 = 2 and
x0 = 4 (Vdd = 3). c Bound to Iss(x0) for a fixed xt according to Eq. (18), for xt = x* ± 2δ
(δ = 1=

ffiffiffiffiffiffiffi
2Ω

p
, Ω = 10, and Vdd = 3).

Fig. 3 | Entropy production rate and speed along deterministic trajectories.
a Deterministic entropy production rate _σ, and (b) deterministic speed ∣dx/dt∣ as a
function of x for Vdd = 3 (see the Supplementary Note 1 for the definition of the
timescale τ).
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An important property of _Π is that, whenever the emerging determi-
nistic dynamics has fixed point attractors, its macroscopic version
_πðxtÞ � limΩ!1 _Π=Ω=∑ρ >0ð~ωρðxtÞ � ~ω�ρðxtÞÞ logð~ωρðxtÞ=~ω�ρðxtÞÞ
vanishes at the fixed points (see the Supplementary Note 2 for a
detailed discussion). Thus, the bound obtained using the entropy
production rate _π is free from the divergence as the fixed point is
approached. In the case of the CMOS memory, this is shown in Fig. 4
for the two trajectories along the x axis of Fig. 1. We see that not only
the divergence is avoided, but that the bound matches the exact rate
function (see below).

In analogy with Eq. (14), whenever the log-ratio ~σρðxÞ �
logð~ωρðxÞ=~ω�ρðxÞÞ of the scaled coarse-grained rates can be expressed
as the gradient of a state function �~ϕðxÞ along the direction ~Δρ, the
steady state rate function will be just IssðxÞ= ~ϕðxÞ (up to a constant). In
that case, the system can be considered to be at equilibrium at the
coarse-grained level. Under some conditions, one can easily test if
~σρðxÞ derives from a gradient by just checking if the generalized curl
f ρ,ρ0 ðxÞ � ∂xρ ~σρ0 ðxÞ � ∂xρ0

~σρðxÞ vanishes for all ρ, ρ0, and x (see the
Supplementary Note 2). If that is the case, then the bound in Eq. (18) in
terms of the entropy production rate _π is saturated, and one can fully
reconstruct the steady-state rate function in terms of the deterministic
dynamics.

In the CMOS memory the state space is two dimensional and
therefore there is a single curl component f(x), or vorticity. In Fig. 5 we
show the vorticity f(x) for the same parameters as in Fig. 1. We see that
the model is genuinely non-equilibrium even at the coarse-grained
level. However, we also see that the vorticity vanishes at the x and y
axes, which explains why the bound in Fig. 4 matches the exact rate
function. Finally, we study how the bound in terms of the coarse-
grained entropy production rate _π performs for the gray trajectory in
Figs. 1 and 5, that starts in and goes through areas of non-vanishing

vorticity, and thus genuinely out of equilibrium. Since in this case we
do not have the exact rate function to compare with, we compare the
boundwith the estimation of the rate function IestðxÞ= �logðPssðxÞÞ=Ω
obtained from the exact steady state distribution. Iest(x) is only defined
for the discrete set of voltages v1 and v2 that are a multiple of the
elementary voltage ve, and in the comparison we choose the closest
values of v1 and v2 to the continuous deterministic trajectory xt,
obtaining a stepwise function. The results are shown in Fig. 6. We see
that even in this case our bound provides an accurate approximation
of the probability distribution. This shows that the emergent second
law in terms of the coarse-grained entropy production has the
potential to offer a deterministic alternative to Gillespie simulations
and spectral methods. As an example, we provide in the Supplemen-
tary Note 3 a full reconstruction of the steady state distribution of the
CMOS memory.

It is important to note that the bound given by the emergent
second law in terms of the mathematical entropy production in Eq.
(26) can be applied to any Markov jump process displaying a macro-
scopic limit, irrespective ofwhether it represents a thermodynamically
consistent stochastic dynamics or not (the only restriction is that for
each jump the reverse jump should also be possible). For example, our
results can be relevant in stochastic population38,39 or gene
expression40,41 models.

Discussion
For systems accepting a description in terms of Markov jump pro-
cesses, our results unveil a fundamental connection between the
deterministic dynamics that emerges in a macroscopic limit and the
non-equilibrium fluctuations at steady state. This is given by an
inequality that can be interpreted as an emergent second law. In fact,
it is a tighter version of the usual second law, that is saturated in the
linear response regime. As shown in the Supplementary Note 4, the
emergent second law can be alternatively understood as a general-
ized fluctuation-dissipation relation. The practical value of our result
lies in the fact that the probability of non-equilibrium fluctuations is
hard to evaluate, while the deterministic dynamics is directly given
by standard methods. The corresponding linear response theory,
working at the level of the rate function, was shown in17 to be highly
accurate in some model systems, with a regime of validity beyond
that of usual linear response theories. Our result can also be
employed in combination with numerical or experimental approa-
ches: once normal or moderately rare fluctuations have been sam-
pled and characterized, Eq. (3) can be used to bound the probability
of very rare fluctuations, that otherwise would require extremely
long simulation times. In addition, the refinement of our result by a
coarse-graining procedure leads to novel numerical techniques to
compute non-equilibrium distributions, that only rely on the deter-
ministic dynamics and thus offer an alternative to stochastic simu-
lations or spectral methods.

Fig. 4 | Coarse-grainedbound for the CMOSmemory. Illustration of the bound to
I(xt) from Eq. (18) in terms of the entropy production rate _π for the cyan andorange
trajectories in Fig. 1, starting respectively at x0 = 0.2 and x0 = 2.6 (Vdd = 1.4).

Fig. 5 | Vorticity and deterministic trajectories. Vorticity f(x) of the vector field
with components ~σρðxÞ � logð~ωρðxÞ=~ω�ρðxÞÞ, ρ = 1, 2, for the CMOSmemorymodel
(Vdd = 1.4 and ve =0.1, as in Fig. 1). Theorange, cyan and grey lines correspond to the
same deterministic trajectories of deterministic trajectories of Fig. 1.

Fig. 6 | Coarse-grained bound for non-zero vorticity. Comparison of the upper
bound to Iss(x0) in terms of the coarse-grained entropy production rate _π for the
points in the gray trajectory in Figs. 1 and 5 with the function IestðxÞ= � logðPssðxÞÞ=Ω
obtained from the exact steady state distribution.
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As a final comment, we note that the extensivity assumptions
defining the macroscopic limit we have considered are a very natural
extension of the usual notion of extensivity in equilibrium thermo-
dynamics. The only additional requirements, besides the extensivity of
the free energy associated to each state, are the extensivity of the jump
rates between different states, and the intensivity of the work con-
tributions. These natural requirements lead to an extensive non-
equilibrium self-information, whose dominant contribution is con-
strained by our emergent second law, and that at equilibrium reduces
to the regular extensive free energy.

Methods
As explained in the main text, the emergent second law can be
obtained from the fact that the adiabatic contribution to the entropy
production rate is positive. The proof of this fact can be found in the
mentioned references. The details of the model in the example are
given in the Supplementary Note 1. The properties of the coarse
grained entropy production are discussed in the Supplementary
Note 2. In the Supplementary Note 3 we show how the emergent
second law can provide an alternative to stochastic simulations or
spectral methods. Finally, in the Supplementary Note 4 we make
explicit the connectionbetween the emergent second lawderivedhere
and fluctuation-dissipation relations.

Data availability
All the data shown in the figures can be easily reproduced from the
given information, and is also available at the Git repository https://
github.com/nfreitas/emergent-second-law.git.

Code availability
The scripts used to generate the data shown in theplots are available at
the Git repository: https://github.com/nfreitas/emergent-second-
law.git.
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