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Abstract: Microbial siderophores are multidentate Fe(III) chelators used by microbes during
siderophore-mediated assimilation. They possess high affinity and selectivity for Fe(III). Among
them, marine siderophore-mediated microbial iron uptake allows marine microbes to proliferate and
survive in the iron-deficient marine environments. Due to their unique iron(III)-chelating properties,
delivery system, structural diversity, and therapeutic potential, marine microbial siderophores have
great potential for further development of various drug conjugates for antibiotic-resistant bacteria
therapy or as a target for inhibiting siderophore virulence factors to develop novel broad-spectrum
antibiotics. This review covers siderophores derived from marine microbes.
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1. Introduction

Marine microbial community diversity and chemodiversity lead to the generation of numerous
biological secondary metabolites. These compounds increase the chances of finding valuable drug
candidates [1–3]. Marine siderophores are a type of low molecular weight natural products, the
functions of which are to facilitate the microbial acquisition of iron in the ocean environment [4–6].
Marine microbes typically require micromolar levels of iron for their growth, yet the concentration
of iron in the surface water of the world ocean is only 0.01–2 nM [7]. In order to overcome this
lack of iron, marine microbes have evolved siderophore-mediated delivery system to obtain iron.
Siderophores coordinated to insoluble Fe(III) are first transported into microbial cells by membrane
bound iron-siderophore receptors. Afterwards, iron is then released from siderophores, typical via
reduction of Fe(III) to Fe(II) by microbe-mediated redox processes [8–10]. Based on the efficient
siderophore-mediated iron acquisition mechanisms, marine siderophores may be developed as novel
antimicrobials by covalently attaching clinical antibiotics to marine siderophores or novel iron chelator
desferals [11–14]. Furthermore, marine siderophores have also exhibited various non-classical biological
functions, for example, as agents which may interfere with quorum sensing regulation and swarming
in bacteria, as mediators of mutualistic interactions, and as secreted signaling molecules regulating
virulence factors of pathogens [15–17]. These wide range of activities exhibited their great potential
in medicine. The present review gives a comprehensive overview of siderophores from marine
microorganisms (Table 1).
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Table 1. List of abbreviations.

Abbreviation Full Name

CAS Chrome azurol sulfonate
ED50 Median effective dose
IC50 Hablalf maximal inhibition concentration

NRPSs Nonribosomal peptide synthetases
HSC N-hydroxy-N-succinylcadaverine
HSDs N-hydroxy-N-succinyl diamines
ArCP Aryl carrier protein

Cy Cyclisation
PCP Peptidyl carrier protein
NIS NRPS-independent siderophore
hLys N6-hydroxy-l-lysine

ahLys N6-acetyl-N6-hydroxy-l-lysine
3-DHS 3-dehydroshikimate

3,4-DHBA 3,4-dihydroxybenzoic acid
2,3-DHBA 2,3-dihydroxybenzoic acid

2. Diversity of Siderophores from Marine Microorganisms

Recently, a large number of siderophores with diverse structures have been discovered in the marine
microorganisms (Table 2). According to their functional groups and hydrophobicity, siderophores
from marine microorganisms are divided into seven types, including hydroxamates (Figure 1),
α-hydroxycarboxylates (Figure 2), catecholates (Figure 3), mixed hydroxamates/α-hydroxycarboxylates
(Figure 4), mixed α-hydroxycarboxylates/catecholates (Figure 5), mixed hydroxamates/catecholates
(Figure 6), and other types of siderophores (Figure 7) [18–21].

2.1. Hydroxamate-Type Siderophores

The distinct characteristic of some acyl peptidic hydroxamate-type siderophores is the presence of
a nonpolar fatty acid tail. Many marine bacteria have been reported to produce large suites of acyl
peptidic hydroxamate siderophores. Marine bacterium Marinobacter sp. DS40M6 produces the suit
of marinobactin siderophores A–F (1–6) and HG (7) [22,23]. The conversion of exogenously added
15N-labeled 1 to the bacterial culture suggests that bacteria produce 7 via the hydrolysis of the acyl
amide bond of 1 rather than as a precursor to the compounds 1–6 or independent production. It is
worth noting that compound 7 can still coordinate Fe(III) via three iron-coordinating moieties, as
these moieties are not affected by deacylation. Marine bacterium Vibrio sp. R-10 is also reported to
produce a suite of amphiphilic siderophores, amphibactins (8–17) [24]. Each amphibactin has the
similar structure, including a peptidic headgroup composed of one serine residue and three ornithine
residues but differs in the saturated, unsaturated, or hydroxylated acyl appendage ranging from C-14
to C-18. They are cell-associated siderophores. This association may play an important role in cell
defense against siderophore diffusion in the marine environments. Moreover, several acyl peptidic
hydroxamate siderophores, moanachelins (18–22) [25] from the marine bacterium, Vibrio sp. Nt1, and
amphibactins U–V (23–24) [26] from two marine bacterial species (Synechococcus sp. PCC 7002 and
Vibrio cyclitrophicus 1F53) have also been identified.

Additionally, several macrocyclic hydroxamate siderophores were discovered in the marine
bacteria, such as alcaligin (25) [27], bisucaberin (26) [28], avaroferrin (27) [29], and putrebactin (28) [30].
Alcaligin (25) could promote Fe(III) uptake in the iron limited cells. It was originally discovered
from Alcaligenes denitrificans isolated from sediments of lake Biwa, Japan [31]. Recently, it was also
obtained from Alcaligenes eutrophus CH34 [27]. Bisucaberin (26) was isolated from marine bacterium
Alteromonas haloplanktis SB-1123 [28]. It could inhibit the growth of both invasive micropapillary
carcinoma and L-1210 leukemia cells with IC50 of 12.7 and 9.7 µM, respectively, and sensitize
tumor cells to macrophage-mediated cytolysis [32]. Studies of ecology showed that the increasing
contents of bisucaberin (26) and acidification enhanced the solubilities and dissolution rates of
ferric hydroxides. This suggested that siderophores generated by marine bacteria could grasp ferric
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hydroxides in aeolian particles to meet the growth of phytoplankton in the ocean environment. Thus,
the production rate of marine siderophores may play a vital role in the survival of phytoplankton
and biogeochemical cycle of iron in the sea environment [33]. As an open form of 26, a linear
dimeric hydroxamate class siderophore, bisucaberin B (29) was isolated from the marine bacterium
Tenacibaculum mesophilum collected in the Republic of Palau [34]. Its ferric ion-chelating activity was
consistent with that of its macrocyclic counterpart 26. Moreover, the siderophore avaroferrin (27) was
recently identified in the marine bacterium Shewanella algae B516 by heterologous expression of deep-sea
sediment metagenomics DNA [29]. It is a macrocyclic heterodimer of N-hydroxy-N-succinyl-putrescine
and N-hydroxy-N-succinyl cadaverine that is shown to inhibit the swarming of Vibrio alginolyticus
B522. Another new cyclic trihydroxamate compound, thalassosamide (30), was isolated from the
marine-derived bacterium Thalassospira profundimaris [35] and showed moderate antibiotic activity
against Escherichia coli and Pseudomonas aeruginosa with the same MIC value of 64µg/mL in vitro. In vivo
antibacterial assays showed thalassosamide (30) could reduce the infection of P. aeruginosa without
toxicity compared with untreated control animals in the murine thigh P. aeruginosa infection model.

New bioactive siderophores, fradiamine A (31) and fradiamine B (32), were isolated from the
Streptomyces fradiae MM456M-mF7 derived from the marine sediments of Calyptogena Community,
Sagami Bay, Japan. They contain two alkyl amines asymmetrically bonded to citrate, rarely observed
in siderophores. These molecules exhibited medium antibiotic activity against Clostridium difficile
BAA-1382 of IC50 values of 32 and 8 µg/mL, respectively. However, their antimicrobial activities were
cancelled dose-dependently under the presence of Fe(III) [36]. A novel albisporachelin siderophore
(33) was obtained from iron-depleted culture broths of marine actinomycete Amycolatopsis albispora
WP1T. The study of iron-chelating ability suggested that its hydroxamate moieties were involved
in iron binding, which was consistent with its structure [37]. Moreover, the variable siderophore
metabolome of the marine actinomycete Salinispora tropica CNB-440 revealed the production of six
known siderophores, desferrioxamine A1, A2, B, D1, D2, and E (34–39), and one novel siderophore
desferrioxamine N (40) [38]. Among these, 36 has been developed as an iron chelator desferal for
treating iron overload in man.
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2.2. α-Hydroxycarboxylates

Vibrioferrin (41) was originally isolated from an enteropathogenic estuarine bacterium, Vibrio
parahaemolyticus. Recently, it was also obtained from Marinobacter species collected from Pacific and
Atlantic Oceans. 41 was considered as one of the weakest iron chelators of known marine siderophores
according to the metal–ligand binding constant for 41–Fe(III) (1024.02(5)). However, 41–Fe(III) complex
was shown to be more sensitive to photolysis than other marine photoactive siderophores, such as
aerobactin, petrobactin, marinobactins, or aquachelins. Taken together, 41 photodegradation may be an
evolutionarily adaptive response by which the marine bacteria share photochemically produced soluble
iron with their algal associates possibly through the exchange with algal-excreted metabolites [39].
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2.3. Catecholates

Structural elucidation revealed the discovery of a novel siderophore, nigribactin (42) derived from
marine bacteria Vibrio nigripulchritudo [40]. It could enhance the expression of spa encoding a major
surface bound virulence factor, Protein A by inducing spa transcription. However, another potent
siderophore, enterobactin failed to affect the expression of Staphylococcus aureus virulence genes. This
suggested the influence of 42 on spa expression might be independent from its siderophore activity.
Vanchrobactin (43) from the marine bacteria Vibrio anguillarum is a dipeptide composed by arginine
and serine residues linked to the 2,3-dihydroxybenzoyl moiety [41–43]. Its catecholate and salicylate
groups are two potential bidentate coordination sites of Fe3+ [44]. The marine bacterium Vibrio sp.
DS40M4 was reported to produce 43, a new triscatechol amide siderophore, trivanchrobactin (44), and
a new related siderophore, divanchrobactin (45) [45]. Among them, 43 and 45 may be derived from
the hydrolysis products of 44. All compounds were found to be non-cytotoxic against P388 murine
leukemia cell lines. In addition, a novel triscatecholate siderophore, turnerbactin (46) was isolated from
the shipworm endosymbiont Teredinibacter turnerae T7901 [46]. It is a trimer of N-(2,3-dihydroxybenzoic
acid)-l-Orn-l-Ser with three monomeric units through the Ser ester linkages. Its structure was similar
to the catecholate siderophore 43. They have a serine backbone, 2,3-dihydroxybenzoic acid functional
moiety, a positively charged, and a hydrophilic spacer amino acid.

Using the chrome azurol sulfonate (CAS) assay-guided isolation, three new siderophores,
dibenarthin (47), streptobactin (48), and tribenarthin (49) were isolated from the marine actinomycete
Streptomyces sp. YM5-799 collected from Hokkaido in north Japan. Among these, the ED50 values of 47
and 48 were 117 µM and 156 µM, slightly stronger than that of the control, deferoxamine mesylate
(ED50 = 195 µM), whereas 49 exhibited a weak binding with Fe(III) (ED50 = 937 µM). These siderophores
might play a key role in the survival of marine-derived Streptomyces sp. YM5-799 under iron-limited
conditions [47]. The marine Penicillium bilaii from Port Huon, Tasmania, Australia was also reported to
produce a rare catechol-type siderophore, pistillarin (50) [48]. It showed potent iron chelation as well
as antioxidant activity (free radical-scavenging activity), and significantly protected DNA against the
damage of hydroxyl radicals generated by the Fenton reaction [49].
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2.4. Mixed Hydroxamates/α-Hydroxycarboxylates 

Many of the marine siderophores are amphiphilic, including a polar head group and a nonpolar 
fatty acid tail, which allow them to form micelles or to be tethered to the bacterial outer cell 
membranes to avoid the problem of fast diffusion of free siderophores without binding to iron [50]. 
A suite of amphiphilic siderophores, loihichelins A–F (51–56), are isolated from marine bacterium 
Halomonas sp. LOB-5 [51]. They are comprised of a hydrophilic headgroup (an octapeptide consisting 
of cyclic N(δ)-hydroxy-D-ornithine, D-serine, dehydroamino-2-butyric acid, L-N(δ)-acetyl-N(δ)-
hydroxyornithine, L-serine, L-glutamine, D-serine, and D-threo-β-hydroxyaspartic acid), and different 
length of fatty acid tail, ranging from decanoic acid to tetradecanoic acid. A curious characteristic of 
the loihichelins is their photoreactivity. However, Halomonas LOB-5 is obtained from sediments 
below a depth of 1714 m, where sunlight would not penetrate. Thus, the photoreactivity of the Fe(III)-
loihichelins may not be mainly responsible for Fe(III) uptake. Halomonas aquamarina DS40M3, 
isolated from the sample of seawater under iron limited and pure culture conditions led to the 
biosynthesis of aquachelin siderophores A–D (57–60), I (61), and J (62) [22,23,52]. Among them, 61 
and 62 were more hydrophilic than 57–60. When H. aquamarina DS40M3 and Marinobacter sp. 
DS40M6 were co-cultured, a novel aquachelin siderophore HG (63) from hydrolysis of acyl 
aquachelins was produced. However, acyl amidase activity of Marinobacter sp. DS40M6 is 
predominantly constrained to the cellular membrane. Thus, the acyl aquachelins within the 
Marinobacter membrane are mainly responsible for aquachelin HG (63) production [29]. An 
amphiphilic siderophore imaqobactin (64) is detected in the arctic marine bacterium Variovorax sp. 
RKJM285 [53]. Its structure has been implicated in the photoreduction of Fe(III) to Fe(II). Reduction 
may occur through a charge transfer from ligand-to-metal leading to the cleavage of 64. Metal-
binding capabilities showed that 64 was capable of forming stable adducts with Fe(III), Ga(III), and 
Al(III). Moreover, 64 also appeared to be reactive with gold, but more studies were required to 
determine whether this was a reductive process. Of particular note, Fe(III)–64 and Ga(III)–64 salts 
showed no antimicrobial activity. However, 64 showed moderate antimicrobial activity against 
Staphylococcus warneri, methicillin-resistant S. aureus, vancomycin-resistant Enterococcus and Proteus 
vulgaris with the IC50 values of 28, 35, 11, and 14 μM, respectively. It may be attributed to the ability 
of 64 to bind Fe(III) or Ga(III), depressing microbial proliferation via cellular iron depletion. 
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2.4. Mixed Hydroxamates/α-Hydroxycarboxylates

Many of the marine siderophores are amphiphilic, including a polar head group and a
nonpolar fatty acid tail, which allow them to form micelles or to be tethered to the bacterial
outer cell membranes to avoid the problem of fast diffusion of free siderophores without binding
to iron [50]. A suite of amphiphilic siderophores, loihichelins A–F (51–56), are isolated from
marine bacterium Halomonas sp. LOB-5 [51]. They are comprised of a hydrophilic headgroup
(an octapeptide consisting of cyclic N(δ)-hydroxy-d-ornithine, d-serine, dehydroamino-2-butyric acid,
l-N(δ)-acetyl-N(δ)-hydroxyornithine, l-serine, l-glutamine, d-serine, and d-threo-β-hydroxyaspartic
acid), and different length of fatty acid tail, ranging from decanoic acid to tetradecanoic acid. A curious
characteristic of the loihichelins is their photoreactivity. However, Halomonas LOB-5 is obtained from
sediments below a depth of 1714 m, where sunlight would not penetrate. Thus, the photoreactivity
of the Fe(III)-loihichelins may not be mainly responsible for Fe(III) uptake. Halomonas aquamarina
DS40M3, isolated from the sample of seawater under iron limited and pure culture conditions led to the
biosynthesis of aquachelin siderophores A–D (57–60), I (61), and J (62) [22,23,52]. Among them, 61 and
62 were more hydrophilic than 57–60. When H. aquamarina DS40M3 and Marinobacter sp. DS40M6
were co-cultured, a novel aquachelin siderophore HG (63) from hydrolysis of acyl aquachelins was
produced. However, acyl amidase activity of Marinobacter sp. DS40M6 is predominantly constrained
to the cellular membrane. Thus, the acyl aquachelins within the Marinobacter membrane are mainly
responsible for aquachelin HG (63) production [29]. An amphiphilic siderophore imaqobactin (64)
is detected in the arctic marine bacterium Variovorax sp. RKJM285 [53]. Its structure has been
implicated in the photoreduction of Fe(III) to Fe(II). Reduction may occur through a charge transfer
from ligand-to-metal leading to the cleavage of 64. Metal-binding capabilities showed that 64 was
capable of forming stable adducts with Fe(III), Ga(III), and Al(III). Moreover, 64 also appeared to
be reactive with gold, but more studies were required to determine whether this was a reductive
process. Of particular note, Fe(III)–64 and Ga(III)–64 salts showed no antimicrobial activity. However,
64 showed moderate antimicrobial activity against Staphylococcus warneri, methicillin-resistant S. aureus,
vancomycin-resistant Enterococcus and Proteus vulgaris with the IC50 values of 28, 35, 11, and 14 µM,
respectively. It may be attributed to the ability of 64 to bind Fe(III) or Ga(III), depressing microbial
proliferation via cellular iron depletion.

The planktonic marine Vibrio sp. DS40M5 was reported to produce a mixed hydroxamates/α-
hydroxycarboxylate siderophore, aerobactin (65) [54]. Subsequently, other marine environmental
strains of Vibrio also were reported to produce 65. It was a shuttle molecule recycled in each cycle
of transport [55]. Recently, three 65-based amphiphilic siderophores, ochrobactins A–C (66–68) were
discovered from the marine proteobacterium Ochrobactrum sp. SP18. They contain a citric backbone, two
lysine residues and different fatty acids. This is the first example of aerobactin-derivative siderophores
with two different fatty acid appendages. The ochrobactin–Fe(III) complexes are photoreactive under
visible sunlight or UV light. Fe(II) is produced by the photoreaction of ochrobactin–Fe(III) [56].
Moreover, three siderophores, synechobactins (69–71) from the marine cyanobacteria Synechococcus sp.
PCC 7002 were identified by a high throughput method which is combined liquid chromatography
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inductively coupled plasma mass spectrometry with high resolution electrospray ionization mass
spectrometry [57].
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Two photoreactive siderophores, petrobactin (72) and petrobactin sulfonate (73), are produced 
by marine bacterium Marinobacter hydrocarbonoclasticus [58–60]. They are composed of a citrate bis-
spermidine skeleton, with two 3,4-dihydroxy-dihydroxybenzoyl groups providing four donor 
groups for Fe(III) binding. Fe(III) complexes with 72 and 73 are photoreactive under visible sunlight, 
regulated by the Fe(III)–citrate moiety. This reaction leads to decarboxylation and reduction of Fe(III) 
to Fe(II). 73 is also the first marine siderophore including a sulfonated 3,4-dihydroxy aromatic ring. 
Alterobactin A (74) and B (75) was originally obtained from Alteromonas luteoviolacea isolated by 
oligotrophic and coastal waters. Alterobactin A (74) showed an exceptionally high affinity for Fe(III) 
[61,62]. It contains two unusual amino acids: (3R,4S)-4,8-diamino-3-hydroxyoctanoic acid and L-
threo-β-hydroxyaspartic acid, attaching to a catechol carboxylate. 74–Fe(III) complex is stable in 
solution with little change of absorbance. However, in the absence of coordinated Fe(III), the serine 
ester of 74 will be hydrolyzed to alterobactin B (75) siderophore. New siderophores, 
pseudoalterobactin A (76) and B (77) were obtained from marine bacterium Pseudoalteromonas sp. 
KP20-4 isolated from the Republic of Palau [63]. They contain a catechol and two β-hydroxy-Asp 
residues. Pseudoalterobactins showed strong activity by a CAS assay, which was comparable to that 
of desferrioxamine B and enterobactin. Both 76 and 77 exhibited ED50 value of 20 μM (the reduction 
of the absorbance at 630 nm of the CAS solution by 50%), while desferrioxamine B and enterobactin 
showed ED50 values of 500 μM and 60 μM under the same conditions, respectively.  
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2.5. Mixed α-Hydroxycarboxylates/Catecholates

Two photoreactive siderophores, petrobactin (72) and petrobactin sulfonate (73), are produced
by marine bacterium Marinobacter hydrocarbonoclasticus [58–60]. They are composed of a citrate
bis-spermidine skeleton, with two 3,4-dihydroxy-dihydroxybenzoyl groups providing four donor
groups for Fe(III) binding. Fe(III) complexes with 72 and 73 are photoreactive under visible sunlight,
regulated by the Fe(III)–citrate moiety. This reaction leads to decarboxylation and reduction of
Fe(III) to Fe(II). 73 is also the first marine siderophore including a sulfonated 3,4-dihydroxy aromatic
ring. Alterobactin A (74) and B (75) was originally obtained from Alteromonas luteoviolacea isolated
by oligotrophic and coastal waters. Alterobactin A (74) showed an exceptionally high affinity for
Fe(III) [61,62]. It contains two unusual amino acids: (3R,4S)-4,8-diamino-3-hydroxyoctanoic acid and
l-threo-β-hydroxyaspartic acid, attaching to a catechol carboxylate. 74–Fe(III) complex is stable in
solution with little change of absorbance. However, in the absence of coordinated Fe(III), the serine
ester of 74 will be hydrolyzed to alterobactin B (75) siderophore. New siderophores, pseudoalterobactin
A (76) and B (77) were obtained from marine bacterium Pseudoalteromonas sp. KP20-4 isolated from the
Republic of Palau [63]. They contain a catechol and two β-hydroxy-Asp residues. Pseudoalterobactins
showed strong activity by a CAS assay, which was comparable to that of desferrioxamine B and
enterobactin. Both 76 and 77 exhibited ED50 value of 20 µM (the reduction of the absorbance at 630 nm
of the CAS solution by 50%), while desferrioxamine B and enterobactin showed ED50 values of 500 µM
and 60 µM under the same conditions, respectively.
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2.6. Mixed Hydroxamates/Catecholates

Three unusual siderophores, lystabactins A–C (78–80), were obtained from the marine bacterium
Pseudoalteromonas sp. S2B [64]. In order to further determine their stability by chelating Fe(III), the
pFe scale was used to compare with the iron-binding stability of siderophores. pFe was the negative
logarithm of aqueous, free Fe(III) at fixed concentrations of siderophore, Fe(III), and acidification
(pH). The tighter a given siderophore bound Fe(III), the higher the pFe. The pFe of compounds
78 and 79 were calculated to be 26.0 and 27.5, respectively. This suggested that their stability of
iron-binding was stronger than the tris-hydroxamate siderophore, desferrioxamine B, while weaker
than the tris-catecholate siderophore, enterobactin. Anguibactin (81) siderophore was found in the
marine pathogen V. anguillarum or Vibrio sp. DS40M4 [42,45]. It was evaluated cytotoxic effects on the
P388 murine leukemia cell lines and was shown to be cytotoxic (IC50 < 15 µM). It was also identified as
an important virulence factor.
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Besides, several other types of siderophores were also discovered in the marine microorganisms. 
A novel siderophore, piscibactin (82), was isolated from the marine fish pathogens Photobacterium 
damselae subsp. piscicida and V. anguillarum. The inactivation of piscibactin system would lead to a 
severe loss of the virulence degree. Therefore, piscibactin had a great impact in the expression of 
virulence, the ability to piscibactin seemed to be sufficient to confer maximal virulence to pathogens 
[65–67]. Two new oxazole–thiazole siderophore compounds, tetroazolemycins A (83) and B (84), were 
isolated from marine Streptomyces olivaceus FXJ8.012 [68]. Their heavy metal ion-binding ability was 
evaluated by Cu2+, Zn2+, Fe3+, Pb2+, Cr3+, and Mn2+. The results indicated that 82 and 83 had affinity for 
Cu2+, Zn2+, and Fe3+ but not affinity for Pb2+, Cr3+, and Mn2+. Further studies showed the free-state 
tetroazolemycins did not show antimicrobial activity. Their metal ion complexes were also inactive 
against pathogens E. coli, S. aureus, Mycobacterium gilvum, Bacillus subtilis, P. aeruginosa, Candida 
pseudorugosa, Candida albicans, Rhizoctonia solani, Aspergillus fumigatus, and Fusarium oxysporum, 
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2.7. Other Types of Siderophores

Besides, several other types of siderophores were also discovered in the marine microorganisms.
A novel siderophore, piscibactin (82), was isolated from the marine fish pathogens Photobacterium
damselae subsp. piscicida and V. anguillarum. The inactivation of piscibactin system would lead to a severe
loss of the virulence degree. Therefore, piscibactin had a great impact in the expression of virulence, the
ability to piscibactin seemed to be sufficient to confer maximal virulence to pathogens [65–67]. Two new
oxazole–thiazole siderophore compounds, tetroazolemycins A (83) and B (84), were isolated from marine
Streptomyces olivaceus FXJ8.012 [68]. Their heavy metal ion-binding ability was evaluated by Cu2+, Zn2+,
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Fe3+, Pb2+, Cr3+, and Mn2+. The results indicated that 82 and 83 had affinity for Cu2+, Zn2+, and Fe3+

but not affinity for Pb2+, Cr3+, and Mn2+. Further studies showed the free-state tetroazolemycins did
not show antimicrobial activity. Their metal ion complexes were also inactive against pathogens E. coli,
S. aureus, Mycobacterium gilvum, Bacillus subtilis, P. aeruginosa, Candida pseudorugosa, Candida albicans,
Rhizoctonia solani, Aspergillus fumigatus, and Fusarium oxysporum, inactive against A/H1N1 influenza
virus, and inactive against human lung adenocarcinoma cell line A549 and murine macrophage cell line
P388D. However, their Zn2+ complexes showed weakly activity against pathogenic Klebsiella pneumoniae
with MICs of 125–250 µg/mL and 125 µg/mL, respectively. Thus, it was speculated that the antimicrobial
activity of oxazole/thiazole siderophores might be closely related to Zn2+.
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3. Biosynthesis of Siderophores from Marine Microorganisms

To date, more than 80 siderophores have been isolated from marine microorganisms, however, only
part of siderophore biosynthetic pathways have been reported. A large number of novel siderophore
biosynthetic pathways still need to be further studied. Therefore, researchers should focus more on the
biosynthesis of siderophores from marine microorganisms to obtain structurally diverse siderophores
as drug candidates.

3.1. NRPS-Mediated Siderophore Biosynthetic Pathway

Recently, it has become apparent that the biosynthesis of siderophores involves covalently tethered
a series of intermediates to the multienzymes throughout the assembly process and is catalyzed
by nonribosomal peptide synthetases (NRPSs). NRPSs are responsible for assembling structurally
complex peptides from small building blocks such as carboxyl or amino acids. Each module is highly
efficient dedicated to the activation, modification, and incorporation of one small building block into
the compound and harbors all key enzymatic activities as specialized domains to catalyze the single
chemical reaction (Table 3). The de novo study of biosynthesis showed EnzA–D (NRPSs) were mainly
responsible for the biosynthesis of siderophores, bisucaberin B (29) and bisucaberin (26) (Scheme 1).
EnzA and EnzB catalyzed the biosynthesis of intermediates from L-lysine to cadaverine, and cadaverine
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to N-hydroxy-cadaverine, respectively. EnzC activated the acylation of N-hydroxy-cadaverine with
succinyl-CoA to produce N-hydroxy-N-succinylcadaverine (HSC) monomer. EnzD as the last step
noncovalently bound to HSC and ATP to catalyze the oligomerization–macrocyclization reaction of
HSC to form 29 or 26. Firstly, a HSC molecule and ATP noncovalently bound to the active site of
EnzD. A second molecule of HSC also noncovalently bound to EnzD, which dissociated from the active
site of EnzD. The activated carboxyl group of the first molecule of HSC underwent a base-promoted
addition–elimination reaction with the protonated amino group of the second molecule of HSC to yield
the linear dimer 29. The activated carboxyl group and protonated amino group of 29 could further
undergo an intramolecular base-promoted condensation to generate 26 [34,69,70]. In the biosynthetic
network of 27, it exhibits the similar scheme of biosynthesis with 26 and 29. Firstly, MbsA–C catalyze
successive reactions, resulting in ornithine and lysine to the N-hydroxy-N-succinyl diamines (HSDs).
MbsD then utilizes both N-hydroxy-N-succinyl-putrescine and N-hydroxy-N-succinyl cadaverine as
immediate precursors and catalyzes both the oligomerization and final macrocyclization, leading to
the biosynthesis of 27.
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Scheme 1. The proposed biosynthesis of bisucaberin B (29) and bisucaberin (26).

Vibrioferrin (41) is synthesized by five biosynthetic enzymes PvsA-E (NRPSs). The biosynthetic
pathway starting with enzyme PvsE. PvsE has a highly homologous with 2,6-diaminopimerate
decarboxylase, indicating PvsE catalyzes decarboxylation from serine to ethanolamine. PvsB and PvsD
form amide bond between L-alanine and 2-ketoglutaric acid, or pentanoic acid and ethanolamine. PvsA
is perceived to form an ester bond between ethanolamine and citrate. The final product vibrioferrin
(41) is secreted by PvsC which is most likely to be a transporter involved in secreting the product from
the cell [71].

The biosynthetic and regulatory elements of vanchrobactin (43) in marine bacteria V. anguillarum
has been completely elucidated [42–44]. It proceeds through a NRPS-mediated pathway encoded by
chromosomal genes to produce 43 (Scheme 2). VabB and VabE–F have been identified as three NRPSs.
Isochorismate synthase (VabC) first started with the conversion of chorismate into isochorismate.
Isochorismatase (VabB) and 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (VabA) then catalyzed
the biosynthesis of intermediates from isochorismate to 2,3-dihydro-2,3-dihydroxybenzoic acid
(2,3-dihydro-2,3-DHBA), and (2,3-dihydro-2,3-DHBA) respectively to 2,3-DHBA. Once 2,3-DHBA
was synthesized, VabE (NRPS) activated 2,3-DHBA to its acyl-adenylated intermediate in an
ATP-dependent manner, and then VabE (NRPS)transferred this activated intermediate to VabB.
VabB further bound with 2,3-DHBA through its ACP domain. VabF (NRPS) was involved in
the last steps of 43 assembly. It was composed of two modules, including C-A1-PCP domain
(condensation-adenylation-peptidyl-carrier-protein) in the N-terminal, and C-A2-PCP-TE domain
(condensation-adenylation-peptidyl-carrier-protein-thioesterase) in the C-terminal. VabF A1 domain
activated an arginine residue, and synthesized 2,3-dihydroxybenzoyl-arginine precursor through its
PCP domain. VabF A2 domain activated a serine residue. The TE domain as the last domain was to
release 43 into solution.
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Mechanism of anguibactin (81) biosynthesis has been characterized in V. anguillarum (Scheme 3) [72].
A series of NRPSs are involved in V. anguillarum anguibactin (81) biosynthesis, such as AngB, AngD,
AngE, AngM, AngN, and AngR. VabD and VabE are functional homologues of AngD and AngE,
respectively. Each protein provides important functional domain(s) for anguibactin (81) biosynthesis.
The adenylation (A) domains of VabE or likely of AngE activate 2,3-DHBA into 2,3-DHBA-AMP [73,74].
An aryl carrier protein (ArCP) domain of the C-terminal region of AngB is responsible for tethering
2,3-DHBA-AMP. The adenylation (A) domain of AngR is likely related to the activation of cysteine.
It is worth noting that cyclisation (Cy) and peptidyl carrier protein (PCP) domains of AngR are not
functional due to the replacement of the first aspartic acid by asparagine in the Cy domain, and the
replacement of an essential serine by alanine in the PCP domain [75,76]. AngD or VabD is responsible
for transferring the phosphopantetheinyl moiety to serine residues located in the ArCP domain of
AngB and PCP domain of AngM, making them become active forms [74,77]. The PCP domain of AngM
is used to tether the activated cysteine, and its C domain is likely to catalyze peptide bond formation
between cysteine from AngM and 2,3-DHBA from AngB. AngN contains two Cy domains, Cy1 and
Cy2 that could condense and cyclize 2,3-DHBA and cysteine to produce thiazoline [78,79]. The C
domain of AngM could attach N-hydroxyhistamine to the dihydroxyphenyl–thiazoline–thioester to
form anguibactin (81). AngT as the last step is to release anguibactin (81) from AngM [72].
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Irp1-5 of Photobacterium damselae subsp. piscicida are mainly involved in the biosynthesis of
siderophore piscibactin (82) (Scheme 4) [65,80]. Firstly, Irp5 (salicylate-activating enzyme) initiates
piscibactin assembly, and then transfers the activated salicylate to aryl carrier protein domain
of Irp2 (Iron-regulated protein 2). The ArCP domain of Irp2 is specific for cysteine activation.
The activated cysteine is transferred to PCP1 and PCP2 simultaneously. Then, Irp2 catalyzes the
continuous addition and cyclization of every cycle to form two thiazoline rings connected to a
salicylate portion. Irp1 (PKS/NRPS multifunctional enzyme) is composed of 11 domains including a
carboxyl-terminated thioesterase domain and three elongation modules. The ketosynthase domain in
Irp1 loads a malonyl group which is linked to the ACP domain. The PCP3 domain of Irp1 catalyzes the
condensation/heterocyclization of methyl-cysteine. Irp4 (thioesterase) hydrolyzes the thioester linkage.
The final maturation of piscibactin (82) must be accomplished by Irp3 (reductase) which reduces the
middle thiazoline ring to the thiazolidine.
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3.2. NRPS-Independent Siderophore Biosynthetic Pathway

NRPS-independent siderophore (NIS) synthetases are an emerging member of the family of new
synthetases. They do not have the sequence or structural similarity to NRPSs. However, they also
play an important role in the biosynthesis of siderophores. Many structurally diverse siderophores
are biosynthesized by NIS synthetases (Table 3). NIS synthetases contain type A, type B, and type C
based on sequence similarity criteria. Type A enzymes catalyze the condensation of amines or alcohols
with a prochiral carboxyl group of citric acid. Type B enzymes catalyze the condensation of amines
with γ-carboxyl group of α-ketoglutarate. Type C enzymes catalyze either the oligomerization and
macrocyclisation of ω-amino-carboxylic acids, or an amine or alcohol with a monoamide derivative of
citric acid. By selective gene knockout and reconstruction of iuc genes, aerobactin (65) biosynthetic
pathway was deciphered. IucA–D are responsible for the biosynthesis of 65 (Scheme 5). They are
highly stereoselective. IucB is confirmed to its l-lysine N6 monooxygenase activity [81]. Similarly,
IucD is also confirmed to its N6-hydroxy-l-lysine (hLys) acetyltransferase activity [82]. IucB and
IucD respectively catalyze the biosynthesis of intermediates from l-lysine to hLys, and hLys to
N6-acetyl-N6-hydroxy-l-lysine (ahLys). IucA and IucC represent the archetypal Type A and Type
C NIS synthetases, respectively [83]. IucA catalyzes the carboxymethyl group of citric acid to form
a citryl-adenylate intermediate via the activation of ATP. IucC then consumes 3S,2’S-citryl-ahLys
intermediate in a relatively modest catalytic efficiency to synthesize 65.



Mar. Drugs 2019, 17, 562 19 of 28
Mar. Drugs 2019, 17  19 of 4 

 

 
Scheme 5. The proposed biosynthetic pathway of aerobactin (65). 

Based on the NRPS-independent assembly, the biosynthetic scheme of petrobactin (72) is 
developed (Scheme 6). AsbA (type A NIS synthetase) has been demonstrated to catalyze the ATP-
dependent condensation of N8 of spermidine with citric acid to afford N8-citryl-spermidine. Another 
NIS synthetase AsbB (type C NIS synthetase) catalyzes ATP-dependent condensation of N8-citryl-
spermidine or N1-(3,4-dihydroxybenzoyl)-N8-citryl-spermidine with spermidine. AsbF, a 3-
dehydroshikimate (3-DHS) dehydratase, catalyzes the conversion of the bacterial metabolite 3-DHS 
to form 3,4-dihydroxybenzoic acid (3,4-DHBA). AsbC, a NRPS-like adenylating enzyme, is 
responsible for catalyzing the ATP-dependent acylation of phosphopantetheine thiol of AsbD (a 
carrier protein) with 3,4-DHBA. AsbE as an acyltransferase is involved in the 3,4-dihydroxybenzoyl 
group transfer from the carrier protein AsbD to N1 and N8 of spermidine to afford N1-(3,4-
dihydroxybenzoyl)-spermidine and N8-(3,4-dihydroxybenzoyl)-spermidine, respectively, suggesting 
that AsbE has relatively relaxed substrate specificity [60,84,85]. 

 
Scheme 6. The proposed biosynthetic pathway of petrobactin (72). 

4. Synthesis and Study of Siderophores from Marine Microorganisms 

Marine siderophores, as potentially valuable drug candidates, are attracting extensive attention 
of researchers. However, the content of siderophores from marine microbes is very low. Therefore, 
in order to further study their biological activities, mechanisms, absolute configurations, or structure–
activity relationships, chemical syntheses of siderophores would be crucial.  
  

Scheme 5. The proposed biosynthetic pathway of aerobactin (65).

Based on the NRPS-independent assembly, the biosynthetic scheme of petrobactin (72) is
developed (Scheme 6). AsbA (type A NIS synthetase) has been demonstrated to catalyze the
ATP-dependent condensation of N8 of spermidine with citric acid to afford N8-citryl-spermidine.
Another NIS synthetase AsbB (type C NIS synthetase) catalyzes ATP-dependent condensation of
N8-citryl-spermidine or N1-(3,4-dihydroxybenzoyl)-N8-citryl-spermidine with spermidine. AsbF, a
3-dehydroshikimate (3-DHS) dehydratase, catalyzes the conversion of the bacterial metabolite 3-DHS
to form 3,4-dihydroxybenzoic acid (3,4-DHBA). AsbC, a NRPS-like adenylating enzyme, is responsible
for catalyzing the ATP-dependent acylation of phosphopantetheine thiol of AsbD (a carrier protein)
with 3,4-DHBA. AsbE as an acyltransferase is involved in the 3,4-dihydroxybenzoyl group transfer from
the carrier protein AsbD to N1 and N8 of spermidine to afford N1-(3,4-dihydroxybenzoyl)-spermidine
and N8-(3,4-dihydroxybenzoyl)-spermidine, respectively, suggesting that AsbE has relatively relaxed
substrate specificity [60,84,85].
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4. Synthesis and Study of Siderophores from Marine Microorganisms

Marine siderophores, as potentially valuable drug candidates, are attracting extensive attention of
researchers. However, the content of siderophores from marine microbes is very low. Therefore, in order
to further study their biological activities, mechanisms, absolute configurations, or structure–activity
relationships, chemical syntheses of siderophores would be crucial.



Mar. Drugs 2019, 17, 562 20 of 28

4.1. Alcaligin

Alcaligin (25) had similar structural relationship to siderophores bisucaberin (26) and
nocardamine. Bisucaberin (26) could inhibit the growth of both invasive micropapillary carcinoma
and L-1210 leukemia cells with IC50 of 12.7 and 9.7 µM, respectively, and sensitize tumor cells to
macrophage-mediated cytolysis [32]. However, this activity was absent in siderophore nocardamine.
An investigation of the biological properties of 25 is particularly attractive. Therefore, Bergeron R.J.
et al. [86] first performed the total synthesis of alcaligin (25) (Scheme 7). The starting point in the total
synthesis of alcaligin was the regiospecific N-alkylation of ditosylate 1a providing monotosylate 2a.
A second amino group was then coupled to C-1 of 2a by N-alkylation of trifluoroacetamide producing
the diamide 3a. The primary amine 4a was produced by basic cleavage of 3a. Brief exposure of
the N-(tert-butoxycarbonyl)amine 4a to trifluoroacetic acid led to the bis(benzyloxy)putrescine 5a.
Addition of 2-[[(tert-butoxycarbonyl)oxy]imino]-2-phenylacetonitrile to 5a resulted in the benzyloxy
amine 6a. 6a was next acylated with succinic anhydride to generate tert-butoxycarbonyl acid 7a.
Subsequently, the condensation of 5a and 7a to produce the (benzyloxy)amine 8a. The second succinate
unit was coupled with 8a to generate tert-butoxycarbonyl acid 9a and 10a. Macrocyclic tetrabenzyl
alcaligin 11a was obtained under the catalysis of diphenylphosphorazidate. Finally, the benzyl groups
of 11a were removed to obtain alcaligin (25).
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4.2. Vanchrobactin

In the course of the studies into vanchrobactin (43), its stereochemistry could not be elucidated by
spectroscopic analysis. In order to determine the absolute configuration of vanchrobactin (43), Soengas
R.G. et al. [87] performed the total synthesis of vanchrobactin (43) (Scheme 8). 2,3-dihydroxybenzoic
acid (2,3-DHBA) was first protected by benzyl bromide to generate 1b. Subsequent saponification with
barium hydroxide gave 2,3-dibenzyloxybenzoic acid 2b. On the other hand, Nδ-Cbz-d-ornithine-OMe
3b was obtained from the Cbz analogue of d-ornithine copper complex. Coupling of 3b with
2,3-dibenzyloxybenzoic acid 2b gave compound 4b. Deprotection of the benzyl groups in 5b,
introduction of the guanidine functionality to obtain 6b and acidic hydrolysis produced vanchrobactin
(43). Moreover, in order to further deduce structure–activity relationships of vanchrobactin (43), several
43 analogues were also synthesized by a similar strategy of the total synthesis of vanchrobactin (43) [88].
The results suggest the aromatic ring in catecholate siderophores is essential for the binding of the outer
membrane receptors. The lack of stereochemistry of the amino acid scaffold will affect the siderophore
activity in V. anguillarum. Moreover, microbes are not always selective in the use of siderophores, they
can utilize several different siderophores to transport Fe(III) into microbial cells, even siderophores
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with very different structures. The relatively low specificity of siderophore utilization may facilitate
the design of drugs against different pathogens.Mar. Drugs 2019, 17  21 of 4 
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4.3. Petrobactin 

Pandey R.K. et al [89] performed efficient total synthesis of petrobactin (72) via antimony 
triethoxide mediated coupling (Scheme 9). It not only proved the structure of 72, but also provided 
sufficient yield for subsequent use in the therapeutic study. First, the hydroxyl group of N-dibenzyl-
aminoalcohol 1c was mesyl protected to provide compound 2c. Nucleophilic displacement of O-Ms 
with amine 3c yielded 4c. Debenzylation of 4c under H2-Pd/C conditions to yield 5c. On the other 
hand, esterification of 6c under reflux conditions was performed, followed by benzyl protection of 
catechol unit to yield 8c. Ester–amide exchange was performed with amine 5c and acid 8c to produce 
9c. The N-Boc group was removed from 9c to obtain amine 10c. Coupling of 10c and 12c was carried 
out using trimethylamine to yield protected petrobactin 12c. Finally, 12c was debenzylated to yield 
petrobactin (72). Moreover, sidechain-modified petrobactin derivatives were also synthesized for the 
study of iron binding, the results suggest both acylation and alkylation of the spermidine sidechain 
basically do not affect iron binding properties of the siderophore [90]. 
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4.3. Petrobactin

Pandey R.K. et al. [89] performed efficient total synthesis of petrobactin (72) via antimony
triethoxide mediated coupling (Scheme 9). It not only proved the structure of 72, but also
provided sufficient yield for subsequent use in the therapeutic study. First, the hydroxyl group of
N-dibenzyl-aminoalcohol 1c was mesyl protected to provide compound 2c. Nucleophilic displacement
of O-Ms with amine 3c yielded 4c. Debenzylation of 4c under H2-Pd/C conditions to yield 5c. On the
other hand, esterification of 6c under reflux conditions was performed, followed by benzyl protection
of catechol unit to yield 8c. Ester–amide exchange was performed with amine 5c and acid 8c to produce
9c. The N-Boc group was removed from 9c to obtain amine 10c. Coupling of 10c and 12c was carried
out using trimethylamine to yield protected petrobactin 12c. Finally, 12c was debenzylated to yield
petrobactin (72). Moreover, sidechain-modified petrobactin derivatives were also synthesized for the
study of iron binding, the results suggest both acylation and alkylation of the spermidine sidechain
basically do not affect iron binding properties of the siderophore [90].
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4.3. Petrobactin 

Pandey R.K. et al [89] performed efficient total synthesis of petrobactin (72) via antimony 
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with amine 3c yielded 4c. Debenzylation of 4c under H2-Pd/C conditions to yield 5c. On the other 
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5. Conclusions and Perspectives

Siderophores from marine microbes are an important class of secondary metabolites that have
intrigued microbiologists, chemists, and biochemists due to their structural diversity and potential
applications in diseases and medicinal agents. However, with widely stated estimate that less than 1%
marine microbes have been brought culture [91], the great challenge includes the development of new
methods to bring more marine microbes into culture. Moreover, further detailed understanding of
chemical synthesis and biosynthesis of marine siderophores will provide valuable insight for their
study of biological activities, and elucidation of mechanism. In total, marine siderophore research will
continue stimulating a multidisciplinary research effort that will facilitate their potential applications
in medicine and health care.

Table 2. Siderophores from marine microorganisms.

Compd. Name PubChem CID PubChem Database Ref.

1 Marinobactin A – – [22]
2 Marinobactin B – – [22]
3 Marinobactin C – – [22]
4 Marinobactin D – – [22]
5 Marinobactin E – – [22]
6 Marinobactin F – – [22]
7 Marinobactin HG – – [23]
8 Amphibactin – – [24]
9 Amphibactin – – [24]
10 Amphibactin – – [24]
11 Amphibactin – – [24]
12 Amphibactin – – [24]
13 Amphibactin – – [24]
14 Amphibactin – – [24]
15 Amphibactin – – [24]
16 Amphibactin – – [24]
17 Amphibactin – – [24]
18 Moanachelin – – [25]
19 Moanachelin – – [25]
20 Moanachelin – – [25]

21 Moanachelin 122223347 https://pubchem.ncbi.nlm.nih.gov/
compound/122223347 [25]

22 Moanachelin – – [25]
23 Amphibactin U – – [26]
24 Amphibactin V – – [26]
25 Alcaligin – – [27]
26 Bisucaberin – – [28]
27 Avaroferrin – – [29]
28 Putrebactin – – [30]
29 Bisucaberin B – – [34]
30 Thalassosamide – – [35]

31 Fradiamine A 129008905 https://pubchem.ncbi.nlm.nih.gov/
compound/129008905 [36]

32 Fradiamine B 60151746 https://pubchem.ncbi.nlm.nih.gov/
compound/60151746 [36]

33 Albisporachelin – – [37]
34 Desferrioxamine A1 – – [38]
35 Desferrioxamine A2 – – [38]
36 Desferrioxamine B – – [38]
37 Desferrioxamine D1 – – [38]
38 Desferrioxamine D2 – – [38]
39 Desferrioxamine E – – [38]
40 Desferrioxamine N – – [38]

https://pubchem.ncbi.nlm.nih.gov/compound/122223347
https://pubchem.ncbi.nlm.nih.gov/compound/122223347
https://pubchem.ncbi.nlm.nih.gov/compound/129008905
https://pubchem.ncbi.nlm.nih.gov/compound/129008905
https://pubchem.ncbi.nlm.nih.gov/compound/60151746
https://pubchem.ncbi.nlm.nih.gov/compound/60151746
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Table 2. Cont.

Compd. Name PubChem CID PubChem Database Ref.

41 Vibrioferrin 11102119 https://pubchem.ncbi.nlm.nih.gov/
compound/11102119 [39]

42 Nigribactin – – [40]
43 Vanchrobactin – – [45]
44 Trivanchrobactin – – [45]
45 Divanchrobactin – – [45]
46 Turnerbactin [46]
47 Dibenarthin – – [47]
48 Streptobactin – – [47]
49 Tribenarthin – – [47]
50 Pistillarin – – [48]

51 Loihichelin A 101476230 https://pubchem.ncbi.nlm.nih.gov/
compound/101476230 [51]

52 Loihichelin B 101476231 https://pubchem.ncbi.nlm.nih.gov/
compound/101476231 [51]

53 Loihichelin C 101476232 https://pubchem.ncbi.nlm.nih.gov/
compound/101476232 [51]

54 Loihichelin D 101476233 https://pubchem.ncbi.nlm.nih.gov/
compound/101476233 [51]

55 Loihichelin E 101476234 https://pubchem.ncbi.nlm.nih.gov/
compound/101476234 [51]

56 Loihichelin F 101476235 https://pubchem.ncbi.nlm.nih.gov/
compound/101476235 [51]

57 Aquachelin A – – [22]
58 Aquachelin B – – [22]
59 Aquachelin C – – [22]
60 Aquachelin D – – [22]
61 Aquachelin I – – [23]
62 Aquachelin J – – [52]
63 Aquachelin HG – – [29]
64 Imaqobactin – – [53]
65 Aerobactin – – [54]
66 Ochrobactin A – – [56]
67 Ochrobactin B – – [56]
68 Ochrobactin C – – [56]

69 Synechobactin 122377042 https://pubchem.ncbi.nlm.nih.gov/
compound/122377042 [57]

70 Synechobactin 122377043 https://pubchem.ncbi.nlm.nih.gov/
compound/122377043 [57]

71 Synechobactin 122377044 https://pubchem.ncbi.nlm.nih.gov/
compound/122377044 [57]

72 Petrobactin – – [58]
73 Petrobactin sulfonate – – [59]
74 Alterobactin A – – [61]

75 Alterobactin B 101775921 https://pubchem.ncbi.nlm.nih.gov/
compound/101775921 [62]

76 Pseudoalterobactin A 11434714 https://pubchem.ncbi.nlm.nih.gov/
compound/11434714 [63]

77 Pseudoalterobactin B 11788080 https://pubchem.ncbi.nlm.nih.gov/
compound/11788080 [63]

78 Lystabactin A – – [64]
79 Lystabactin B – – [64]
80 Lystabactin C – – [64]
81 Anguibactin – – [42,45]

82 piscibactin 136754132 https://pubchem.ncbi.nlm.nih.gov/
compound/136754132 [65–67]

83 Tetroazolemycin A – – [68]
84 Tetroazolemycin B – – [68]

https://pubchem.ncbi.nlm.nih.gov/compound/11102119
https://pubchem.ncbi.nlm.nih.gov/compound/11102119
https://pubchem.ncbi.nlm.nih.gov/compound/101476230
https://pubchem.ncbi.nlm.nih.gov/compound/101476230
https://pubchem.ncbi.nlm.nih.gov/compound/101476231
https://pubchem.ncbi.nlm.nih.gov/compound/101476231
https://pubchem.ncbi.nlm.nih.gov/compound/101476232
https://pubchem.ncbi.nlm.nih.gov/compound/101476232
https://pubchem.ncbi.nlm.nih.gov/compound/101476233
https://pubchem.ncbi.nlm.nih.gov/compound/101476233
https://pubchem.ncbi.nlm.nih.gov/compound/101476234
https://pubchem.ncbi.nlm.nih.gov/compound/101476234
https://pubchem.ncbi.nlm.nih.gov/compound/101476235
https://pubchem.ncbi.nlm.nih.gov/compound/101476235
https://pubchem.ncbi.nlm.nih.gov/compound/122377042
https://pubchem.ncbi.nlm.nih.gov/compound/122377042
https://pubchem.ncbi.nlm.nih.gov/compound/122377043
https://pubchem.ncbi.nlm.nih.gov/compound/122377043
https://pubchem.ncbi.nlm.nih.gov/compound/122377044
https://pubchem.ncbi.nlm.nih.gov/compound/122377044
https://pubchem.ncbi.nlm.nih.gov/compound/101775921
https://pubchem.ncbi.nlm.nih.gov/compound/101775921
https://pubchem.ncbi.nlm.nih.gov/compound/11434714
https://pubchem.ncbi.nlm.nih.gov/compound/11434714
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https://pubchem.ncbi.nlm.nih.gov/compound/11788080
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Table 3. The EC numbers of enzymes.

Enzymes EC Numbers

EnzA 4.1.1.7
VabC 3.1.22.4
VabD 2.7.8.7
VabF 3.2.1.55

Irp1 2.3.2.27
4.2.1.3

Irp2 2.3.2.27
Irp3 2.3.2.27
Irp4 2.3.2.27

AngB 3.3.2.1
AngE 1.14.14.148
VabD 2.7.8.7
IucA 6.3.2.38
IucC 6.3.2.39
IucD 1.14.13.59
AsbF 4.2.1.118
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