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Introduction: As the molecular features of lung adenocarcinoma (LUAD) have been
evaluated as a cross-sectional study, the course of tumor characteristics has not been
modeled. The temporal evolution of the tumor immune microenvironment (TIME), as well
as the clinico-molecular features of LUAD, could provide a precise strategy for
immunotherapy and surrogate biomarkers for the course of LUAD.

Methods: A pseudotime trajectory was constructed in patients with LUAD from the
Cancer Genome Atlas and non-small cell lung cancer radiogenomics datasets.
Correlation analyses were performed between clinical features and pseudotime. Genes
associated with pseudotime were selected, and gene ontology analysis was performed.
F-18 fluorodeoxyglucose positron emission tomography images of subjects were
collected, and imaging parameters, including standardized uptake value (SUV), were
obtained. Correlation analyses were performed between imaging parameters and
pseudotime. Correlation analyses were performed between the enrichment scores of
various immune cell types and pseudotime. In addition, correlation analyses were
performed between the expression of PD-L1, tumor mutation burden, and pseudotime.

Results: Pseudotime trajectories of LUAD corresponded to clinical stages. Molecular
profiles related to cell division and natural killer cell activity were changed along the
pseudotime. The maximal SUV of LUAD tumors showed a positive correlation with
pseudotime. Type 1 helper T (Th1) cells showed a positive correlation, whereas M2
macrophages showed a negative correlation with pseudotime. PD-L1 expression showed
a negative correlation, whereas tumor mutation burden showed a positive correlation
with pseudotime.
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Conclusion: The estimated pseudotime associated with the stage suggested that it
could reflect the clinico-molecular evolution of LUAD. Specific immune cell types in the
TIME as well as cell division and glucose metabolism were dynamically changed
according to the progression of the pseudotime. As a molecular progression of LUAD,
different cellular targets should be considered for immunotherapy.
Keywords: lung adenocarcinoma, stage, glucosemetabolism, tumor immunemicroenvironment, pseudotime analysis
INTRODUCTION

Lung adenocarcinoma (LUAD) is the most frequent histological
type among lung malignancies (1). The diagnosis and treatment of
LUAD are based on initial evaluation of disease progression. TNM
stage has been recognized as the most basic and critical factor to
evaluate the status of disease (2). In addition, the progression of
lung cancer has been assessed by histological features and imaging
findings as well as staging. Among imaging modalities, 18F-
fluorodeoxyglucose positron emission tomography (FDG PET)
is widely used to evaluate the extent of metastasis and
aggressiveness of tumors (3, 4). However, there is a limitation to
investigating the natural progression of tumors based on
conventional diagnostic information, as pathological staging and
imaging examinations are performed at the timing of initial
diagnosis. Therefore, the biological and molecular progression of
LUAD has hardly been modeled on a continuous scale.

The tumor immune microenvironment (TIME) plays a
crucial role in tumor progression and metastasis. Because of
recent broad-range indications for immune checkpoint
inhibitors, tumor immune profiles in addition to staging have
been suggested for predicting prognosis and considering
appropriate treatment plans (5). Among immune cells, natural
killer (NK) cells and T cells are known to have a role in
antitumor immunity (6, 7). In addition, tumor-associated
macrophages (TAMs) exert various functions in lung cancer by
differentiating into different subtypes: M1 and M2 macrophages,
with M1 macrophages mainly contributing to antitumor activity,
and M2 macrophages mainly contributing to protumor activity
(8). In the clinical aspect, characterization of the TIME is
important to explore therapeutic targets and predict the
response to immunotherapy (9, 10). Therefore, it is important
to investigate the evolution of the TIME during disease
progression. More specifically, recent trends in immunotherapy
suggest a strategy according to the characteristics and the
progression pattern of the TIME (11).

Pseudotime analysis, also called trajectory inference analysis,
is a spotlighted method to explore changes in cell or tissue
characteristics based on transcriptomic expression (12). It
provides a numerical scale to reflect where a cell or tissue is in
the course of disease, other than the TNM staging system.
Although there have been several studies to apply pseudotime
analysis in lung cancer samples, the scopes of those studies were
limited to only single-cell RNA-sequencing (RNA-seq) data from
small numbers of patients (13, 14). Pseudotime analysis in large
numbers of subjects may provide a model to explore the course
of biological progression of lung cancer.
2

In this study, we aimed to reveal the evolution of the TIME
along with the molecular progression of LUAD. Pseudotime
trajectories were estimated in the LUAD cohorts from The
Cancer Genome Atlas (TCGA) and a non-small cell lung
cancer (NSCLC) radiogenomics dataset. Associations between
TIME cell types as well as clinico-molecular features and
pseudotime were analyzed. We expected to find appropriate
targets of the TIME according to the evolution of the TIME
along the pseudotime.
METHODS

Pseudotime Estimation
A pseudotime trajectory was constructed based on the sum of
two publicly available datasets: TCGA-LUAD and TCGA-lung
squamous cell carcinoma (LUSC). The datasets were obtained
using the “TCGAbiolinks” package in R (15). Legacy data of gene
expression quantification were downloaded using the
“GDCdownload” function. There were 600 LUAD samples and
553 LUSC samples. RNA-seq data were prepared as a matrix
format and normalized by log2 transformation. Highly variable
genes were selected using the “DESeq2” package in R (16, 17).
First, variance and coefficients of variation for each gene
expression were calculated in 1153 total samples. Subsequently,
a generalized linear model was fitted to set a reference for
variability of each gene expression using “glmgam.fit” function
in R. The fitted curve was hypothesized as an expected
distribution of estimates of variance and coefficients of
variation. Chi-squared tests were performed to evaluate
deviation from the fitted curve. Finally, genes showing lower
p-value than 0.001 were selected as highly variable genes
(HVGs). A total of 8589 genes were selected among a total of
21,022 genes. A pseudotime trajectory was generated using the
“Phenopath” package in R (18). PhenoPath, an analytic tool for
pseudotime, provides an ordering of gene expression
measurements across individual objects. It employs a Bayesian
statistics and models latent progression of gene expression (18).
Among various pseudotime analysis tools, PhenoPath was the
only method to be utilized in bulk tissue RNA-seq dataset.
Therefore, it was selected in the present study. The input data
were a gene expression matrix of HVGs from TCGA-LUAD and
TCGA-LUSC datasets. We chose the evidence lower bound as
10-6 and computed it thinned by 2 iterations. Ultimately,
pseudotime as a reference value for latent progression of
disease was estimated.
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Applying Pseudotime Into a New Dataset
LUAD samples of the NSCLC radiogenomics dataset were
employed to perform additional correlative analysis with
imaging-derived variables. An RNA-seq dataset (GSE103584)
was downloaded from the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/) (19). There were 96 LUAD samples
in the NSCLC radiogenomics dataset. To translate pseudotime
estimated by the TCGA dataset to the new dataset, a lasso
regression model was used to estimate pseudotime in LUAD
samples of the NSCLC radiogenomics dataset. There were three
reasons to apply lasso regression model. First, there was a
technical limitation that ‘Phenopath’ tool could not generate a
proper model due to small sample size of the NSCLC
radiogenomics dataset. Second, it was necessary to predict
pseudotime based on genes which were revealed to have
significant association with pseudotime in TCGA dataset.
Third, lasso regression provides better interpretability and
prevents overfitting as it deals some of the estimated
coefficients as zero (20). To develop a model to predict
pseudotime using a lasso regression, two hundred genes were
selected from genes that showed a significant association
between pseudotime: the top 100 genes with highest
correlation coefficients in the positive correlation group and
the top 100 genes with highest correlation coefficients in the
negative correlation group. An expression matrix of those 200
genes was constructed from the TCGA dataset. It was divided
into two groups at a 2:1 ratio: training and internal validation
data. The lambda with the least error was selected via cross-
validation. A lasso regression model was obtained. The alpha was
1. The model was applied to LUAD samples of the NSCLC
radiogenomics dataset to predict a pseudotime trajectory.

Clinical Feature Analysis
Clinical data of the TCGA dataset were downloaded from
cBioPortal (http://www.cbioportal.org/) using the “cgdsr” package
in R. TNM stage, disease-free survival (DFS), overall survival (OS),
and duration of DFS/OS were selected as representative clinical
factors. A heatmap was plotted to visualize the associations
between genes, clinical factors, and pseudotime using the
“Complexheatmap” package in R. The pseudotimes of each
TNM stage group were compared using t-tests or ANOVA.
Survival analyses for DFS and OS were performed using the
Kaplan–Meier method between subjects with early and late
pseudotime. Cutoff values of pseudotime were explored using the
“cutoff” package in R. Clinical data of the NSCLC radiogenomics
dataset were downloaded from The Cancer Imaging Archive
(TCIA, https://www.cancerimagingarchive.net/). The pseudotime
of each TNM stage group was compared using the Wilcoxon rank-
sum test or the Kruskal–Wallis test.

Genetic Feature Analysis
Principal component analysis (PCA) was performed to visualize
the temporal evolution of the genetic characteristics of LUAD
and LUSC using the “PCA” function included in the
“factoextra” package in R. Phenopath analysis provided four
output values: alpha: degree of differential expression, beta:
Frontiers in Oncology | www.frontiersin.org 3
degree of covariate-pseudotime interaction, lambda: degree of
pseudotime dependency, z: estimates of pseudotime. A Bayesian
significance test was applied to select genes showing significant
pseudotime dependency (nonzero lambda) and significant
covariate pseudotime dependency (nonzero beta). Gene
ontology (GO) analysis was conducted on genes showing
significant pseudotime dependency to investigate which
functions were upregulated or downregulated along the
pseudotime trajectory using the “enrichGO” function
included in the “clusterProfiler” package in R. A cut-off of p-
value was 0.05 and that of q-value was 0.1 to select significant
GO terms.

Glucose Metabolism Analysis
FDG PET images of LUAD subjects from both the TCGA dataset
and the NSCLC radiogenomics dataset were downloaded from
The Cancer Imaging Archive (TCIA, https : / /www.
cancerimagingarchive.net/). There were 16 and 93 samples
with both RNA-seq data and FDG PET images in LUAD
samples of the TCGA and NSCLC radiogenomics datasets,
respectively. Tumor margins were delineated using the Nestle
adaptive threshold method provided by “LifeX” software (21,
22). An adaptive threshold to define tumor margins was applied,
and the deterministic parameter beta was set to 0.3. The maximal
standardized uptake value (SUV), mean SUV, and metabolic
tumor volume (MTV) were obtained from the region of interest.
Total lesion glycolysis (TLG) was calculated from the mean SUV
and MTV. Correlation coefficients of expression of FDG PET
parameters, solute carrier family 2 member 1 (SLC2A1)
expression, and pseudotime were calculated by Spearman and
Pearson correlation tests in the TCGA and NSCLC
radiogenomics datasets, respectively.

Immune Profile Analysis
In both the TCGA and NSCLC radiogenomics datasets, the
enrichment scores of 64 immune and stromal cell types were
estimated using the “xCellAnalysis” function in the “xCell”
package in R (23). Correlation coefficients between enrichment
scores and pseudotime were calculated by the Pearson
correlation test. The false discovery rate was calculated from p
values with the Bonferroni method. Volcano plots, heatmaps,
and scatter plots were generated to describe the association
between the enrichment scores of immune cells and
pseudotime. The expression of PD-L1 and the tumor mutation
burden (TMB) are well-known indicators of the immune profiles
of tumors (24, 25). In the TCGA dataset, gene mutation data
were downloaded from genomic data commons (https://gdc.
cancer.gov/), and a mutation annotation format file was then
constructed using the “read.maf” function included in the
“maftools” package (26). TMB was calculated by the number
of non-synonymous somatic mutations using the “tmb” function
included in the “maftools” package. Correlation coefficients of
expression of PD-L1 and TMB with pseudotime were calculated
by the Pearson correlation test. All statistical analyses were
performed using R software (v4.0.4, Vienna, Austria). A p
value of < 0.05 was considered statistically significant.
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RESULTS

Clinical Features Related to Pseudotime
Demographic and clinical characteristics of the patients were
described in Table 1. A heatmap was constructed to visualize the
clinical factors of each sample with the top 10 genes upregulated
and those downregulated over pseudotime in TCGA-LUAD
samples (Figure 1). Notably, histone coding genes showed
upregulation along pseudotime. Boxplots represent the
association between TNM stage and pseudotime in LUAD
samples (Figures 2A–D). There was a significant difference in
pseudotime in each T stage (p < 0.001), especially in T1-T2 (mean:
-0.08013 vs. 0.03092, p < 0.001) and T1-T3 (mean: -0.08013 vs.
0.08310, p < 0.001). Pseudotime in different N stages and M stages
showed no difference. There was a significant difference in
pseudotime in each overall TNM stage (p < 0.001), especially in
Frontiers in Oncology | www.frontiersin.org 4
I-II (mean: -0.02835 vs. 0.03565, p = 0.021) and I-III (mean:
-0.02835 vs. 0.04780, p = 0.019). Disease-free survival and overall
survival were well discriminated according to pseudotime
(Figure 3, p = 0.002 and p < 0.001, respectively).

Pseudotime was estimated in the NSCLC radiogenomics
dataset based on a lasso regression model from the TCGA
dataset. The association between clinical factors and pseudotime
was evaluated in LUAD samples of the NSCLC radiogenomics
dataset. There was a tendency of increasing T stage along
pseudotime, especially in early T stages (Supplementary
Figure 2A, p = 0.097). There was no association between N/M
stage and pseudotime (Supplementary Figures 2B, C).
Histological grade showed an association with pseudotime
(Supplementary Figure 2D, p = 0.017). There was no significant
association between overall TNM stage and pseudotime
(Supplementary Figure 2E).
TABLE 1 | Demographic and clinical characteristics of the patients.

Characteristics TCGA-LUAD LUAD in the NSCLC radiogenomics dataset
Patients, n (%) Patients, n (%)

Total 600 96
Sex
Female 325 (54.2) 29 (30.2)
Male 275 (45.8) 67 (69.8)

Age, median (range), years 66 (33-88) 68 (43-85)
Smoking history
Current 131 (21.8) 19 (19.8)
Former 364 (60.7) 57 (59.4)
Never 85 (14.2) 20 (20.8)
Unknown 20 (3.3) 0

Location
Right upper lobe 220 (36.7) 31 (32.3)
Right middle lobe 24 (4) 8 (8.3)
Right lower lobe 106 (17.7) 12 (12.5)
Left upper lobe 144 (24) 30 (31.3)
Left lower lobe 88 (14.7) 15 (15.6)
Unknown 18 (3) 0

Pathological T stage
Tis 0 5 (5.2)
T1 195 (32.5) 38 (39.6)
T2 331 (55.2) 38 (39.6)
T3 51 (8.5) 11 (11.5)
T4 20 (3.3) 4 (4.2)
Unknown 3 (0.5) 0

Pathological N stage
N0 381 (63.5) 78 (81.3)
N1 110 (18.3) 7 (7.3)
N2 87 (14.5) 11 (11.5)
N3 2 (0.3) 0
Unknown 20 (3.3) 0

Pathological M stage
M0 407 (67.8) 91 (94.8)
M1 27 (4.5) 5 (5.2)
Unknown 166 (27.7) 0

Pathological stage
0 0 5 (5.2)
I 322 (53.7) 57 (59.4)
II 138 (23) 16 (16.7)
III 97 (16.2) 13 (13.5)
IV 28 (4.7) 5 (5.2)
Unknown 15 (2.5) 0
March 2022 | Volume 12 | Article 828505
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Genetic and Functional Features Related
to Pseudotime
We investigated gene expression features and their functional
relevance according to pseudotime. On the dimension reduction
plot using PCA, the LUAD and LUSC samples seemed to be in the
same position at the beginning of pseudotime (Supplementary
Figure 3). As pseudotime passed, the LUAD and LUSC samples
were clearly discriminated in the PCA plot. We investigated genes
regulated over pseudotime in total lung cancer, LUAD, and LUSC
samples (Figure 4A). A total of 603 genes showed significantly
positive correlations with pseudotime in total lung cancer samples,
2594 genes showed negative correlations in total cancer samples,
178 genes showed positive correlations in LUAD samples, 853
genes showed negative correlations in LUAD samples, 479 genes
showed positive correlations in LUSC samples, and 647 genes
showed negative correlations in LUSC samples. GO analysis was
performed to determine which biological pathways were related
(Figures 4B, C). In total lung cancer samples, molecular functions
related to cell division were upregulated over pseudotime. In
LUAD samples, molecular functions related to cell division, such
as nucleosome assembly and DNA packaging, were upregulated
over pseudotime, as in total lung cancer samples. Those related to
NK cell function are downregulated over pseudotime.

Evolution of Glucose Metabolism
Along Pseudotime
As increased glucose metabolism measured by FDG PET is
associated with poor prognosis by reflecting biological
aggressiveness, we tested the association between FDG uptake
and pseudotime (27). In the TCGA-LUAD dataset, there was a
significant positive correlation between maximal SUV and
pseudotime (Supplementary Figure 4, rho = 0.518, p = 0.042).
Frontiers in Oncology | www.frontiersin.org 5
There was also a significant positive correlation between mean
SUV and pseudotime (Supplementary Figure 4, rho = 0.517, p =
0.049). However, MTV and TLG showed no association with
pseudotime. In the NSCLC radiogenomics dataset, there was a
significant positive correlation between maximal SUV and
pseudotime (Figure 5A, r = 0.259, p = 0.005). There was also a
significant positive correlation between mean SUV and
pseudotime (Figure 5B, r = 0.227, p = 0.029). However, MTV
and TLG showed no association with pseudotime.

Evolution of Immune Profiles
Along Pseudotime
As GO terms related to pseudotime included downregulation of
immune-related functions according to pseudotime, we further
analyzed tumor immune microenvironment profiles related to
pseudotime. A volcano plot and a heatmap were constructed to
illustrate the immune and stromal cells associated with
pseudotime in the TCGA dataset. (Figures 6A, B). Among cell
types, the enrichment score of type 1 helper T (Th1) cells showed
a positive correlation (Figure 7A, r = 0.524, p < 0.001), and that
of M2 macrophages showed a negative correlation (Figure 7B,
r = -0.545, p < 0.001). PD-L1, the most representative
immunotherapy target in lung cancer, showed a weakly
negative correlation with pseudotime (Figure 7C, r = -0.289,
p < 0.001). TMB showed a weakly positive correlation with
pseudotime (Figure 7D, r = 0.243, p < 0.001). In the NSCLC
radiogenomics dataset, Th1 cells showed a positive correlation
(Supplementary Figure 5A, r = 0.444, p < 0.001), and M2
macrophages showed a negative correlation (Supplementary
Figure 5B, r = -0.367, p = 0.020). PD-L1 showed no significant
correlation with pseudotime (Supplementary Figure 5C, r =
0.041, p = 0.698).
FIGURE 1 | A heatmap visualizing clinical features and gene expression along pseudotime in the TCGA-LUAD dataset. Clinical features, including TNM stage and
the expression of the top 10 genes showing significant positive or negative associations with pseudotime, are displayed. In particular, histone-coding genes showed
significant upregulation over pseudotime.
March 2022 | Volume 12 | Article 828505
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DISCUSSION

TNM staging in lung cancer is a well-established system to
evaluate disease progression status, predict prognosis, and
select appropriate treatment options (28, 29). However, it is
the result of cross-sectional observation via clinical/pathologic/
radiologic findings at the timing of initial diagnosis. Therefore,
there is a limitation to investigating the temporal evolution of
tumor biology longitudinally based on TNM staging as a
reference scale. We attempted to construct a temporal model
for biological progression and change of TIME from genetic
Frontiers in Oncology | www.frontiersin.org 6
profiles of a bulk RNA-seq dataset using pseudotime analysis.
For scRNA-seq dataset, pseudotime analysis orders cells along a
hypothetic trajectory based on patterns of gene expression (30).
It is based on the hypothesis that multiple cross-sectional data is
integrated into sequential data demonstrating temporal
evolution (31). As bulk RNA-seq can be used for the trajectory
analysis with a same manner, Campbell and Yau uncovered
temporal evolution of tumor tissues of colorectal cancer and
breast cancer (18). In this study, continuous scale for temporal
evolution of tumor tissue was generated using previously known
analytic tool, PhenoPath (18). The validity of the generated
A B

DC

FIGURE 2 | Boxplots visualizing differences in pseudotime according to TNM stage in the TCGA-LUAD dataset. (A) There was a significant difference in pseudotime
in each T stage, especially in T1-T2 (mean: -0.08013 vs. 0.03092, p < 0.001) and T1-T3 (mean: -0.08013 vs. 0.08310, p < 0.001). (B, C) Pseudotime in each N and
M stage showed no difference. (D) There was a significant difference in pseudotime in each overall TNM stage, especially in IA-IB (mean: -0.09326 vs. 0.02969, p <
0.001), IA-IIB (mean: -0.09326 vs. 0.05374, p < 0.001), and IA-IIIA (mean: -0.09326 vs. 0.03749, p < 0.001).
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A B

C

FIGURE 4 | Genes and molecular functions upregulated and downregulated over pseudotime. (A) Genes upregulated and downregulated over pseudotime were
selected and plotted. A total of 3197 genes showed significant correlations with pseudotime in total lung cancer. A total of 1031 genes showed significant
correlations in LUAD samples, and 1126 genes showed significant correlations in LUSC samples. (B) In total lung cancer samples, molecular functions related to cell
division were upregulated over pseudotime. (C) In LUAD samples, those related to natural killer cell activity were downregulated over pseudotime, and those related
to cell division were upregulated.
A B

FIGURE 3 | Survival curves according to pseudotime. Survival analyses were performed in two groups divided by cutoff values of pseudotime which were explored using
the “cutoff” package in R. (A) Disease-free survival was significantly different between the two groups. (B) Overall survival was significantly different between the two groups.
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model as a reference of disease progression was examined by
correlation analyses between clinico-molecular features and
pseudotime. Based on the generated model, we investigated the
temporal evolution of the tumor immune microenvironment in
lung adenocarcinoma.
Frontiers in Oncology | www.frontiersin.org 8
In this study, we successfully estimated a pseudotime
trajectory in TCGA-LUAD and TCGA-LUSC datasets. In
PCA, LUAD and LUSC samples in the early phase are revealed
to have similar genetic characteristics and to differentiate into
LUAD and LUSC along pseudotime order. In the tumorigenesis
A B

FIGURE 5 | Correlation between SUV and pseudotime in LUAD samples of the NSCLC radiogenomics dataset. The size of the dot represents the metabolic tumor
volume. The color of the dot represents total lesion glycolysis as a log scale. (A) The maximal SUV showed a weakly positive correlation with pseudotime (r = 0.259,
p = 0.005). (B) The mean SUV showed a weakly positive correlation with pseudotime (r = 0.227, p = 0.029). However, MTV and TLG showed no association with
pseudotime.
A

B

FIGURE 6 | Immune and stromal cells associated with pseudotime in the TCGA-LUAD dataset. (A) A volcano plot representing immune cells associated with
pseudotime is shown. Cell types with correlation coefficients above 0.5 are plotted as red dots. Cell types with FDR below 0.05 and correlation coefficients below 0.5
are plotted as blue dots. Among them, immune cells were annotated. (B) A heatmap representing immune and stromal cells associated with pseudotime is shown.
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of NSCLC, molecular events such as 3p allele loss and telomerase
activation are observed in most NSCLCs (32–34). The similarity
of genetic characteristics in early LUAD and LUSC may be
caused by common pathogenesis mechanisms. This result
implies that tumors showing specific characteristics of LUAD
or LUSC have a high possibility of progressed disease.

In both total lung cancer and LUAD samples, GO terms
related to cell division were selected as significantly upregulated
terms over pseudotime. In particular, histone-related genes
showed a high correlation with pseudotime in LUAD. These
results can be interpreted as the result of either the presence of a
large number of tumor cells or enhanced mitotic activity of
tumor cells in the late phase. Similarly, T stage and overall TNM
stage demonstrated good association with pseudotime. This is
consistent with the current TNM staging system. Notably, there
were significant associations in the early T stages (T1-T2, T2-T3)
and early overall stages (IA-IB, IA-IIB, IA-IIIA). In the current
TNM staging system, T2-T4 stages include not only size criteria
but also criteria involving other structures, such as bronchi or
chest walls (35). Thus, a small tumor with involvement of other
structures can be diagnosed as a high T stage. If there is lymph
node metastasis, it is highly likely to be classified as above stage
IIIA. These characteristics of the current TNM staging system
Frontiers in Oncology | www.frontiersin.org 9
cause associations between early T stage/overall stage and
pseudotime. The probability of disease-free survival and overall
survival showed significant differences according to pseudotime.
This indicates that pseudotime may have clinical usability to
classify patients based on prognosis as TNM staging. Of course,
further study is warranted to explore the clinical significance of
pseudotime trajectories.

In both datasets, the maximal SUV and mean SUV
demonstrated significantly positive correlations with pseudotime.
These findings are consistent with a previously revealed
relationship between FDG uptake and tumor stage (3, 4, 36).
Furthermore, the tendency of increasing FDG uptake along
pseudotime is closely related to the molecular function of cell
division, showing the same tendency along pseudotime.
Proliferative activity is known to be a significant factor affecting
FDG uptake in tumors in lung cancer (37, 38). In brief, changes in
genetic features, clinical features, and glucose metabolism over
pseudotime were revealed to be consistent with previous
knowledge about tumor progression. Therefore, the estimated
pseudotime was hypothesized to be an appropriate temporal
reference of disease progression.

The present study demonstrated the temporal evolution of
immune profiles in LUAD. It is noteworthy that the enrichment
A B

DC

FIGURE 7 | Evolution of the tumor immune microenvironment over pseudotime in the TCGA-LUAD dataset. (A) Th1 cells showed a positive correlation with
pseudotime (r = 0.524, p < 0.001). (B) M2 macrophages showed a negative correlation with pseudotime (r = -0.545, p < 0.001). (C) PD-L1 expression showed a
weakly negative correlation with pseudotime (r = -0.289, p < 0.001). (D) TMB showed a weakly positive correlation with pseudotime (r = 0.243, p < 0.001).
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score of Th1 cells represented a significantly positive correlation
with pseudotime. It is generally believed that Th1 cells contribute
to the antitumor response, inducing cytotoxicity (7, 39). It is also
remarkable that M2 macrophages showed a significantly negative
correlation with pseudotime. M2 macrophages exert protumor
activity via tissue remodeling and angiogenesis (40, 41). Briefly,
antitumor immunity seems to strengthen along pseudotime,
whereas protumor immunity seems to weaken along
pseudotime. These results indicate two possible mechanisms.
First, protumor immunity via M2 macrophages prepares an
appropriate environment for the survival and proliferation of
tumor cells in the early phase of lung cancer. Second, antitumor
immunity via Th1 cells is induced by a high tumor burden to
attempt to control and suppress disease in the late phase of lung
cancer. These results are also consistent with a previous report
documenting that the proportion of high stage was larger in
samples with high immune scores and cytolytic scores (42). The
present study showed heterogeneous evolution of specific
immune cells over pseudotime. This implies that selecting
immunotherapy options for appropriate targets may be
considered during the disease progression of LUAD.
Pharmaceuticals such as resveratrol and imatinib were found
to suppress cancer progression via inhibition of M2 macrophage
activation (43, 44). The application of those drugs may be
utilized in patients with early pseudotime.

Interestingly, PD-L1 expression showed a negative correlation
with pseudotime, whereas TMB showed a positive correlation in
the TCGA dataset. These are well-known biomarkers predicting
the response to cancer immunotherapy (25, 45). This implies
that the response to immunotherapy, such as pembrolizumab,
may not represent any tendency according to the molecular
progression of lung adenocarcinoma. Referring to this
heterogeneous finding of opposite tendencies of PD-L1 and
TMB, it is necessary to establish a more precise immunotherapy
strategy. Considering that both the enrichment of Th1 cells
and TMB showed positive correlations with pseudotime, it is
supposed that immunogenic antigens are enriched in progressed
LUAD. LUAD with a relatively early pseudotime associated with
high PD-L1 suggested early anti-PD-1/PD-L1 treatment before
tumor evolution (46). As LUAD with late pseudotime showed
high TMB and low PD-L1 expression, immune checkpoint
inhibitors targeting molecules other than PD-L1 can be
proposed as an appropriate immunotherapy option for tumors
in progressed LUAD. Our model of the temporal evolution of the
TIME and biomarkers related to immunotherapy suggested that a
more precise strategy of immunotherapy could be needed
according to the biological progression of lung cancer. In this
respect, further study can be planned for selecting appropriate
immunotherapy regimens and evaluating treatment response
using pseudotime concept. Based on estimated pseudotime from
transcriptomics, patients can be classified into those with early
and late phase of disease. Application of different immunotherapy
regimen and evaluation prognosis can be performed in each
group. The further study is expected to expand usefulness and
clinical significance of pseudotime in LUAD patients.

This study has clinical implication and benefits as followings.
We attempted to generate simple and continuous scale of disease
Frontiers in Oncology | www.frontiersin.org 10
progression in LUAD. The genomic landscape of LUAD has been
investigated in many previous studies and varying genetic
characteristics were known to associate with prognosis of LUAD.
It is needed to suggest more simplified and available value
integrating diverse genetic information. In recent clinical filed,
there are a fewapproaches toprovide genetic profile information to
LUADpatientswithmicroarray orRNAsequencing.However, it is
too complicated and difficult to deliver its clinical implication to
patients. It is expected that simplified scale of disease progression is
helpful to communicate with patients for discussing disease
progression status, further treatment plan, and prognosis. Of
course, further study is needed to construct a reference model
from a larger cohort to validate and utilize pseudotime.

There are some limitations in this study. First, FDG PET
examination of subjects was performed in different institutes so
that there were differences in image acquisition and reconstruction
methods. However, the purpose of analyzing the association
between SUV and pseudotime was not to predict accurate SUV
or pseudotime but to assess the overall tendency of SUV along
pseudotime. Furthermore, the image acquisition protocol of each
sample was not identified in the obtained clinical data. Therefore,
all the data were included in a single correlation study. Further
study is warranted to analyze the evolution of glucose metabolism
over pseudotimemore accurately using FDG PET image data from
the same institute. Second, pseudotime trajectory from RNA-seq
has a limitation to apply to the clinical field due to the complexity
of obtaining tumor tissue and analyzing transcriptomic data from
each patient. To facilitate the application of pseudotime in clinical
situations, further study is underway to construct pseudotime
trajectories from FDG PET images. Third, estimation of immune
cell infiltration using deconvolutional method for transcriptomic
data has a limitation to exactly estimate immune cell fraction of
tumor tissue. In contrast, it has an advantage that quantification
for large-scale dataset is available. Further study is warranted to
validate actual TIME of tumor tissue with experimental methods
such as immunofluorescence.

Taken together, pseudotime trajectories were successfully
estimated in lung adenocarcinoma subjects from the TCGA
dataset and the NSCLC radiogenomics dataset. These results
show fair correlations with TNM stage, clinical outcome, and
glucose metabolism, suggesting the feasibility of a new scale
evaluating disease progression status. There were heterogeneous
findings in the evolution of tumor immune microenvironment
components over pseudotime. The present study suggested that
individualized immunotherapy strategies should be selected
according to different molecular characteristics evolving during
disease progression.
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