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Abstract

Elbow flexion force depends on forearm orientation with supinated and neu-

tral being stronger than pronated. The purpose of this study was to assess the

influence of forearm orientation on voluntary activation (VA), postactivation

potentiation (PAP), and twitch properties. Eleven males (23 � 3 years) per-

formed isometric elbow flexion maximal voluntary contractions (MVC) in

supinated, neutral, and pronated forearm orientations with supramaximal

stimulation to the biceps brachii muscle belly before, during, and after the

MVC. MVC and VA were higher in supinated (213.6 � 49.6 N; 93.0 � 5.2%)

and neutral (243.6 � 48.0 N; 96.1 � 3.2%) compared with pronated

(113.6 � 21.3 N; 70.9 � 20.4%) (P < 0.05), while PAP did not differ across

the three orientations (71.6 � 42.2%) (P > 0.05). In the rested state, pronated

peak tension (PT) was less compared with supinated (42%). In the potenti-

ated state, pronated PT was less than supinated (50%) and neutral (53%)

(P < 0.05). Reduced strength in the pronated orientation is partially attributed

to reduced drive; however, reductions in peak tension indicate that there also

is a mechanical disadvantage when the forearm is placed into a pronated ori-

entation, and this does not alter PAP.

Introduction

A maximal voluntary contraction (MVC) can act as a

conditioning stimulus to produce an acute enhancement

of force, known as postactivation potentiation (PAP)

(Vandervoort et al. 1983). The extent of PAP is depen-

dent on the amount of muscle activation, where higher

levels of activation increase force output and culminate in

greater PAP following the MVC through Ca2+-induced

phosphorylation of the myosin regulatory light chains

(Sweeny et al. 1993; Rassier and MacIntosh 2000; Sale

2002; de Tombe et al. 2006; Miyamoto et al. 2010).

Increased force capacity in the potentiated state also con-

tributes to faster twitch contractile times and rates, albeit

somewhat controversial faster relaxation times in whole

human muscle (Hamada et al. 2000; Baudry and Ducha-

teau 2007; Baudry et al. 2008).

To ensure that the conditioning MVC is maximal in

order to achieve high levels of PAP, the twitch interpola-

tion technique can be applied to quantify the degree of

voluntary activation (VA) (Allen et al. 1995; Jakobi and

Rice 2002). Greater MVC force output results in a smaller
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interpolated twitch and higher VA (Arampatzis et al.

2007; Kooistra et al. 2007; Taylor 2009; Huang et al.

2010). What remains unknown is whether position-

dependent force production of the elbow flexors, whereby

the pronated orientation is ~40% weaker than supinated

and neutral (Brown et al. 2010), is due to reductions in

VA of the biceps brachii in pronated, and whether PAP

occurs in the pronated orientation when MVC is consid-

erably reduced. Therefore, the purpose of this study was

to quantify VA, PAP, and twitch contractile properties

across supinated, neutral, and pronated forearm orienta-

tions. It was hypothesized that the pronated orientation

would have reduced VA, PAP, and twitch properties com-

pared to supinated and neutral.

Materials and Methods

Participants

Eleven right-hand dominant males (23 � 3 years,

175.6 � 8.2 cm, 72.9 � 7.5 kg) volunteered to participate

in this study. Ethics approval was gained from the

University of British Columbia Okanagan Behavioural

Research Ethics Board, and informed written consent was

obtained from each participant prior to commencing the

study. Exclusion criteria included: (1) active tendinopa-

thy, (2) injury/orthopedic surgery to right arm or shoul-

der in the prior 6 months, (3) systemic diseases affecting

collagenous tissue, (4) participation in high levels of

upper body strength training, (5) history of training in

fine motor tasks (e.g., musician), and/or (6) nerve dam-

age to the right arm.

Experimental setup

Participants were seated upright in a custom dynamome-

ter chair with knees and hips positioned and maintained

at 90°, the dominant (right) elbow was flexed to 110°
(full extension being 180°) and placed into a supportive

mold that cupped the elbow into a constant position. The

shoulder was abducted 10° and flexed forward at 15° for

each orientation. The forearm apparatus through consis-

tent positioning of the elbow with the hand gripping the

manipulandum was maintained constant across supinated,

neutral, and pronated orientations. The force transducer

was located immediately below the hand (MLP-150 linear

force transducer, 68 kg, 266 V sensitivity, Transducer

Techniques, Temecula, CA). As previously described

(Harwood et al. 2010), the forearm was placed into a

supinated, neutral, or pronated orientation by rotating

the manipulandum in the direction of the desired orien-

tation. Force was displayed in real time on a 52-cm mon-

itor located 1 m in front of the participant for visual

feedback. Force signals were amplified (1009) (Coul-

bourn Electronics, Allentown, PA), sampled at 2381 Hz

and converted from analog to digital using a Power 1401

(Cambridge Electronic Design [CED], Cambridge, Eng-

land), and stored for offline analysis using Spike 2 version

7 (CED, Cambridge, England). Two 4 cm 9 4 cm

carbon–carbon stimulation electrodes coated in electrode

gel were placed proximally and distally on the biceps bra-

chii (BB) muscle belly to evoke supramaximal twitches.

Protocol

Supramaximal stimulation intensity was established for

the supinated, neutral, and pronated orientations in a

randomized order. Stimulation (100 lsec pulse width,

DS7AH, Digitimer Ltd., Welwyn Garden City, UK) to

the BB was progressively increased until a plateau in

twitch force amplitude occurred and then increased a

further 10% to achieve supramaximal intensity. In ran-

domized order, participants performed two to three

5-sec MVCs in each orientation with twitches applied at

rest, during the MVC, and post-MVC at 1-sec intervals

to measure VA and induce PAP. A rest period of

2–3 min between each contraction was given and

3–5 min rest between orientations. The highest MVC

value of the 2–3 trials was used for subsequent force

and twitch analysis.

Data analysis

Force

VA during the MVCs was calculated using the twitch

interpolation technique with the following formula: VA

(%) = (1 � [interpolated twitch/resting twitch]) 9 100

(Allen et al. 1995; Jakobi and Rice 2002; Simpson et al.

2016). Postactivation potentiation was calculated as the

percentage increase in peak twitch torque from the resting

(using the twitch directly prior to MVC) to potentiated

twitch.

Twitch properties

Twitch properties of peak tension, time to peak tension

(TPT), half relaxation time (HRT), peak rise, and peak

fall were measured. Peak tension was calculated as the

highest tension (peak) of the twitch from the baseline.

TPT was calculated as time (msec) from the onset of the

evoked force to the peak tension of the twitch and HRT

as the time for the twitch to relax half of maximal ampli-

tude (msec). Peak rise (N/msec) and peak fall (N/msec)

were measured as the first derivative of the force signal

and reported for the rate of rise and fall of the twitch.
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Statistical analysis

Using Statistical Package for Social Sciences (SPSS) ver-

sion 24 (IBM, Armonk, NY), a one-way ANOVA was

used to compare VA, PAP, and MVC across supinated,

neutral, and pronated forearm orientations. To assess

contractile properties, a 2 (time: resting twitch, potenti-

ated twitch) 9 3 (orientation: supinated, neutral, and

pronated) repeated measures ANOVA was applied. Signif-

icant interactions were assessed with a Tukey’s post hoc

test, and the alpha level was set at P < 0.05. Values are

reported as mean � SD.

Results

In the pronated orientation, MVC (113.6 � 21.3 N) and

VA (70.9 � 20.4%) were less compared with supinated

(213.6 � 49.6 N; 93.0 � 5.2%) and neutral

(243.6 � 48.0 N; 96.1 � 3.2%) (P < 0.05), which did not

differ from each other (P > 0.05). Twitch potentiation

occurred in all orientations, but did not differ across

supinated (70.7 � 33.8%), neutral (86.1 � 40.4%), and

pronated (58.1 � 52.3%) (P > 0.05) orientations. To

ensure that differences did not arise from the contractions

inducing potentiation in the resting twitches, they were

compared within an orientation across the three contrac-

tions. The amplitude of the resting twitch peak tensions

were highly correlated within supinated (R2 = 0.90), neu-

tral (R2 = 0.92), and pronated (R2 = 0.90) orientations.

To further explore this, the percent difference was calcu-

lated as [% diff = ([first resting twitch � second resting

twitch]/second resting twitch) 9 100] between resting

twitches prior to the first MVC, second MVC, and third

MVC. The resting twitches were similar between the first

and second (1%, �0.05%, 0.4%), first to third (�3.4%,

1.8%, 3.0%), and second to third (�4.1%, 1.9%, 2.7%)

twitches in the supinated, neutral, and pronated

orientations, respectively. These data indicate that there

was sufficient time to allow dissipation of potentiation

between contractions.

There was a time by orientation interaction observed

for twitch contractile properties of peak tension

(F = 6.98, P < 0.01), TPT (F = 8.078, P < 0.01), peak

rate of rise (F = 3.54, P < 0.05), and peak rate of fall

(F = 3.48, P < 0.05) (Table 1). HRT had no time by ori-

entation interaction (F = 0.78, P > 0.05) or main effects

of time (F = 0.89, P > 0.05) or orientation (F = 2.74,

P > 0.05). Resting twitch peak tension was less in pro-

nated compared with supinated (P < 0.05), and potenti-

ated twitch peak tension was less in pronated compared

with supinated and neutral (P < 0.05). Time to peak ten-

sion decreased from the resting to potentiated twitch in

pronated (P < 0.05). TPT of the resting twitch was less in

supinated compared to pronated (P < 0.05). Peak rise

and fall of the potentiated twitch were slower in pronated

compared to neutral (P < 0.05). Peak fall was faster in

the potentiated twitch compared to the resting twitch for

supinated and neutral (P < 0.05), and peak fall was

slower in pronated compared with supinated and neutral

for the potentiated twitch (P < 0.05) (Table 1).

Discussion

In this study, MVC, VA, PAP, and twitch contractile

properties of the BB were measured in the supinated,

neutral, and pronated forearm orientations for isometric

elbow flexion. In support of the hypothesis, MVC and

VA were less in the pronated orientation compared with

supinated and neutral, which did not differ. However, the

nonsignificant difference in PAP across the three orienta-

tions was not expected. Peak tension was less in pronated

compared with supinated at rest and less than both supi-

nated and neutral in the potentiated state. Overall, poten-

tiated twitches were higher and had a faster peak rise and

Table 1. Twitch contractile properties of resting and potentiated twitches across the three forearm orientations.

Twitch properties

Supinated Neutral Pronated

Resting Potentiated Resting Potentiated Resting Potentiated

Peak tension (N) 22.1 � 7.7 34.9 � 8.11 18.2 � 5.7 32.6 � 8.11 14.9 � 6.43 20.9 � 6.2132

TPT (msec) 41.3 � 6.6 42.8 � 7.7 46.2 � 13.6 42.1 � 11.8 59.4 � 12.83 40.5 � 11.71

HRT (msec) 42.2 � 23.0 37.3 � 21.6 50.9 � 13.4 43.1 � 17.6 55.4 � 12.0 58.3 � 14.6

Peak rise (N/msec) 1.3 � 0.6 2.0 � 0.91 1.7 � 1.1 2.7 � 1.21 1.0 � 0.5 1.5 � 0.712

Peak fall (N/msec) �0.8 � 0.3 �1.4 � 0.41 �0.9 � 0.6 �1.5 � 0.91 �0.5 � 0.2 �0.6 � 0.332

TPT, time to peak tension; HRT, half relaxation time; N, Newton; significant at alpha 0.05.
1

Differs from resting twitch.
2

Differs from neutral orientation in same condition.
3

Differs from supinated orientation in same condition.
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peak fall compared with the resting twitch. Force produc-

tion in the pronated orientation is reduced and this likely

arises from reductions in descending drive as suggested

by the decline in VA. As well, reduced force in pronated

likely occurs from a mechanical disadvantage that is

induced through rotation of the forearm; evident in the

decrease in peak tension, in the pronated position.

We have previously reported that MVC is lower in pro-

nated compared with supinated and neutral orientations

(Brown et al. 2010), and this study suggests that this

reduction in maximal strength occurs through a decrease

in descending drive to the BB in the pronated orientation.

This is marked by the reduced VA in pronated orienta-

tion and supported by previous observations of lower

motor evoked potentials in pronated compared with supi-

nated and neutral orientations (Mogk et al. 2014; Forman

et al. 2016; Nuzzo et al. 2016). Voluntary activation cal-

culated using the twitch interpolation technique does not

offer insight into where descending drive to the motoneu-

rons fails or the input–output relationship of the

motoneuron pool (Herbert and Gandevia 1999; Kooistra

et al. 2007; Taylor 2009); however, it does offer evidence

that drive to the BB is reduced in the pronated orienta-

tion. This decrease in drive might arise from central

sources (Mogk et al. 2014; Forman et al. 2016; Nuzzo

et al. 2016), but peripheral sources, such as inhibition

from the brachioradialis (Barry et al. 2008) leading to

increased motor unit recruitment thresholds in the short

head of the BB for the pronated forearm orientation

(Harwood et al. 2010), should not be ignored. The poten-

tial contribution of peripheral sources to reduced force of

the pronated orientation is supported by lower peak ten-

sion of the resting and potentiated twitches in the electri-

cally evoked contractions.

The similar level of PAP in pronated relative to neutral

and supinated orientations was not expected, as we

hypothesized that the reduced MVC would result in lower

levels of PAP in pronated. Despite the lower peak tension

of the twitches in the pronated orientation, the relative

increase in peak tension from resting to potentiated was

similar to that of supinated and neutral. The lack of sig-

nificant differences in PAP across orientations might arise

from the high level of variability within each orientation

as seen by the SD of supinated (33.8%), neutral (40.4%),

and pronated (52.3%) orientations. Although the variabil-

ity was high, it aligns with the large range of PAP reports

in the literature (Baudry and Duchateau 2007; Hamada

et al. 2000; : Vandervoort et al. 1983). Despite the lower

VA and MVC in the pronated orientation, this did not

affect the ability of the twitches to potentiate. This sug-

gests that the mechanisms that induce PAP through phos-

phorylation of the regulatory light chains are unaffected

by forearm orientation and that MVC is sufficient to

induce PAP, albeit VA is substantially lower. As force was

less in the involuntary contraction, as highlighted in the

~70% reduction in peak tension in pronated relative to

neutral and supinated orientations, there are factors

beyond descending drive inhibiting force production in

the pronated orientation.

Muscle length has been shown to influence VA, with

VA being greater at short compared with long muscle

lengths (Suter and Herzog 1997; Kluka et al. 2015). As

elbow flexion angle increases, the length of the BB

increases (Ismail and Ranatunga 1978; Doheny et al.

2008). Due to the insertion of the distal BB tendon, as

the forearm is rotated into the pronated orientation and

the radius is rotated medially (Koch and Tillman 1995),

there is likely a lengthening of the muscle as the tendon

articulates over the radial head. Thus, rotation of the

forearm into pronation might impart lengthening that

may coincide with moving along the force–length curve

and culminate in reduced force production in the pro-

nated orientation. The length of the BB was not recorded

during contraction due to the limitations of gaining ultra-

sound images with stimulation pads placed over the BB,

thus we can only speculate on differences in muscle

length between orientations. Torque production is depen-

dent on the muscle’s moment arm and prior studies have

shown increases in BB moment arm up to elbow flexion

angles of 100° (Murray et al. 1995), and with increasing

force (Akagi et al. 2012). However, the lever arm, due to

the fixed position of the forearm and elbow joint,

remained identical across orientations. Previously

reported moment arms of the BB were also found to be

similar across supinated, neutral, and pronated forearm

orientations at 110° of flexion (Murray et al. 1995).

Although it is unlikely that moment arm is a key contrib-

utor to reduced force in the pronation position, future

studies should quantify the combined influence of BB

muscle length and tendon moment arm across forearm

orientations.

In conclusion, greater elbow flexor strength in supi-

nated and neutral orientations compared with pronated

likely arises from both reductions in descending drive and

mechanics of force production. This might be consequen-

tial to position-dependent alterations in muscle and ten-

don. To tease out these mechanical and neural effects,

and ascertain the location of altered drive, transcranial

magnetic stimulation and transmastoid stimulation

should be used for identification of cortical and spinal

excitability in combination with ultrasonography to mea-

sure muscle and tendon mechanics.
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