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Using instrumental variables to 
disentangle treatment and placebo 
effects in blinded and unblinded 
randomized clinical trials influenced 
by unmeasured confounders
Elias Chaibub Neto

Clinical trials traditionally employ blinding as a design mechanism to reduce the influence of placebo 
effects. In practice, however, it can be difficult or impossible to blind study participants and unblinded 
trials are common in medical research. Here we show how instrumental variables can be used to 
quantify and disentangle treatment and placebo effects in randomized clinical trials comparing 
control and active treatments in the presence of confounders. The key idea is to use randomization 
to separately manipulate treatment assignment and psychological encouragement conversations/
interactions that increase the participants’ desire for improved symptoms. The proposed approach is 
able to improve the estimation of treatment effects in blinded studies and, most importantly, opens the 
doors to account for placebo effects in unblinded trials.

Placebo effects have draw a lot of interest and debate in medicine1–3. They can be viewed as a simulation of an 
active therapy within a psychosocial context1–3. Research in neurobiology has shown that placebo responses are 
accompanied by actual alterations in neural activity within brain regions involved in emotional regulation1–6. 
Hence, rather than inducing a simple bias in response, placebos can induce actual biological effects and improve 
clinical outcomes. Among the cognitive and emotional factors that have been proposed to contribute to placebo 
effects, the interaction between the desire for symptom change and the expected symptom intensity has been 
proposed as a key component giving raise to placebo effects1. In the psychology literature, this interaction is 
known as the desire-expectation model of emotions1,7–9, which postulates that ratings of positive and negative 
emotional feelings are predicted by multiplicative interactions between ratings of desire and expectation. A num-
ber of experimental studies of placebo analgesia1,10,11 have corroborated the role of the desire-expectation model 
as a trigger of placebo effects. These findings have important implications for both clinical practice and clinical 
trials. On one hand, clinicians should harness the placebo effect to improve the clinical outcome of their patients 
(by managing expectations and desires through ethical use of suggestions and optimum caregiver-patient inter-
actions)1. On the other hand, assessment of expectation and desire levels is also important in clinical trials since 
placebo effects might strongly influence the results of a study. In unblinded trials, it is widely recognized that 
the overall effect attributed to a treatment might actually correspond to a combination of treatment and placebo 
effects. However, placebo effects might still play a role in blinded trials as well1. For instance, blinded studies 
evaluating the effectiveness of acupuncture12 and of implantation of human embryonic dopamine neurons into 
the brains of persons with severe Parkinson disease13 have shown that perceived treatment (or the treatment the 
participants thought they had received) can have stronger effects than the treatment actually received by the par-
ticipants. These findings illustrate the relevance of measuring expectation, desire, and emotional levels in order to 
assess the contribution of placebo effects, and suggest that it is important to adjust for these variables when esti-
mating treatment effects and interpreting the results of clinical trials1. However, because it is generally impossible 
to rule out the presence of unmeasured confounders, simply measuring and adjusting for variables associated 
with placebo effects might not be enough to ensure a reliable estimation of the treatment effect. For instance, 
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estimation based on regression models adjusting for the placebo related measurements still leads to biased esti-
mates of the treatment effect, unless all confounders influencing the outcome variable enter the regression model.

The statistical method
Here we present a statistical approach to disentangle treatment and placebo effects using instrumental varia-
bles14–16 in randomized experiments. An instrumental variable (IV) is statistically independent from any unmeas-
ured confounders, but is associated with the treatment variable and with the outcome variable (via its influence 
on the treatment variable alone). Use of IVs in randomized experiments allows the consistent estimation of treat-
ment effects without the need to explicitly model the confounders (the technique even accounts for confounders 
the researcher is unaware about).

Our proposed method requires the ability to assess variables associated with placebo effects (e.g., levels of 
expectancy, desire, and emotion), and uses randomization to separately manipulate a pair of variables. The first, 
corresponds to a psychological encouragement variable aiming to increase the desire for improved symptoms. 
The study participants are randomized according to whether they receive the psychological encouragement or 
not. This “psychological treatment” IV allows the consistent estimation of the placebo effect on the outcome in the 
presence of confounders. The second, corresponds to a treatment assignment variable representing the random 
assignment of participants to active treatment or control therapy groups. It allows the estimation of the treatment 
effect on the outcome, after adjustment for the placebo effect. Mechanistically, the approach corresponds to a 
two-step procedure, which first estimates the contribution of the placebo effect on the outcome, and then the 
effect of the treatment on the residuals of the outcome variable after the contribution of the placebo effect has 
been removed.

A graphical representation of the causal model underlying our approach is given in Fig. 1a. Circled and 
un-circled nodes represent observed and unobserved variables, respectively. Arrows represent the causal influ-
ence of a variable on another, with the influence of unmeasured confounders shown as grey arrows. The binary 
variable Z represents the randomized treatment assigned to the participant (1 if participant is assigned to the 
active treatment group, and 0 if assigned to the control group), while X represents the treatment actually received 
by the study participant (1 if the participant receives the active treatment, and 0 otherwise). It is important to 
model both assigned and received treatment variables since participants won’t necessarily subscribe to their 
assigned treatment, and the experiment might suffer from imperfect compliance.

The variable S represents the unmeasured biochemical/physiological (somatic) state of a participant and medi-
ates the effect of the treatment on the outcome variable, Y. For instance, if X represents a drug treatment, then 
S could represent the physiological state induced by the biochemical pathways targeted by the drug. The causal 
effects of X on S and of S on Y are quantified, respectively, by η and λ. The outcome variable is also influenced by 
the unmeasured psychosomatic state of the participant, represented by P. We allow P to influence Y via a direct 

Figure 1.  Direct acyclic graph representation of the causal model underlying the proposed IV approach for 
disentangling treatment and placebo effects in unblinded clinical trials. Circled and un-circled nodes 
represent observed and unobserved variables, respectively. Arrows represent the causal influence of a variable 
on another, with the influence of confounders on variables shown as grey arrows. The Z and X nodes represent, 
respectively, the participant’s assigned and received treatment, whereas Q stands for the psychological 
encouragement treatment. The S and P variables represent the (unobserved) somatic and psychosomatic states 
of the participant, respectively. The E, D, I, and M nodes stand for the participant’s expectation of symptom 
intensity, desire for improved symptoms, desire-expectation interaction, and emotional level, respectively. The 
sets of variables U, C1, C2, C3, L1, L2, L3, V1, V2, V3, and  stand for unmeasured confounder variables. The Y 
node represents the outcome variable. Panel a shows the full model. Panel b shows the reduced model where the 
unobserved somatic and psychosomatic states of a participant are not directly represented in the causal model.
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path, quantified by τ, and by an indirect path, mediated by S, and quantified by the product δλ. The combined 
effect of the direct and indirect paths represents the placebo effect. The direct path from P to Y represents the 
influence of the psychosomatic state on the outcome mediated by biochemical and physiological pathways dis-
tinct from the pathways influenced by the active treatment, while the influence of P on S allows for the possibility 
that P also influences the same pathways targeted by the treatment X. (Experimental evidence that placebo effects 
influence biochemical pathways is provided, for example, in studies of placebo analgesia involving endogenous 
opioid systems1,17–22. See also Fig. 2 in ref. 2, for empirical support about pathways influenced by both psychoso-
cial context and drug treatments).

The role played by the expectation-desire model of emotions is made explicit by the observed variables E, 
D, I and M, representing, respectively, the expected symptom intensity, the desire for symptom improvement, 
the interaction between expectation and desire, and the emotional level (measured, for example, by the partici-
pant’s mood). According to the expectation-desire model, M is directly influenced by E, D, and their interaction 
I =​ E ×​ D. The causal influence of M on P is quantified by φ.

In unblinded trials it is reasonable to expect that the treatment actually received by the participant will affect 
its expected symptom intensity, since participants who know they are receiving the active treatment will more 
likely experience an increase in their expectation to feel better. Hence, we include an arrow from X to E. The impli-
cation is that the treatment can influence the outcome not only via the participant’s somatic state, but also by its 
psychosomatic state via the paths X →​ E →​ M →​ P and X →​ E →​ I →​ M →​ P. The binary variable Q represents the 

Figure 2.  Models used in the simulation study. Node definitions are provided in Fig. 1. Panels a and b 
represent, respectively, blinded and unblinded trials influenced by confounders. For simplicity we include a 
single confounder variable per pair of endogenous variables (other than I), but still simulate confounding across 
the 10 possible pairwise combinations of the endogenous variables X, Y, E, M, and D. Panels c and d represent, 
respectively, unconfounded blinded and unblinded trials. For simulations under the null H0:ψ =​ 0 there are no 
arrows from M to Y. Similarly, for simulations under H0:β =​ 0, there are no arrows from X to Y.
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randomized psychological encouragement IV assuming the value 1 when a encouragement conversation/inter-
action (aiming to increase the desire for symptom improvement) is applied to the participant, and 0 otherwise.

In addition to the key variables described so far, it is important to recognize the existence of unmeasured 
confounders. Except for the exogenous variables Z and Q, that by construction are not associated with any 
unmeasured confounders, the model includes confounders influencing all pairs of endogenous variables other 
than I, namely, X, E, D, M, P, S, and Y. (It is not necessary to include confounders between I and the other endog-
enous variables, since I is deterministically computed as the product of E and D). For instance, U represents a set 
of unmeasured confounder variables influencing X and Y. In order to avoid cluttering the figure, the confounder 
variables influencing S and P and all other endogenous variables are represented by the vector of variables 
 = …H H( , , )T1 11 . (For the same reason the figure does not explicitly shows the error terms, which account for 
unmeasured variables influencing each particular variable in the model and are uncorrelated with each other). It 
would be unrealistic to assume, for example, that the emotion of a participant is determined by E, D, and I alone. 
Hence, the model allows sets of unmeasured confounders, such as L1, L2 and L3, to influence emotion and expec-
tation, emotion and desire, and expectation and desire, respectively. Similarly, it would be unrealistic to assume 
that emotion alone influences the psychosomatic state of a participant, and the model accommodates unmeas-
ured confounders influencing these variables as well. Although, in practice, not all endogenous variables (other 
than I) will necessarily be influenced by confounders, the model still includes confounders for all 21 pairwise 
combinations of endogenous variables, since we want to derive estimators for the placebo and treatment effects 
under the most general setting possible.

In practice, however, it is impossible to accurately measure the unobserved somatic and psychosomatic states 
of a participant. Hence, Fig. 1b presents a reduced version where S and P are not explicitly represented in the 
graph. Assuming linear relationships between S and X, P and M, and Y, S, and P, the causal influence of X on Y is 
given by β =​ ηλ, while the influence of M on Y is given by ψ =​ φτ +​ φδλ. Under this reduced model the instru-
mental variable Q allows for the consistent estimation of the net placebo effect, ψ, using the IV estimator 
ψ = 
ˆ Q Y Q MCov( , )/Cov( , )IV . Once the net placebo effect is estimated, it is possible to estimate the causal effect 
of X on Y using the IV estimator of the causal effect of X on the residuals of the outcome variable after the removal 
of the placebo effect, β = 

ˆ ˆZ R Z XCov( , )/Cov( , )sIV2 , where ψ= −ˆ ˆR Y MIV  (see Methods for details).

Performance evaluation
We assessed the statistical performance of the proposed method (and compare it to a naive regression approach) 
in 16 simulation experiments evaluating the empirical type I error rate and empirical power of randomization 
tests for the null hypotheses that the placebo effect is zero, H0:ψ =​ 0, and that the treatment effect is zero, H0:β =​ 0. 
Descriptions of the randomization tests and simulation experiments are provided in the Methods. We simulated 
data from blinded and unblinded trials, in the presence and absence of confounders, according to the models 
presented in Fig. 2.

For each setting, we ran 4 separate simulation experiments generating data: (i) under the null for treatment 
and placebo effects; (ii) under the alternative for treatment, and null for placebo effects; (iii) the other way around; 
and (iv) under the alternative for treatment and placebo effects. Each simulation experiment employed 10,000 
distinct synthetic data sets with diverse characteristics (see Methods). Although the randomization tests are 
non-parametric procedures free of distributional assumptions, we still generated data using gaussian errors in 
order to met the distributional requirements of the regression based analytical tests used in our comparisons.

Figure 3 presents the results for the placebo effect tests, and shows that the error rates of the IV approach (red 
and blue) are controlled at the exact nominal levels in both blinded and unblinded settings, in the presence and 
absence of confounders. The regression approach (brown and dark-orange), on the other hand, shows highly 
inflated errors in the presence of confounders (Fig. 3a and b), since the association between M and Y, caused by 
confounders, is mistaken by an influence of M on Y. Being able to control type I error rates at the exact nominal 
level is a desirable statistical property, as it means that the test is neither conservative nor liberal.

Figure 4 presents the results for the treatment effect tests in the blinded setting. In addition to the two-step 
estimator (blue), we also evaluated the simple IV estimator β = 

ˆ Z Y Z XCov( , )/Cov( , )IV , which does not account 
for the placebo effect (red). The results show, again, well controlled error rates for both IV approaches, but inflated 
errors for the regression test (brown) in the presence of confounders (Fig. 4a and b).

Figure 5 presents the results for the unblinded case. All panels show slightly inflated errors for the two-step IV 
estimator (blue). The likely reason is that the estimated placebo effects are noisy and unable to completely block 
the influence of X on Y through the paths mediated by M. To test this supposition, we evaluated an additional IV 
estimator, where the true placebo effect was used in the computation of the residuals (i.e., we estimated β by 
β = 
ˆ Z R Z XCov( , )/Cov( , ),  w here  R  = ​ Y  − ​ ψM ,  ins te ad  of  β = 

ˆ ˆZ R Z XCov( , )/Cov( , )sIV2 ,  w here 
ψ= −ˆ ˆR Y MIV ). Results based on this estimator (dark-orange) show that, indeed, adjustment by the true pla-

cebo effect leads to error rates controlled at the nominal level. The regression approach (brown) shows again 
highly inflated errors in the presence of confounders (Fig. 5a and b). Figure 5a and c show well controlled errors 
for the non-adjusted IV estimator (red) in the absence of placebo effects as, in this case, there are no paths from X 
to Y, and the association between X and Y induced by confounders is accounted by the IV estimator. Figure 5b 
and d, on the other hand, show highly inflated error rates in the presence of placebo effects since, in this case, X 
can influence Y through the paths mediated by M.

These observations suggest that, in practice, when analyzing the results of unblinded trials, we should first 
test for the existence of placebo effect, and then use the two-step IV estimator if H0:ψ =​ 0 is rejected, and the 
non-adjusted one if H0:ψ =​ 0 is accepted. While this strategy can decrease the chance of the two-step approach 
making a type I error in the absence of placebo effects, the estimator is still unable to avoid slightly inflated errors 
produced in the presence of placebo effects. We point out, however, that the two-step procedure still represents 
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a strong improvement over the alternative approach of not adjusting for placebo effects in the presence of con-
founders (compare the red and blue curves in Fig. 5b).

For completeness, we also report an evaluation of the empirical power (Suppl. Figs 1, 2 and 3). We point out, 
however, that power results are more sensitive to the choice of parameter values employed in the generation of 
the simulated data (e.g., sample size, the strength of treatment, placebo and confounding effects, and etc), than 
the type I error rates. In any case, these empirical power results, still serve to illustrate some general patterns. For 
instance, the regression tests tended to show considerably stronger power than the IV approaches in the pres-
ence of confounders (compare the brown and blue curves in panels a and b of Suppl. Figs 2 and 3. We point out, 
however, that this increased power is likely an artifact of the biased estimates of β outputted by the regression 
approach. Suppl. Fig. 4, illustrates how the regression estimates tended to show larger bias than the estimates 
generated by the IV estimators (note the heavier tails of the brown density, in both blinded and unblinded cases). 
In other words, the increased power is likely a consequence of the overestimation of the treatment effect by the 
regression approach, which mistakenly interprets the association between treatment and outcome caused by 
unmeasured confounders as a stronger influence of the treatment on the outcome.

At least for the parameter ranges adopted in our simulations, we observed good empirical power of the IV 
approach to detect placebo effects, even when the correlation between psychological encouragement and emo-
tional level was relatively low (Suppl. Fig. 5a). This suggests that the psychological encouragement treatment does 
not need to be highly effective in manipulating the emotional levels, in order for the approach to work well in 
practice. Similarly, Suppl. Fig. 5b shows good empirical power of the two-step IV approach to detect treatment 
effects when the correlation between the assigned and received treatment is moderate, suggesting that the pro-
posed approach does not require high levels of compliance in order to perform well.

Figure 3.  Empirical type I error rates of the placebo effect null, H0:ψ = 0, in both blinded and unblinded 
settings. Panels a and b show that, in the presence of confounders, the type I error rate of the IV approach is 
controlled at the exact nominal level (red and blue), whereas the regression based test leads to highly inflated 
error rates (orange and brown). Panels c and d show that, in the absence of confounding, both IV and regression 
approaches show well controlled errors. The nominal significance level is represented by α.
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A natural question, at this point, is whether larger sample sizes (and, hence, more precise estimates of ψ) 
would be able to decrease the slightly inflated error rates produced by the two-step estimator in unblinded trials. 
Figure 6 presents additional simulation experiments showing that, while the empirical power and the ψ̂IV  and 
β̂ sIV2  estimates are greatly improved by larger sample sizes, the type I error rates stay roughly the same (likely 
because larger sample sizes increase the ability of a test to detect small effects, since the randomization null distri-
butions tend to be more concentrated around 0, so that the improved ψ̂IV  estimates are counterbalanced by the 
increased propensity to detect small and spurious treatment effects). These results suggest that special care must 
be taken while interpreting the results of hypothesis tests in the unblinded case, even for large sample sizes. In any 
case, when the goal is estimation rather than testing, the consistency of the two-step estimator guarantees that the 
treatment estimates will converge to the true value as the sample size increases.

This observation is particularly important in view of the current trend in the biomedical field, where research-
ers are shifting from relying exclusively in p-values and are paying more attention to parameter estimates and con-
fidence intervals. To meet this latter need, we also describe in the Methods how to generate confidence intervals 
(CIs) for placebo and treatment effects by inverting randomization tests. Figure 7 shows 95% CIs for the placebo 
and treatment effects, from 3 simulated data sets of increasing sizes. The randomization CIs inherit the statistical 
properties of the randomization tests, hence, the placebo effect CIs (and treatment effect CIs from blinded trials) 
are exact in the sense that a 100(1 −​ α)% interval will contain the true parameter value 100(1 −​ α)% of the time. 
Note that while the treatment effect CIs from unblinded trails won’t be exact, they are still going to be centered 
around the estimated treatment effect, which will, nevertheless, converge to the true value as the sample size 
increases.

Figure 4.  Empirical type I error rates for the treatment effect null, H0:β = 0, in the blinded setting. Panels 
a and b show that, in the presence of confounders, the type I error rates of the IV approaches are controlled 
at the exact nominal level (red and blue), whereas the regression based test leads to highly inflated error rates 
(brown). Panels c and d show that, in the absence of confounding, both IV and regression approaches show well 
controlled errors. The nominal significance level is represented by α.
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Discussion
Clinical trials traditionally employ blinding to control the influence of placebo effects. It has being pointed out, 
however, that even blinded studies might be influenced by placebo effects, as the patients perceptions and beliefs 
about the treatment they think they received are able to trigger strong placebo effects1,12,13. Recently, a number of 
statistical approaches have been proposed to quantify the contributions of treatment and placebo effects to a clin-
ical outcome23–25. These approaches, nonetheless, are tailored to blinded trials, and leverage blinding assessment 
data to quantify the amount of unmasking taking place during the trial. Our IV approach, on the other hand, 
actively manipulates emotion levels and allows the quantification of treatment and placebo effects not only in 
blinded, but also in unblinded trials.

The key idea underlying the IV approach (what actually allows the consistent estimation of both treatment and 
placebo effects in the presence of unmeasured confounders), is the use of randomization to separately manipulate 
the treatment assignment and encouragement conversations/interactions. In this sense, the proposed approach is 
similar in spirit (but not exactly equivalent) to a randomized treatment-belief trial (RTB)26, where the treatment 
assignment is manipulated by randomization, whereas the belief is manipulated by varying the allocation ratio of 
participants assigned to control and treatment groups in a, necessarily, blinded trial. Hence, our IV approach can 
be viewed as a more flexible type of RTB that is applicable to both blinded and unblinded studies, and might be 

Figure 5.  Empirical type I error rates for the treatment effect null, H0:β = 0, in the unblinded setting. The 
two-step IV approach (blue) shows slightly inflated errors in the presence (panels a and b) and absence (panels c 
and d) of confounders. Note that the larger errors in panels c and d, in comparison to a and b, are likely due to 
the effective stronger influence of X on M in the simulations unaffected by confounders (the presence of 
confounders can considerably increase the amount of noise), so that adjustment by ψ̂IV  leaks more information 
about X in the absence than in the presence of confounders. The estimator adjusted by the true placebo effect 
(dark-orange) leads, nonetheless, to well controlled errors. The non-adjusted IV approach (red) leads to well 
controlled errors in the absence of placebo effects (panels a and c), but to highly inflated errors in the presence 
of placebo effects (panels b and d). Regression (brown) leads to highly inflated errors in the presence of 
confounders (panels a and b), but to well controlled error rates in their absence (panels c and d).
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easier to administer than a standard RTB, which requires the stratification of study participants over several arms 
with distinct treatment/control allocation ratios in order to be able to assess placebo effects.

The proposed IV approach enjoys appealing statistical properties. The IV estimators are consistent, meaning 
that the estimates converge to the true values as sample size increases. The randomization tests for placebo effects 
are exact in both blinded and unblinded trails, whereas the treatment effect tests are exact in blinded trials, but 
slightly liberal in unblinded ones. Furthermore, the confidence intervals obtained by inverting randomization 
tests inherit these appealing properties.

Under our proposed statistical model, the identification of the average treatment effect, β, and the average 
placebo effect, ψ, requires a number of assumptions, namely: (i) that Z (Q) do not share common causes with 
Y; (ii) that Z (Q) is marginally associated with X (M); (iii) that Z influences Y only through X (and Q influences 
Y only through M); (iv) that Y is linearly associated with X and M; (v) that the influence of residual errors and 
unmeasured confounders on Y is additive; and (vi) that the average causal effects, β and ψ, are constant across all 
individuals in the population.

The first 3 assumptions correspond to the “core” conditions for instrumental variables16. They allow the iden-
tification of bounds27 for the causal effect (i.e, lower and upper limits for the effect that are consistent with the 
data), but are not sufficient to identify a point estimate for the causal effect. In observational studies, conditions i 
to iii need to be carefully evaluated in order to assess the validity of the putative instrument. However, in the 

Figure 6.  Consistency of the ψ̂IV  and β̂ sIV2  estimators. Panels a and b present, respectively, the densities of 
ψ ψ− ˆ

IV  and β β− ˆ
sIV2  for 5 increasing sample size ranges, and illustrate the consistency of the ψ̂IV  and β̂ sIV2  

estimators (which tend to get closer to the true parameter values as the sample size increases). Panel c shows 
that, as expected, the statistical power to detect a treatment effect increases with the sample size. Panel d, on the 
other hand, shows that increasing sample sizes do not reduce type I error rates, even though we are able to better 
estimate the placebo effects. The likely reason is that while larger sample sizes lead to better ψ̂IV  estimates, they 
also increase the statistical power to detect very small effects, so that the advantage of a more precise estimate of 
ψ̂IV  is counterbalanced by the increased propensity to detect small and spurious treatment effects as true signals. 
Results were based on data simulated from unblinded trials influenced by placebo effects and counfounders, as 
described in the Methods section.
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context of our proposed approach, where the instruments are randomized, condition i is valid by construction, 
while condition ii holds if there is some degree of compliance between the randomly assigned treatment and the 
treatment effectively adopted by the study participants, and if the psychological suggestions are able to manipu-
late the emotion level of the study participants (observe, however, that these assumptions can be checked empir-
ically, by inspecting  Z Xcor( , ) and  Q Mcor( , )). Condition iii, also known as the exclusion restriction, is only 
guaranteed to hold in double-blinded trials28, since knowing to which treatment arm a participant has been 
allocated might change the participant’s behavior in ways that affect the outcome other than through the treat-
ment and/or placebo effects. For instance, condition iii would be violated if assignment to the treatment group 
increased awareness about risk factors, and the participants adopted preventive measures that they would not 
have adopted, had they been assigned to the control group29. In any case, condition iii is often reasonable in other 
experimental situations (but still needs to be stated as an assumption).

The additional assumptions iv to vi allow the identification of point estimates for the causal effects and are 
specific to the structural equations underlying our proposed method. The adequacy of assumptions iv and v 
can, nonetheless, be checked empirically by examining if a linear model provides a reasonable fit to the data. 
Assumption vi, on the other hand, is often times more contentious since it is unlikely to (strictly) hold in most 
applications based on continuous responses, and is generally impossible to hold for binary responses30. (An alter-
native causal framework based on potential outcomes31,32 explicitly allows for effect heterogeneity by focusing on 
unit-level participant specific causal effects, but at the expense of only being able to identify the treatment effect 
for a latent subpopulation of “compliers”33).

Figure 7.  Randomization confidence intervals for placebo and treatment effects. The brown, dark-green 
and blue curves show the one-sided p-value profiles derived from randomization tests for 3 simulated data 
sets of increasing sizes (300, 900, and 2,700, respectively), generated under the unblinded setting influenced by 
confounders (all simulation parameters, other than sample size, were set to 1). The 95% confidence intervals for 
the placebo (panel a) and treatment effects (panel b) are shown by the respective double-headed colored arrows. 
The red vertical line corresponds to the true parameter values, ψ =​ 1 and β =​ 1.
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An implicit assumption of the model in Fig. 1a is that the placebo effect is mediated exclusively by the inter-
play of (perfectly measured levels of) desire, expectation, and emotion, assessed at a single time point. While it is 
believed that the desire-expectation model plays a key role in the triggering of placebo effects, other mechanisms, 
such as conditioning and learning, might also be at work1–3. Clearly, when this is the case, a treatment effect 
estimate, adjusted by the desire-expectation component alone, will still be biased (although less biased than the 
estimate computed without accounting for it). In any case, if we are also able to assess and measure these addi-
tional mechanisms, then the same statistical framework can be used to obtain consistent estimates of treatment 
effects in the presence of confounders (we only need additional IVs to manipulate the additional placebo related 
variables). Figure 8 shows an example.

All simulation results presented in the main text were generated under the assumption of perfect measure-
ments of the emotion level variable. In practice, however, recording of emotion levels might be more prone to the 
influence of measurement error than the recording of the treatment, outcome and instrumental variables. In 
order to evaluate the influence of measurement error in the performance of the proposed method, we conducted 
a number of additional simulation experiments with data generated under the presence of varying amounts of 
measurement error over the emotion level variable. A detailed description of the simulation design and results is 
presented in the Supplementary Note. Our results suggest that, at least for the settings evaluated in our 

Figure 8.  A more complex example. Panel a presents a more complex model where the placebo effect is 
mediated by M (according to the desire-expectation model) but also by an additional variable A (definitions of 
the additional nodes in the graph are provided in Fig. 1). Assuming that a randomized instrument, W, is 
available to manipulate A, we can estimate the treatment effect using the estimator β = 

ˆ ˆ⁎ ⁎
Z R Z XCov( , )/Cov( , ) 

where ψ κ= − −ˆ ˆ ˆ
⁎

R Y M AIV IV . Panel b shows the empirical type I error rates for a simulation experiment 
under the unblinded setting influenced by confounders. The IV estimator adjusted by the true ψ and κ values is 
able to control error rates at the nominal levels (dark-orange). The IV estimator adjusted by ψ̂IV  and κ̂IV  shows 
slightly inflated errors (dark-green). As expected, adjustment with ψ̂IV  alone (blue) leads to higher error rates 
than adjustment with both ψ̂IV  and κ̂IV . Similarly, the IV estimator using no adjustment (red) has higher errors 
than adjustment by ψ̂IV  alone. The regression based estimator (brown) is adjusted by both M and A covariates, 
but still leads to inflated errors due to the presence of confounders. Panel c shows the empirical power results.
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simulations, the placebo effect IV estimator, ψ̂IV , tended to be resilient to the effects of measurement error, and 
was considerably less biased than the regression approach estimator, ψ̂R. This result is not surprising given that 
the initial motivation for the use of IV estimators in economics was to handle measurement error in explanatory 
variables14, and, hence, one would expect ψ̂IV  to be able to account for measurement error on the emotion level 
variable. Furthermore, our results also illustrated that the placebo adjusted IV estimator of treatment effects, 
β = 
ˆ ˆZ R Z XCov( , )/Cov( , )sIV2 , tended to be less biased than the regression, β̂R, and unadjusted IV estimators, 
β = 
ˆ Z Y Z XCov( , )/Cov( , )IV , in the presence of measurement error, although the decrease in bias achieved by 
β̂ sIV2  tended to be less accentuated in comparison to the decrease observed for the placebo effect. This last obser-
vation is also not surprising since the estimation of the placebo effect is never free from noise, and, even though 
ψ̂IV  seems to be able to reduce the additional bias induced by measurement error, it cannot completely neutralize 
it. Hence, in the presence of measurement error, the placebo effect estimates, ψ̂IV , employed in the computation 
of the residuals, R̂ (which enter the estimation of β̂ sIV2 ), tend to be less effective in removing the influence of the 
placebo effect on the outcome variable.

The current popularity of IV methods in observational studies seems to arise from their ability to account for 
unmeasured confounding. However, an increasing body of literature shows that IV methods can be very sensitive 
to violations of the underlying assumptions. Well known sources of biases in IV analysis include: bias amplifica-
tion due to weak association between instrument and exposure/endogenous explanatory variable28; violations of 
the exclusion restriction28; and biases generated by selection mechanisms34,35. It has also been argued in the litera-
ture36,37 that IV methods shift the problem of measuring and adjusting for confounders of the treatment-outcome 
association, to the problem of dealing with confounders of the instrument-outcome association. We point out, 
nonetheless, that because our proposed approach is based on truly randomized IVs, it avoids instrument-outcome 
confounding issues. However, our method is still vulnerable to bias amplification, to selection bias issues (includ-
ing selection of treatment35 in situations where an analyst focus on only two treatments while ignoring other 
possibilities, e.g., no treatment), and to violations of the exclusion restriction.

From a pragmatic perspective, the proposed method is (in principle) easy to implement. It only requires the 
ability to assess expectation, desire, and emotion, as well as, the development of a psychological encouragement 
IV, capable of manipulating the level of desire of a study participant. For example, in trials run into a clinic, a sim-
ple encouragement conversation/interaction with a caregiver would work as the “active treatment” of the psycho-
logical encouragement IV. The desire and emotion level could then be recorded by a questionnaire or interview 
after the encouragement treatment, but prior to the measurement of the outcome variable.

Another application of the proposed method (the one that actually motivated this work) is in the personalized 
monitoring of treatment response in mobile health. The statistical validity of using treatment assignment as an 
IV, in the context of longitudinal data provided by a single patient, has been established in ref. 38. However, as 
pointed out by the authors, it is impossible to disentangle treatment and placebo effects based on the treatment 
assignment IV alone, since it is impossible to blind the patient to a self administered treatment. Implementation 
of the proposed IV approach in mobile health applications is also in principle strait-forward. For instance, the 
psychological treatment could be delivered by encouragement messages popping up in the screen of a smart-
phone (according to a randomized schedule, where every day the participant has an equal chance of receiving, or 
not, the encouragement message), and the measurement of the emotion and desire levels can be assessed by short 
electronic surveys/quentionnaires delivered by the participant’s smartphone on a daily basis. We expect that the 
proposed method might play an important role in these personalized medicine39,40 applications.

Finally, for both (population-based) clinical trials and personalized monitoring of treatment response, the 
instrument Q serves the double role of disentangling placebo from treatment effects, and increasing the desire for 
improved symptoms. This latter capacity can induce a placebo effect and ultimately lead to more positive clinical 
outcomes. While the manipulation of the expectation for symptom intensity could, in principle, be used to con-
sistently estimate a placebo effect under the proposed approach (i.e., we could have an IV influencing E instead 
of D), the manipulation of expectation levels needs to be accompanied by the honest disclosure of the expected 
benefits of a treatment (and, in some cases, might raise ethical issues)2. Manipulation of the desire for improved 
symptoms, on the other hand, provides an ethically defensible practice in the design of clinical trials and in the 
personalized monitoring of patients.

Methods
Identification of causal effects using instrumental variables.  We subscribe to the mechanism-based 
account of causation championed by Pearl41. In the mechanism-based framework, the qualitative description 
of the assumptions regarding the causal relations between the variables is encoded in a directed acyclic graph 
(DAG). When confounder variables are present, it is still possible to use instrumental variables to identify causal 
effects, whenever certain parametric and distributional assumptions hold. To fix ideas consider the toy causal 
model,

where A represents an IV, C represents the outcome variable, B represents an exposure/endogenous explanatory 
variable with a causal influence on the outcome C, and U represents an unmeasured confounder influencing both 
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B and C. Three necessary (although not sufficient) conditions16 required for A to qualify as an IV include that: (i) 
A must be marginally independent of any confounders of B and C, that is, A⊥⊥​U; (ii) A must be marginally asso-
ciated with B, that is, A  B; and (iii) the association between A and C must be mediated exclusively by B, that is, 
A⊥⊥​C | (B, U). Inspection of Fig. 1a and b shows that these three assumptions are satisfied for the instrumental 
variable Q relative to the emotion level M and the outcome Y, as well as, for the instrumental variable Z relative to 
the received treatment X and outcome Y. In the context of randomized clinical trials, assumption i is valid by 
construction due to the randomization of the instruments. Assumptions ii holds if there is some degree of com-
pliance between the randomly assigned treatment and the treatment effectively adopted by the study participants 
(i.e., Z  X), and if the psychological suggestions are able to manipulate the emotional level of the study partici-
pants (i.e., Q  M). Assumption iii is only guaranteed to hold in double-blinded trials28, but is often reasonable 
in other experimental situations.

As we describe next, the identification of the causal effects of M on Y and of X on Y requires, nonetheless, the 
additional assumptions of linear relations between Y and M and between Y and X. Assuming a linear relation 
between the outcome, Y, and the unobserved somatic and psychosomatic state variables, S and P, we have that,

V Hµ λ τ ε= + + + +Y S P f U( , , ) , (2)Y Y Y

where  = V V V( , , )T1 2 3 , = …H H( , , )T1 11 , εY represents an error term accounting for the unmeasured vari-
ables influencing exclusively Y, and V Hf U( , , )Y  represents is a general scalar function of the variables in 
U( , , )V H  influencing Y.

Since S and P are unobserved variables, we need to derive the reduced model for the outcome variable that is 
not a function of S and P. Assuming a linear relation between P and M, and between S and P and X, we have that,

µ φ ε= + + +P M f ( ) , (3)P P P

µ η δ ε= + + + +S X P f ( ) , (4)S S S

where f ( )P  and f ( )S   are arbitrary scalar functions of , and εP and εS are the respective error terms influ-
encing P and S, respectively (we also assume that all variable specific error terms, ε, are uncorrelated).

Substituting equations (3) and (4) into equation (2), we obtain the reduced outcome model,

µ β ψ ε= + + + +⁎ ⁎ ⁎Y X M f U( , , ) (5)Y YV H

where  β  = ​ ηλ ,  ψ  = ​ φτ  + ​ φδλ ,  µ µ λµ τ δλ µ= + + +⁎ ( )Y Y S P ,  ε ε λε τ δλ ε= + + +⁎ ( )Y Y S P ,  and 
V H V H H Hλ τ δλ= + + +⁎f f f fU U( , , ) ( , , ) ( ) ( ) ( )Y S P . Equation (5) represents the outcome model in 

Fig. 1b.
Because the instrumental variable Q is randomized, and hence statistically independent of any variables that 

are not directly or indirectly influenced by Q, it follows from equation (5) and standard properties of the covari-
ance operator that,

µ β ψ

ε
ψ

= + +

+ +
=

⁎

⁎ ⁎
Q Y Q Q X Q M

Q f Q
Q M

U
Cov( , ) Cov( , ) Cov( , ) Cov( , )

Cov( , ( , , )) Cov( , )
Cov( , ), (6)

Y

YV H

since µ⊥⊥ ⁎Q Y , Q ⊥⊥​ X, ⊥⊥ ⁎Q f U( , , )V H , and ε⊥⊥ ⁎Q Y , and the respective covariance terms are 0 (here, the 
symbol ⊥⊥​ stands for statistical independence). Therefore, ψ can be identified as,

ψ = Q Y
Q M

Cov( , )
Cov( , )

,
(7)

as long as Cov(Q, M) ≠​ 0 (in practice, this condition is met if the psychological encouragement treatment can 
effectively manipulate the desire for improved symptoms, which, by its turn influences the emotional state, M). 
Note that the derivation of equation (7) required the key assumption that Y is linearly associated with M, and that 
the influence of residual errors and unmeasured confounders on Y is additive.

Now, if we let R =​ Y −​ ψM represent the residual of the outcome variable, after removal of the placebo effect, 
then we can rewrite equation (5) as,

V Hµ β ε= + + + .⁎ ⁎ ⁎R X f U( , , ) (8)Y Y

Because Z is also randomized, it follows from equation (8) and the properties of the covariance operator that,

µ β ε

β

= + + +

=

⁎ ⁎ ⁎Z R Z Z X Z f Z
Z X

U VCov( , ) Cov( , ) Cov( , ) Cov( , ( , , )) Cov( , )
Cov( , ), (9)

Y Y

since µ⊥⊥ ⁎Z Y , ⊥⊥ ⁎Z f U( , , )V H , and ε⊥⊥ ⁎Z Y . Hence, the treatment effect β can be identified as,

β = Z R
Z X

Cov( , )
Cov( , )

,
(10)
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as long as Cov(Z, X) ≠​ 0 (in practice, this condition is met whenever there is some degree of compliance between 
assigned and received treatments). Note that in the derivation of equation (10) we assumed a linear relation 
between Y and M in the derivation of the residual R, as well as, that R and X (and, hence, Y and X) are also asso-
ciated via a linear relationship.

Note that in addition to the three core assumptions required by an IV16 described above, the identification of 
the causal effects ψ and β require that: these effects are constant across the population; that the relationships 
between Y and M and between Y and X are linear; and that the contribution of the error terms, ε*, and of the 
confounders, ⁎f U( , , )V H , to the response is additive (although it is not necessary to make any explicit assump-
tions about the form of the relationship between the confounders and the response).

Additionally, because the covariance operator only captures linear associations between two variables, and it 
is possible that two variables have zero covariance when the causal influence of the first variable on the second is 
mediated by a non-linear mechanism, the identification results in equations (7) and (10) require the additional 
assumptions that that Q is linearly associated with M and Y, and that Z is linearly associated with X and R. We 
point out, however, that for binary instruments these additional assumptions can be relaxed since it can be shown 
(see the section on the non-parametric identification of causal effects for binary instruments) that the large sam-
ple estimators of the non-parametric average causal effects (derived without making the linearity assumption) are 
proportional to the respective sample covariance estimators, that is,

→ = = − = ∝� � �� Q Y E Y do Q E Y do Q Q YACE( ) ( ( 1)) ( ( 0)) Cov( , ), (11)

→ = = − = ∝� � �� Q M E M do Q E M do Q Q MACE( ) ( ( 1)) ( ( 0)) Cov( , ), (12)

→ = = − = ∝� � �� Z R E R do Z E R do Z Z RACE( ) ( ( 1)) ( ( 0)) Cov( , ), (13)

→ = = − = ∝ .� � �� Z X E X do Z E X do Z Z XACE( ) ( ( 1)) ( ( 0)) Cov( , ) (14)

This observation shows that, at least for binary instruments (and when the sample size is large) it is not pos-
sible for two variables to have zero covariance when the causal influence of the first variable on the second is 
mediated by non-linear mechanisms.

Non-parametric identification of causal effects for binary instruments.  In the following we derive 
a large sample non-parametric estimator of the causal effects of a binary instrumental variable using Pearl’s inter-
ventional calculus41. But first we introduce some notation and provide a brief background.

Under the mechanism-based account of causation, the statistical information encoded in the joint probability 
distribution is supplemented with a causal DAG encoding the qualitative description of our assumptions about 
the causal relations between the variables. The joint probability distribution factorizes according to the causal 
graph,

∏… = |P x x P x pa x( , , ) ( ( )),
(15)

p
j

j j1

where each element, P(xj | pa(xj)), represents an autonomous mechanism describing the relationship between 
variable Xj and its parents. In this framework, causation means predicting the consequences of an intervention 
over a set of variables in the DAG, where intervention is expressed as a “surgery” on the equations and associated 
causal graph. We adopt the do operator notation to distinguish P(y | do(X =​ x)) from P(y | X =​ x), where the for-
mer quantity describes the post-intervention distribution of Y given that the value of X was set be x by an external 
intervention, while the latter represents the usual conditional distribution of Y given that we observed the value 
of X to be equal to x (and is denoted the observational or pre-intervention distribution). For interventions over a 
single variable, the relationship between the pre-intervention and post-intervention distributions is given by the 
truncated factorization formula,

∏… | = ′ = | = ′
≠

P x x do X x P x pa x x x( , , ( )) ( ( ))11{ },
(16)

p k k
j k

j j k k1

where the removal of the equation P(xk | pa(xk)) from the product in equation (16), and the replacement of xk by 
′xk in all elements P(xj | pa(xj)) for which Xk is a parent of Xj, formalizes what is meant by an “intervention sur-

gery”. The average causal effect of a binary variable A on a variable B is defined as,

→ = = − = .A B E B do A E B do AACE( ) ( ( 1)) ( ( 0)) (17)

where the expectation is taken with respect to the post-intervention distribution P(B | do(A =​ a)). We say that 
the causal effect of A on B is identifiable if the post-intervention distribution P(A | do(A =​ a)) (and hence the 
ACE(A →​ B) quantity) is a function of observed variables only.

Now we show that the large sample non-parametric estimator of the causal effects of a binary instrumental 
variable on one of its descendent variables, is proportional to the respective sample covariance estimator. We 
illustrate the derivation using the average causal effect of Q on M, but the same exact rationale applies to the der-
ivation of the causal effects of Q on Y, Z on X, and Z on R.
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Let  represent a DAG for which the core IV assumptions i to iii described above hold, but otherwise arbitrary. Note 
that, in this case, Q will always be an exogenous variable in  (i.e., Q has no parents in ). Let V represent the set of all 
variables in , and A =​ V\{M, Q}. Since Q is an exogenous variable in , we can factor the joint distribution of V as,

= = = .P M Q P M Q q P Q qA A( , , ) ( , ) ( ) (18)

Although the conditional joint distribution, P(M, A | Q =​ q), can be further factorized according to , we don’t 
need to specify the factorization explicitly when determining the post-intervention distribution for the interven-
tion do(Q =​ q′​), since application of the truncated factorization formula reduces to removing P(Q =​ q), and 
replacing Q =​ q by Q =​ q′​ in the remaining conditional distributions, so that,

= ′ = = ′P M do Q q P M Q qA A( , ( )) ( , ), (19)

independent of how P(M, A | Q =​ q′​) can be further factorized. The marginal post-intervention distribution is 
given by,

∑| = ′ = | = ′ = | = ′P M do Q q P M Q q P M Q qA( ( )) ( , ) ( ),
(20)A

where the summation over A is simply a notation for all the summations or integrations over each one of the 
variables in the set A.

The average causal effect of Q on M is then given by,

→ = = − =
= = − =

Q M E M do Q E M do Q
E M Q E M Q

ACE( ) ( ( 1)) ( ( 0))
( 1) ( 0), (21)

where the second equality follows from (20). A large sample non-parametric estimator of the expectation E(M | Q =​ q′​)  
is given by,

∑ = ′

∑ = ′
=

=

M Q q
Q q

11{ }
11{ }

,
(22)
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Two-step estimation procedure.  Adopting a method of moments approach, we have that a consistent 
estimator for ψ is given by,

ψ = =
∑ − ∑ ∑

∑ − ∑ ∑
.

= = =

= = =





ˆ ( )( )
( )( )

Q Y
Q M

Q Y Q Y

Q M Q M
Cov( , )
Cov( , ) (24)
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n
k k n k

n
k n k

n
k

n k
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k k n k
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k n k
n
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1
1
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1
1
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1

1
1

1
1

Note that the above placebo effect estimator requires measurements of M, but not of E or D. We point out, 
however, that if expectation and desire measurements are also available, then we can evaluate the validity of the 
desire-expectation model for the data at hand by checking whether the E, D, and I variables are able to predict 
the M measurements. We can also assess the effectiveness of the psychological treatment in influencing desire for 
better symptoms by estimating Cor(Q, D).

Direct estimation of the treatment effect in equation (10) using an IV estimator is unfeasible, as it would involve the 
unmeasured quantities Rk =​ Y −​ ψMk. Therefore, in order to obtain a consistent estimator of the treatment effect, we 
adopt a two-step approach where we first estimate Rk as ψ= −ˆ ˆR Y Mk k IV k, for k =​ 1, …​, n, and then estimate β using,

β = =
∑ − ∑ ∑

∑ − ∑ ∑
.

= = =

= = =

��
�

ˆ ˆ ˆ( )( )
( )( )

Z R
Z X

Z R Z R

Z X Z X
Cov( , )
Cov( , ) (25)
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Note that the IV estimators in equations (24) and (25) can produce highly inflated estimates when ≈ Q MCov( , ) 0 
and ≈ Z XCov( , ) 0. Hence, in practice, it is important to check the assumptions that psychological encouragement 
influences the emotion levels, and that the compliance between assigned and received treatments is not negligible.

Randomization tests for H0:ψ = 0 and H0:β = 0.  We implemented randomization tests42 for testing the 
presence of a placebo effect (H0:ψ =​ 0 versus ψ ≠H : 01 ), and of a treatment effect (H0:β =​ 0 versus β ≠H : 01 ). The 
randomization null distribution for the placebo effect is generated by evaluating the statistic ψ̂IV  in equation (24) 
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on a large number of shuffled versions of the data, where the Yk measurements are shuffled relative to the (Qk, Mk) 
measurements (whose connection is kept intact in order to preserve the association between the Q and M varia-
bles). The randomization null for treatment effect is generated by first calculating the residuals, ψ= −ˆ ˆR Y Mk k IV k, 
where ψ̂IV  is computed in the observed (not permuted) data, and then evaluating the statistic β̂ sIV2  in equa-
tion (25) in shuffled data sets, where Rk is shuffled relative to (Zk, Xk) data (whose connection is kept intact to 
preserve the association between Z and X). These randomization tests are non-parametric procedures and don’t 
make any distributional assumptions about the data. However, because the identification of the causal effects 
assumes a linear relation between Y and X and M, the validity of the tests is still contingent on this assumption.

Randomization confidence intervals.  Here we describe how to build confidence intervals for placebo and 
treatment effects using the p-values from randomization tests42,43. Throughout this section we use θ to represent either 
the placebo effect, ψ, or the treatment effect, β. The procedure is strait-forward but requires a considerable amount of 
computation (which, nonetheless, can be easily parallelized). Assume for a moment that randomization tests for testing 
H0:θ =​ θj against one-sided alternative hypotheses H1:θ <​ θj and H1:θ >​ θj are available. Exploring the correspondence 
between confidence intervals and hypothesis tests, we obtain a 100(1 −​ 2α)% confidence interval (CI) for θ by searching 
for a lower bound value, θL, such that H0:θ =​ θL is rejected in favor of H1:θ >​ θL at a significance α, and by searching for 
an upper bound value, θU, such that H0:θ =​ θU is rejected in favor of H1:θ <​ θU at the same significance level43.

While an efficient algorithm for finding CI bounds has been proposed43, the approach requires the specification of 
the significant level before hand. In order to avoid this constraint, we generate a one-sided randomization p-value pro-
file which can be used to determine the 100(1 −​ 2α)% CI for any desired α level. This p-value profile is generated as 
follows: (i) compute the observed placebo or treatment effect estimate, θ̂; (ii) for each θ θ< ˆ

j , in a grid of decreasing θj 
values, compute the randomization p-value from the one-sided test H0:θ =​ θj vs H1:θ >​ θj; (iii) repeat step ii until a 
p-value equal to zero is reached; (iv) for each θ θ> ˆ

j , in a grid of increasing θj values, compute the p-value from the 
one-sided test H0:θ =​ θj vs H1:θ <​ θj; (v) repeat step iv until a randomization p-value equal to zero is found.

Before we explain how to generate null distributions for placebo effects different from zero, consider first the 
intention-to-treat (ITT) estimator,
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Instead of directly generating a randomization distribution under the null H0:ψ =​ ψj, we generate a randomi-
zation distribution under the equivalent null hypothesis that the intention-to-treat effect is equal to ψjK1, where 
= K Q M QCov( , )/Var( )1  is constant across all permutations of the response data used in the construction of the 

randomization null. (Note that, because ψ=ψ ˆITT K1  the randomization tests based on ψ̂ and ψ
ITT  estimators 

produce exactly the same p-value if we use the same permutations of the response data in the construction of their 
null distributions).

The practical advantage of the test based on ITTψ effects is that it amounts to a simple two sample location prob-
lem for testing whether the difference in average response between the assigned treatment (psychological encour-
agement) and assigned control (no encouragement) groups is equal to ψjK1. The implementation of randomization 
tests for this two sample location problem is strait-forward43: we only need to add ψjK1 for each Yk data point in the 
assigned control group (i.e., k for which Qk =​ 0), while leaving the response data from the assigned treatment group, 
Qk =​ 1, unchanged, and then run a randomization test for testing the null hypothesis that the ITTψ effect is equal 
to zero, against the alternative one-sided hypothesis that it is positive, and against the alternative that it is negative.

Similarly, for the treatment effects we consider the two-step ITT estimator,
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and generate randomization distributions under the equivalent null hypotheses H0:ITTβ =​ βjK2, where 
= K Z X ZCov( , )/Var( )2 , by simply adding βjK2 for each R̂k data point in the assigned control group, Zk =​ 0, 

while leaving the residual data from the assigned treatment group, Zk =​ 1, unchanged (and then testing for the 
null that the ITTβ is equal to zero, against the alternative one-sided hypotheses that it is positive and the alterna-
tive that it is negative.

Adjustment for observed confounders.  If measured confounders influencing both X and Y are avail-
able, it is possible to adjust for them by simply working with the residuals of X and Y (computed by separately 
regressing X and Y on the measured confounders). Similarly, if measured confounders influencing both M and 
Y are available, it is possible to adjust for them by working with the respective residuals. Note that even though, 
in theory, this type of adjustment is unnecessary, given that IVs allow for the consistent estimation of the causal 
effect in the presence of observed and unobserved confounders, it turns out that, in practice, it is possible to 
improve the power to detect causal effects by adjusting for observed confounders. Supplementary Fig. 6 shows an 
illustrative example, where the placebo effect estimator is adjusted by the treatment variable (which corresponds 
to a measured confounder of the placebo effect in unblinded trials).

Regression based estimators and tests.  We compare the proposed IV estimators, and their respec-
tive randomization tests, to standard estimators and analytical hypothesis tests based on the linear regression 
of the outcome variable, Y, on both the received treatment, X, and emotion level, M, according to the model, 
Y =​ μY +​ βX +​ ψM +​ εY. Under this regression based approach, we estimate β and ψ using ordinary least squares, 
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and test the null hypotheses H0:ψ =​ 0 and H0:β =​ 0 using standard t-tests. In our simulations (described next), we 
generate data using gaussian errors, so that the distributional assumptions underlying the analytical t-tests are met.

Simulation experiments details.  We simulated data from blinded and unblinded settings, in the presence 
or absence of confounding, according to the models presented in Fig. 2. For each of these settings, we run 4 sep-
arate simulation studies generating data: (i) under the null hypothesis that both treatment and placebo effect are 
zero, H0:β =​ 0 and H0:ψ =​ 0; (ii) under the alternative for treatment effects, β ≠H : 01 , but null for placebo effects, 
H0:ψ =​ 0; (iii) the other way around, H0:β =​ 0 and ψ ≠H : 01 ; and (iv) under the alternative for both treatment and 
placebo effects, β ≠H : 01  and ψ ≠H : 01 .

Each simulated data set was generated as follows. The IVs Z and Q were sampled from Bernoulli(1/2) distri-
butions. All confounding variables were sampled from Normal(0, 1) distributions. The binary variables X, E, and 
D were generated by the threshold models,

θ θ θ θ θ ε= + + + + + >X Z U C C C11{ 0}, (28)XZ XU XC XC XC X1 2 31 2 3

θ θ θ θ θ ε= + + + + + >E X C L V L11{ 0}, (29)EX EC EL EV EL E1 1 2 31 1 2 3

θ θ θ θ θ ε= + + + + + >D Q V C L L11{ 0}, (30)DQ DV DC DL DL D1 2 2 31 2 2 3

where εX, εE, and εD were sampled from Normal(0, 1) distributions. The interaction I was generated as the product 
of E and D. Finally, the emotion and outcome data were generated from the linear models,

θ θ θ θ θ θ θ ε= + + + + + + +M E D I L L C V , (31)ME MD MI M L M L MC MV M1 2 3 31 2 3 3

θ θ θ θ θ θ ε= + + + + + +Y X M U V V V , (32)YX YM YU YV YV YV Y1 2 31 2 3

where εM and εY were sampled from Normal(0, 1) distributions. (Note that the explicit form of the desire-expectation 
model of emotions is unimportant, as the estimator for ψ depends on the observed values of M, but not of E, D, and 
I, and does not require an explicit description of the functional relationships between M and E, D, and I. Hence, for 
simplicity, we adopt a simple linear relation, even though more sophisticated relations could have been used).

Each simulation experiment comprised 10,000 distinct synthetic data sets. Each simulated data set was gen-
erated using a unique combination of simulation parameter values. In order to select parameter values spread 
as uniformly as possible over the entire parameter range we employed a Latin hypercube design44, optimized 
according to the maximin distance criterium45, in the determination of the parameter values used on each of the 
10,000 simulated data sets for each simulation experiment.

We selected wide ranges for all model parameters. Explicitly, the parameters representing the effect of confound-
ers on the observed variables (namely, θXU, θXC1

, θXC2
, θXC3

, θEC1
, θEL1

, θEV2
, θEL3

, θDV1
, θDC2

, θDL2
, θDL3

, θM L1
, θM L2

, 
θMC3

, θMV3
, θYU, θYV1

, θYV2
, and θYV3

) were selected in the range [−​2, 2] for the simulations under the influence of 
confounders, but were set to 0 in the simulations under unconfounded conditions. The effect of Z on X (θXZ), and of 
Q on D (θDQ), as well as, the effects of E, D, and I on M (θME, θMD, and θMI) were selected in the range [1, 2]. The effect 
of X on E (θEX) was set to 0 in the blinded setting simulations, and selected in the range [1, 2] in the unblinded sim-
ulations. The treatment effect (β) and the placebo effect (ψ) parameters were set to 0 in the simulations under the 
null hypothesis, and were selected in the range [−​2, 2] for the simulations under the alternative hypothesis. The 
range of sample size parameter, n, was set to realistic values we expect to see in practice, {100, 101, …​, 1000}.

For any fixed significance level α, the empirical type I error rate was computed as the fraction of the p-values 
smaller than α over the data sets simulated under the null hypothesis, whereas the empirical power was calculated 
as the fraction of p-value smaller than α over data sets generated under the alternative hypothesis.

Code availability.  The R code46 implementing the IV approach, and used in the generation of the simulation 
results and figures, is available at: https://www.synapse.org/DisentaglingTreatmentAndPlacebo.
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