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Abstract
A vast majority of the countries are under economic and health crises due to the cur-
rent epidemic of coronavirus disease 2019 (COVID-19). The present study analyzes 
the COVID-19 using time series, an essential gizmo for knowing the enlargement 
of infection and its changing behavior, especially the trending model. We consider 
an autoregressive model with a non-linear time trend component that approximately 
converts into the linear trend using the spline function. The spline function splits the 
series of COVID-19 into different piecewise segments between respective knots in 
the form of various growth stages and fits the linear time trend. First, we obtain the 
number of knots with their locations in the COVID-19 series to identify the trans-
mission stages of COVID-19 infection. Then, the estimation of the model parame-
ters is obtained under the Bayesian setup for the best-fitted model. The results advo-
cate that the proposed model appropriately determines the location of knots based 
on different transmission stages and know the current transmission situation of the 
COVID-19 pandemic in a country.
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1 Introduction

The 2019 novel coronavirus (COVID-19) is getting a lot of attention, because it 
is a new kind of pandemic disease that affects everywhere in the universe. Mil-
lion of people have died from this disease, and million of confirmed cases are 
recorded worldwide because of the nonexistence of antiviral drugs and vaccines. 
Researchers develop various methodologies to analyze and control the spread of 
COVID-19 and predict the future perspective of coronavirus cases. Jiang et  al. 
(2020) established the time series and kinetic model for infectious diseases, and 
predicted the trend and short-term prediction of the transmission of COVID-19. 
Al-Rousan and AL-Najjar (2020) analyzed the consequence of various factors 
such as sex, region, infection reasons, and birth year on recovered and deceased 
cases of the South Korea region. The results found that sex, region, and infection 
reasons affected both recovered and dead cases, while birth year only involved in 
deadly patients. Gondauri et al. (2020) considered the chain-binomial type Bai-
ley’s model for studying and analyzing the correlation between the total volumes 
of COVID-19 virus spread and recovery for the different countries. Most of the 
studies investigate the growth of COVID-19 cases based on various regression 
and time series models, because these models are frequently applied to examine 
the development or trend of any disease.

Under COVID-19 pandemic situation, series of daily recorded cases having 
non-linear characteristics such as shifting behavior, non-stationary, etc., shows a 
non-linear trend pattern due to enter in different stages of transmission. This non-
linear trend may be casted by a piecewise time series model with a high order 
of polynomial-time way. The spline function is the alternative to deal with such 
a time trend polynomial in a piecewise form. It is analyzed period wise discon-
tinuity by fitting a polynomial of a high order and join at knots. Knots are the 
points when there are sudden up and down in the series, and the result is a piece-
wise smooth time function. Eubank (1999) observed that the smoothest piecewise 
polynomial is a spline function that holds a segmented nature at present. Still, 
Hurley et al. (2006) called splines as continuous and smooth lines or curves func-
tion. Morton et al. (2009) considered a smoothing spline function to analyze the 
trend of generalized additive models with correlated errors and applied to data 
from a chemical process and to stream salinity measurements. Montoril et  al. 
(2014) studied the estimation of the functional-coefficient regression model by 
splines with autoregressive errors and showed the convergence rates of the pro-
posed estimator. Qiao et al. (2015) looked at a B-spline model on the durability 
of changes in the frequency signal over time. Conrad et  al. (2017) modeled the 
forced expiratory volume 1 (FEV1) data from cystic fibrosis (CF) and chronic 
obstructive pulmonary disease (COPD) using median regression splines. Osmani 
et al. (2019) used the B-spline and kernel methods to estimate the model coeffi-
cients and showed the application for psoriasis patient’s data.

In this paper, we study the trend pattern of the COVID-19 series using an 
autoregressive model with a trend approximated by a linear spline function. Iden-
tification of the number of knots and their locations are obtained using Bayes 



365

1 3

Japanese Journal of Statistics and Data Science (2022) 5:363–377 

factor and posterior probability, respectively. We use appropriate priors for model 
parameters to determine the posterior distribution and find the conditional pos-
terior distribution for making inferences about the parameters. We apply the 
Metropolis–Hastings (M–H) algorithm within the Gibbs sampler to generate pos-
terior samples from the conditional posterior distribution and get the Bayesian 
estimation for unknown parameters. The number and location of knots within 
a country explain the stages of transmission and the time points for achiev-
ing. Thus, this study gives an overview of the present trend of daily recorded 
COVID-19 cases and provides the current transmission stage of the most affected 
countries.

2  Model specification

A time series model is popularly known to regulate the trend pattern for the series of 
coronavirus (COVID-19). The COVID-19 transmission is mainly people to people 
contact and attains four stages: stage-1 (imported cases), stage-2 (local transmission), 
stage-3 (community transmission), and stage-4 (transmission out of control) as per the 
infection trend. Trend/growth patterns of the daily COVID-19 recorded cases are not 
always linear due to attain different transmission stages. Hence, this reaches a non-lin-
ear form, because more variability observes in the growth rate of COVID-19 infected 
cases. Thus, rather than using a linear process, a non-linear model is more suitable to 
study the trend scenario. The present paper expresses the non-linear trend using the 
spline function. Spline function is a piecewise polynomial segment, join together at 
knots based on shifts-or-quantal-jumps. The knot is a common fusion point that occurs 
when pattern behaviors at different intervals are changed. This change is also seen in 
the COVID-19 series based on different transmission stages, because the infected per-
son’s rate within a country depends upon various steps taken by the government and 
administration. Thus, knots are useful to determine a country is achieved which stage 
of transmission. For example, the GDP of India during demonetization goes down. 
Therefore, the GDP series pattern transforms at different periods, such as before, after, 
and in-between demonetization. Hence, there is a need to determine the exact location 
of the point (knots) where the series structure is changed. The detailed discussion to 
select the location of knots is discussed in Denison  (1998), Biller (2000), and Ülker 
and Arslan (2009). Recently, this model is discussed by Kumar et al. (2020) for testing 
the unit root hypothesis in the presence of spline function through posterior odds ratio 
and applied in monthly import series of ASEAN Regional Forum (ARF) countries. 
The complete detail about this model is well described by Kumar et al. (2020). Here, 
we only write the key expression of the model. Let {yt: t = 1, 2, …,T} is a time series 
from the model given in Eq. (1):

where � = �0 +
�

1−�
� and � = (1 − �)�.

(1)yt = (1 − �)� + �yt−1 + � t +

r∑
i=1

�i

[
si(t) − �si(t − 1)

]
+ �t,
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In Eq. (1), ρ is the autoregressive coefficient, δ0 is the intercept term, δ is the trend 
coefficient, r is the number of knots that contain the location of knots t1, t2,…, tr, and 
ψi is the coefficient of the ith knot. The εt’s are i.i.d. normally distributed random vari-
ables with mean zero and unknown variance τ−1 and si(t) is a spline function, describes 
as a linear polynomial form

In the existing literature, researchers do the modeling of the COVID-19 series based 
on various regression and time series models but ignore the irregular behavior of daily 
conformed cases, because most countries take necessary steps to control the spread of 
COVID-19. These steps change the growth of COVID-19 infected patients in an up and 
down manner. As a result, the trend pattern is not linear form, and there is an occurrence 
of sudden jumping phenomena in the series at different stages of transmission. Thus, there 
is a need to apply other non-linear piecewise models that provide better results based on 
various transmission stages. The proposed model is very suitable to analyze the non-lin-
ear trend pattern of the COVID-19 series, because this model splits the series into a linear 
format at their knot locations to observe the infection growth using the stages of transmis-
sion (Liu, 2009, Lusa & Ahlin, 2020). In matrix notations, the model is marked as

where

and L is T × T matrix with the entire (i + 1)th row and the ith column elements equal 
to 1, and the remaining elements are equal to 0 and I is T × T identity matrix.

si(t) =
(
t − ti

)+
=

{
t − ti if t > ti
0 if t ≤ ti

.

(2)y = �y−1 + Z(�)� + S(�)� + �,

y =
(
y1 y2 ... yT

)�
, y−1 =

(
y0 y1 ... yT−1

)�
,

�T = (1 2…T)�, lT =
(
1 1 ⋯ 1

)�
,

Z(�) =
(
(1 − �)lT �T

)
, S(�) = (I − �L)Γ,

� =
(
�1 �2 … �r

)�
, � =

(
�1 �2 … �T

)�
,

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(1)

⋮

s2(1)

⋮

⋯

⋱

sr(1)

⋮

s1(t1)

s1(t1 + 1)

s2(t1)

s2(t1 + 1)

⋯

⋯

sr(t1)

sr(t1 + 1)

⋮ ⋮ ⋱ ⋮

s1(t2)

⋮

s1(T)

s1(t2)

⋮

s2(T)

⋯

⋱

⋯

sr(t2)

⋮

sr(T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � =

�
�

�

�
,
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The main objective is to study the tendency of daily COVID-19 confirmed cases 
by fitting this model in a piecewise form and understand the spread of infection in 
terms of different transmission stages. For this, the number of knots with their loca-
tions is determined using posterior probability in each country COVID-19 series 
to know the transmission stages. These study countries are the USA, India, Brazil, 
Russia, South Africa, and Peru. Then, Bayesian estimators of the model parameters 
are derived using the conditional posterior distribution and obtain the estimated val-
ues using numerical techniques.

3  Bayesian estimation

For analysis purposes, a Bayesian approach is used to make inferences about the 
unknown parameter and draw a better inference. In the Bayesian approach, the pos-
terior distribution is the product of the likelihood function and prior distribution. 
Here, the discrete uniform prior is assumed for the location of knots under consider-
ation of all ordered sub-sequences of (2, 3,…,T) of length r, i.e., 
�(�|r) = 1

T−1Cr

=
r!(T−r−1)!

(T−1)!
 for any set t = (t1,..., tr) for given r. The remaining model 

parameters (�,� , � , �) consider similar prior distributions, as described in Kumar 
et al. (2020). The form of prior distribution of the parameters is

Then, the posterior specification for this model is

𝜋(𝜏) ∝
1

𝜏
, 0 < 𝜏 < ∞

𝜋(𝜌) =
1

1 − a
, a < 𝜌 < 1, a > −1

𝜓 ∼ MN
(
𝜓0,

1

𝜏
Ω−1

)
, 𝜓 ,𝜓0 ∈ R, Ω > 0

� ∼ MN
(
(1 − �)�0,

1

�
V(�)−1

)
with �0 =

(
y0

0

)
, y0 ∈ R

and V(𝜌) =

(
1+𝜌

1−𝜌
0

0
𝜗

(1−𝜌)2

)
, 𝜗 > 0.

(3)

�(Θ|y ) ∝ �
T+r

2 |Ω| 12 |V(�)| 12
T−1Cr(2�)

T+r

2
+1

exp
[
−
�

2

{(
y − �y−1 − Z(�)� − S(�)�

)� (
y − �y−1 − Z(�)� − S(�)�

)

+
(
� − �0

)�
Ω
(
� − �0

)
+
(
� − (1 − �)�0

)�
V(�)

(
� − (1 − �)�0

)}]
.
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For parameter estimation under the Bayesian setup, a loss function is used to select the 
best estimator based on the posterior distribution that minimizes the risk associated with 
each parameter. Here, we consider the squared error loss function (SELF) as a symmetric 
loss function. Under this loss function, the Bayesian estimator of a parameter is the pos-
terior mean of the posterior distribution. Due to multiple integrals, it cannot solve without 
any computational method. Therefore, a computational approach such as the Markov chain 
Monte Carlo (MCMC) technique is applied for obtaining the value from the estimators. For 
that, we derive the conditional posterior distribution/ probability for the model parameters

where

        

�(t, y|r) ∝ 1
T−1Cr

1

∫
a

(1 + �)
1

2

(1 − �)
3

2 |A(�)| 1

2 |D(�)| 1

2 [�(�)]
T

2

d�,

�(y|r) = ∑
t1

…
∑
tr

�(t, y|r),

A(�) = S�(�)S(�) + Ω,

B(�) = I − S(�)A−1(�)S�(�),

C(�) =
(
Z�(�)B(�)(y − �y−1) + (1 + �)�o − Z(�)S(�)A−1(�)Ω�0

)
,

D(�) = Z�(�)B(�)Z(�) + V ,

�(�) = (y − �y−1)
�

B(�)(y − �y−1) + (1 − �)2�
�

0
V(�)�0 − 2

(
(y − �y−1)

�S(�)A−1(�)ΩΨo

)

+ � �
o
Ω�o − � �

0
Ω�A−1(�)Ω�0 − C�(�)(D(�))−1C(�),

K =
(
y − �y−1 − Z(�)� − S(�)�

)�(
y − �y−1 − Z(�)� − S(�)�

)
+
(
� − �0

)�
Ω
(
� − �0

)

+
(
� − (1 − �)�0

)�
V(�)

(
� − (1 − �)�0

)
.

The location of knots and autoregressive coefficient are not closed distribu-
tion forms. Hence, the M–H algorithm is applied to draw samples from the condi-
tional posterior distribution. In contrast, the remaining parameters generate posterior 

(4)�(�|�, r) = �(�, �|r)
�(�|r) ,

(5)

�(�|y,� , � , �) = |V(�)| 1

2 exp
[
−
�

2

{(
y − �y−1 − Z(�)� − S(�)�

)� (
y − �y−1 − Z(�)� − S(�)�

)

+
(
� − (1 − �)�0

)�
V(�)

(
� − (1 − �)�0

)}]
,

(6)

�|y, �,� , � ∼ MN

((
Z�(�)

(
y − �y−1 − S(�)�

)
+ (1 − �)V(�)�0

)
(
Z

�
(�)Z(�) + V(�)

) ,

(
Z�(�)Z(�) + V(�)

)−1
�

)
,

(7)

�|y, �, � , � ∼ MN

((
S�(�)

(
y − �y−1 − Z(�)�

)
+ Ω�0

)
S

�
(�)S(�) + Ω

,

(
S�(�)S(�) + Ω

)−1
�

)
,

(8)�|y, �, � ,� ∼ Gamma
(
T + r

2
+ 1,

K

2

)
,
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samples from the Gibbs sampler algorithm, because conditional posterior distribution 
is obtained in a close distribution. The step-by-step procedure for implementing this 
proposed method is given as:

Step 1. At the first iteration, start with an initial value of the parameters ρ(0), γ(0), ψ(0), 
and τ(0).

Step 2. Generate posterior samples from the conditional posterior distribution of the 
model parameters given in Eqs. (5)–(8) and putting the estimated value of parameters 
in the conditional posterior distribution of the location of a knot.

Step 3. For the ith location of a knot, it is detected by considering every time point in 
the interval (Ti−1 + 1, T − r + i − 1) as a knot point and recording the probabilities that 
occur parallel to these time points.

Step 4. We find the ith location of a knot as a maximum of all probabilities corre-
sponding to a single time point, i.e., t̂i = max𝜋

(
t̂i|y, r

)
.

Step 5. We get a vector of knot points at the first iteration �̂(1) =
(
t̂1, t̂2,… , t̂r

)
.

Step 6. Repeat the process up to k iterations, make a sequence of parameters and 
location of knots. The average comes out to be the estimated value of the parameters 
and location of knots.

The number of knots is determined using the Bayes factor. The Bayes factor  (BFn,m) 
is the ratio of one versus another model/hypothesis, i.e., it defines by the posterior prob-
ability of n knots divided by m knots. For this model,  BFn,m is expressed as

The procedure starts with the series has no knot and evaluates the evidence to sup-
port one or more knots. If there is significant evidence for supporting the existence of 
knots, then check whether there is one knot, two knots, or so on. Therefore, we aim to 
find a piece of strong evidence between the models/hypotheses before making a better 
decision about the number of knots. Kass and Raftery (1995) provided a rule of thumb 
for interpreting the magnitude of Bayes factor using the transformation  2loge(BFn,m) as 
defined in Table 1 and put on the same scale as the likelihood ratio.

Another approach is to find out the number of knots using an information criterion 
discussed by Kumar et al. (2020).

4  Modeling of COVID‑19 series

We collect COVID-19 data from the World Health Organization’s official daily 
reports (https:// www. who. int/ emerg encies/ disea ses/ novel- coron avirus- 2019/ situa 
tion- repor ts). This report covers the total number of infected people due to this virus 
daily for every country. We model the series of some countries (USA, India, Brazil, 
Russia, South Africa, and Peru) that are most affected and determine the growth 
structure and current stage of transmission by fitting the proposed model.

The study starts from 500 outbreaks of coronavirus cases and up to the date on 1st 
September 2020 for the selected countries. We notice that confirmed cases of some 

(9)BFn,m =
�(y�r = n)

�(y�r = m)
=

∑
t1
…

∑
tn
�
�
ti, y�n

�
∑

t1
…

∑
tm
�
�
ti, y�m

� .

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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countries like the USA, India, Brazil, and Peru are rising and increasing rapidly. In 
contrast, the coronavirus spread is slowed down in the remaining countries (Rus-
sia and South Africa). Based on the proposed methodology, the number of knots is 
determined using the Bayes factor to know the transmission stage of a country, and 
the results are recorded in Table 2.

From Table 2, we observe that the proposed model with r = 3 knots is superior 
to the model with a lesser number of knots for the series of USA, Brazil, and India, 
because the corresponding value of  2loge(BFn,m) is between 2 and 6 (positive evi-
dence). It indicates a piece of robust evidence in favor of r = 3 against r = 0, 1, and 
2 for the observed series. It concludes that these countries achieve the third stage of 
coronavirus, i.e., community transmission. The following countries Russia, South 
Africa, and Peru obtain the model with r = 2 knots, because strong and positive evi-
dence in favor of two knots is recorded compared to r = 0, 1, and 3 knots. For these 
countries, a maximum of two knots is presented to fit the proposed model as these 
countries control the COVID-19 confirmed cases in the second stage of transmis-
sion. Hence, we observe that the first knot happens in the early days of transmis-
sion of the coronavirus, because most of the cases are reported based on travel his-
tory from the affected countries, whereas second and third knots are recorded based 
on local and community transmission within the country, respectively. Hence, the 
number of knots shows the stage of transmission of the COVID-19 for a particular 
country.

Once the suitable number of knots is determined, locations of the knots are found 
based on the conditional posterior probability given in Eq.  (4). The values of the 
conditional posterior probability are fitted to the observed series of the confirmed 
cases and display in Fig. 1. The occurrence of the locations of knots is showed by 
vertical dash lines at which maximum probability is recorded at a particular interval.

Based on Fig. 1, the first joint point is selected by considering every time point in 
the interval (2, T − r) as a knot location and record the probabilities parallel to these 
time points. The study finds the first-knot point 

(
t̂1
)
 at the maximum of all prob-

abilities corresponding to a single time point. Next, the second-knot location is also 
determined based on higher probability in the given interval, i.e., it records the max-
imum probability among the bunch of all probabilities corresponding to the time 
interval 

(
t̂1 + 1, T − r + 1

)
 , denoted as 

(
t̂2
)
 . Similarly, the (i + 1)th knot location is 

Table 1  Selection criterion 
based on Bayes factor

2loge(BFi,j) BFi,j Evidence 
against the null 
hypothesis  (H0: 
j = m)

 < 2 1–3 Not worth more 
than a bare 
mention

 ≥ 2 and < 6 3–20 Positive
 ≥ 6 and < 10 20–150 Strong
 ≥ 10 > 150 Very strong
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obtained based on the range 
(
t̂i + 1, T − r + i

)
 and get the time point equivalent to 

the maximum probability.
The locations of knots are displayed in Table 3 based on Fig. 1. Table 3 shows 

that most countries have occurred the location of first-knot during the lockdown 

Table 2  Determine the number of knots in the COVID-19 series based on Bayes factor

Country Numerator (r = n) against 
denominator model (r = m)

2loge(Bn,m) Evidence against model with r = m

USA r = 1 against r = 0 0.9998 Not worth more than a bare mention
r = 2 against r = 0 1.1162 Not worth more than a bare mention
r = 2 against r = 1 0.1164 Not worth more than a bare mention
r = 2 against r = 3 1.0334 Not worth more than a bare mention
r = 3 against r = 0 3.4807 Positive
r = 3 against r = 1 2.4809 Positive

Brazil r = 1 against r = 0 0.5149 Not worth more than a bare mention
r = 2 against r = 0 1.0969 Not worth more than a bare mention
r = 2 against r = 1 1.6118 Not worth more than a bare mention
r = 2 against r = 3 0.1650 Not worth more than a bare mention
r = 3 against r = 0 2.9319 Positive
r = 3 against r = 1 3.4468 Positive

India r = 1 against r = 0 0.3285 Not worth more than a bare mention
r = 2 against r = 0 0.5217 Not worth more than a bare mention
r = 2 against r = 1 0.8502 Not worth more than a bare mention
r = 2 against r = 3 0.5833 Not worth more than a bare mention
r = 3 against r = 0 5.1050 Positive
r = 3 against r = 1 5.4335 Positive

Russia r = 1 against r = 0 0.6469 Not worth more than a bare mention
r = 2 against r = 0 4.2159 Positive
r = 2 against r = 1 4.8628 Positive
r = 2 against r = 3 3.5609 Positive
r = 3 against r = 0 0.6550 Not worth more than a bare mention
r = 3 against r = 1 1.3020 Not worth more than a bare mention

South Africa r = 1 against r = 0 1.5424 Not worth more than
r = 2 against r = 0 4.1505 Positive
r = 2 against r = 1 2.6081 Positive
r = 2 against r = 3 2.3199 Positive
r = 3 against r = 0 1.8306 Not worth more than a bare mention
r = 3 against r = 1 0.2882 Not worth more than a bare mention

Peru r = 1 against r = 0 0.8057 Not worth more than a bare mention
r = 2 against r = 0 3.3421 Positive
r = 2 against r = 1 2.5364 Positive
r = 2 against r = 3 2.0966 Positive
r = 3 against r = 0 1.2454 Not worth more than a bare mention
r = 3 against r = 1 0.4397 Not worth more than a bare mention
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period, suspension of traveling, economic activities restrictions, etc. (Mbunge, 2020; 
Pai et al., 2020; Soni, 2021; Tang et al., 2020). During this period, most cases are 
reported based on the travel history of the infected person who is traveled from 
affected nations and imports the virus into the country.

The location of the second knot happens in the mid of June when the number 
of daily COVID-19 cases increases rapidly for India, Brazil, and USA (da Candido 

Fig. 1  Selection of knot location(s) based on the posterior probability
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et  al., (2020); Saha & Chouhan, 2021; Zhang et  al., 2020). At this period, some 
relaxations are given by the government to reduce the daily time of lockdown, per-
mit economic activities, and reopen the public offices under some guidelines. There-
fore, the COVID-19 virus may have affected nearby people who have direct contact 
with the infected person. It is still manageable to locate and provides prompt medi-
cal care to the infected person and control the spread of the virus. This situation is 
under control in the country of Russia, South Africa, and Peru (Garba et al., 2020; 
Stiegler & Bouchard 2020; Zemtsov & Baburin, 2020).

The location of the third knot is obtained in the period when the number of con-
firmed cases is rapidly increasing (more than 50,000 per day) for the series of India, 
Brazil, and USA (Lin et al., 2020; Ray & Subramanian, 2020). In this period, there 
is a community transmission in various cluster forms at multiple locations and not 
easily traceable. Based on the best-fitted model with appropriate locations, Bayesian 
estimated values of the model parameters for each country series are summarized in 
Table 4.

Table  4 concludes that variability is more in all country series, because all 
record a higher number of COVID-19 confirmed cases. The series of all coun-
tries are stationary based on the estimated value of the autoregressive coefficient 
(ρ), because it is under the stationarity condition. The positive (negative) value 
of the intercept term (δ0) indicates the increment (decrement) of the daily con-
firmed cases when other variables are not there. The positive (negative) value 
of the trend coefficient (δ) tells the total increase (decrease) of confirmed cases 
expected to a unit change in the time (t). The daily confirmed cases shows an 

Table 3  Locations of knots of 
the COVID-19 series for the 
selected countries

Country No. of 
knots (r)

Locations of knots

t̂
1

t̂
2

t̂
3

USA 3 12-April 10-June 19-July
Brazil 3 25-April 17-June 30-July
India 3 01-May 17-June 25-July
Russia 2 10-May 23-June –
South Africa 2 29-May 13-July –
Peru 2 22-May 04-August –

Table 4  Estimated value of the best-selected model for each country COVID-19 series

Country ρ δ0 δ ψ1 ψ2 ψ3 τ−1

USA 0.77 − 6673.93 1468.39 − 1862.71 1750.11 − 2108.48 1.62E−05
Brazil 0.33 − 421.14 − 321.52 1590.11 − 285.88 − 1270.18 1.86E−06
India 0.77 1401.47 − 121.48 315.07 862.39 − 126.32 1.07E−06
Russia 0.84 1975.01 − 182.19 469.47 850.57 – 1.03E−06
South Africa 0.91 99.77 − 6.67 298.03 − 496.26 – 4.10E−06
Peru 0.66 − 1311.29 181.21 − 268.11 236.05 – 5.25E−06
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increasing (decreasing) time trend pattern when a positive (negative) unit change 
is happened for the estimated value of the spline coefficient (ψi). Based on the 
estimated values of the parameter, the observed and fitted series is plotted in 
Fig.  2. From Fig.  2, we observe that estimated values of the model parameters 
give a better fit over the observed series.

Fig. 2  Observed and fitted COVID-19 series for every country
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5  Conclusion

Nowadays, COVID-19 pandemic is a severe challenge for the human to survive 
on earth. The COVID-19 has a wide range of consequences on human life world-
wide, because million of people die due to coronavirus. Therefore, there is a need 
to study the growth of COVID-19 cases based on various predictive models. It 
is also available in the literature that transmission of the COVID-19 virus has 
four stages. Based on daily recorded cases, we observe that the structure of the 
COVID-19 series in various countries is not linear, because many reasons such as 
lockdown, infection modes, and poor health infrastructure are present to control 
or expand this disease. Thus, our paper deals with a non-linear time series model 
using the spline function that switches the non-linear trend component into the 
linear trend. It is analyzed based on different segments and fits the linear trend 
autoregressive model at each segment. Each segment shows the stage of COVID-
19 transmission. Parameter estimators and the number of knots are determined 
under the Bayesian approach. The results conclude that the number of knots and 
their locations are useful to assess the transmission stage and the location of time 
for attaining this. Hence, the proposed methodology quickly analyzes the non-
linear trend of the COVID-19 series using the spline function.
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