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Epidemiological evidence shows clear gender disparities in the Coronavirus 2019 Disease
(COVID-19) severity and fatality. This may reflect the contribution of gender-related
factors, such as sex hormones, to COVID-19 pathogenesis. However, the mechanism
linking gender disparities to COVID-19 severity is still poorly understood. In this review, we
will pinpoint several elements involved in COVID-19 pathogenesis that are regulated by the
two main sex hormones, estrogen and androgen. These include tissue specific gene
regulation of SARS-CoV2 entry factors, innate and adaptive immune responses to
infection, immunometabolism, and susceptibility to tissue injury by cytopathic effect or
hyper-inflammatory response. We will discuss the mechanistic link between sex hormone
regulation of COVID-19 pathogenetic factors and disease severity. Finally, we will
summarize current evidence from clinical studies and trials targeting sex hormones and
their signalling in COVID-19. A better understanding of the role of sex hormones in COVID-
19 may identify targets for therapeutic intervention and allow optimization of treatment
outcomes towards gender-based personalised medicine.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2
represents a global health threat which has caused globally almost five million deaths by October
2021 (https://covid19.who.int/). Epidemiological evidence shows clear gender disparities in
COVID-19 severity and fatality, placing gender as a main factor associated with a more severe
disease, along with older age and cardiometabolic comorbidities. Although there is no significant sex
difference in the proportion of individuals infected with SARS-CoV-2, males face double the risk of
developing critical or fatal disease compared with females (1, 2). The sex gap is closed in
prepubescent individuals, where both sexes are relatively protected from COVID-19
complications compared to adults (3, 4). This may reflect a possible contribution of gender-
related factors, such as sex hormones, to COVID-19 pathogenesis (5, 6). However, out of 45
COVID-19 randomized controlled trials published by December 2020, only eight reported sex-
disaggregated results or subgroup analyses (7).
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In this review, we will pinpoint several elements involved in
COVID-19 pathogenesis that are, at least partially, regulated by
the two main sex steroids, estrogen and androgen. These include
tissue specific gene regulation of SARS-CoV-2 entry factors,
innate and adaptive immune responses to infection,
immunometabolism, and susceptibility to tissue injury by
cytopathic effect or hyper-inflammatory response. We will
discuss the mechanistic link between sex-hormone regulation
of COVID-19 pathogenetic factors and disease severity. Finally,
we will summarize current evidence from clinical studies and
trials targeting sex steroids and their signalling in COVID-19.
SEX HORMONES CONTROL VIRUS-HOST
INTERACTION

SARS-CoV-2 is a single-stranded RNA-enveloped virus which
uses the angiotensin-converting enzyme 2 (ACE2) as main access
door to host cells. Entrance is facilitated by a host type 2
transmembrane serine protease, TMPRSS2, that is responsible
for priming of the viral S glycoprotein. Increased tissue (co-)
expression of ACE2 and TMPRSS2 at the virus entry sites may
enhance infection, while downregulation may prevent
SARS-CoV-2 binding to target cells. Both elements are under
genetic control of sex steroids. ACE2 belongs to a subgroup of
genes escaping X-chromosome inactivation with higher
expression in men in several tissues (8), including a slight
tendency for male-biased expression in the lung. The
predominant male-biased expression of ACE2 is in line with
the demonstrated higher ACE2 activity in males partially driven
by sex steroids (9). Similarly, plasma ACE2 concentration has
been found to be higher in men than in women possibly reflecting
the expression at the tissue level (9). Sex steroids acts on the
modulation of ACE2 expression in a tissue specific manner.
According to studies in mice, estrogen receptor (ER) alpha
activation by estradiol downregulates kidney ACE2 whereas
ovariectomy, which is a state of estrogen deprivation, increased
ACE2 activity and its expression in kidney and adipose tissue
(10). Estrogen may also downregulate ACE2 in differentiated
airway epithelial cells (11), the main SARS-CoV-2 entry site. It
has been shown that ACE2 expression in primary isolated human
airway smooth muscle (ASM) cells was lower in women
compared to men, and significantly upregulated by testosterone
(12). Furthermore, consistent with the age-dependent decline in
circulating sex steroids, males experience lower ACE2 level than
females in the late stage life (13).

Taken together, data suggest that the two main sex steroids
produce opposite effects on ACE2 regulation. While estrogen
tend to favour downregulation of the SARS-CoV-2 main
receptor in several tissues, testosterone may enhance
its expression.

TMPRSS2 is an androgen responsive gene (14). Its expression
in human lung epithelial cells is upregulated by androgen while
downregulated by androgen deprivation (15). Exogenous
treatment with androgen was shown to be associated with an
increased expression of TMPRSS2 in human type 2 pneumocytes
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(15). Therefore, part of the sex-based disparities in COVID-19
severity may be explained by high androgen in males that
contribute to disease severity by promoting viral replication
(16). In a study on 118 patients with primary prostate cancer,
where TMPRSS2 gene is a therapeutic target, androgen
deprivation therapy was associated with a lower risk of SARS-
CoV-2 infection (odds ratio 4.05; 95% CI 1.55–10.59). While
these data needs validation in larger cohorts, they provide
support to the association between androgen control of
TMPRSS2 expression and risk of COVID-19. More recently,
Samuel et al. performed a high-throughput screen with a library
of 1443 FDA-approved drugs and a subsequent in silico screen of
more than 9 million drug-like compounds to detect drugs
effective in reducing ACE2 protein levels in cardiac cells and
lung organoids. The authors found that the most effective drugs
were linked to androgen receptor signalling inhibition (17).
Inhibitors of 5-alpha reductase, which dampen androgen
signalling, were able to downregulate both ACE2 and
TMPRSS2 in lung epithelial cells and cardiac cells, leading to a
lower SARS-CoV-2 infectivity in lung organoids (17).

Therefore, the increased (co-)expression of ACE2 and
TMPRSS2 in SARS-CoV-2 target tissues may explain the
higher occurrence of COVID-19 complications in males.
However, whether sex hormones-dependent modulation of
ACE2 or TMPRSS2 in the lung or other SARS-CoV-2 target
tissues correlates with COVID-19 susceptibility or severity needs
to be further elucidated.
SEX HORMONES CONTROL ANTI-VIRAL
IMMUNE RESPONSE

Gender is a key host factor influencing immune response, leading
to differences in severity, prevalence, and pathogenesis of
infection, with males generally more susceptible than
females (18).

According to experimental evidence from the severe acute
respiratory syndrome (SARS) caused by the SARS-CoV, another
beta-coronavirus closely related to SARS-CoV-2, estrogen status
is key in determining disease severity through modulation of the
immune response. Ovariectomy of SARS-CoV infected female
mice or treatment with an ER antagonist increased mortality
compared to treatment with tamoxifen (a selective ER
modulator) (19). The protective role of ER signalling has been
linked to the induction of the “anti-viral status”mediated by type
I interferon (IFN-I), a first line cytokine involved in host defence
(4). In the SARS-CoV model, reduced survival was due to a
robust viral replication and delayed IFN-I signaling which
promoted accumulation of pathogenic inflammatory
monocyte-macrophages, resulting in elevated lung pro-
inflammatory cytokines and dysfunctional virus-specific T-cell
responses (20). Thus, ER signalling may prime the IFN-I
response and prevent viral replication. In contrast, a delayed
IFN-I activation would generate a response-lag unable to
compensate robust viral replication, thus leading to
uncontrolled hyperinflammation. Data in humans provide
December 2021 | Volume 12 | Article 726696
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support to this hypothesis. It has been shown that long-term
treatment of post-menopause women with estradiol enhanced
IFN-I response via the toll-like receptor (TLR) 7 pathway (21).
TLR7 represents a sentinel receptor of the innate immune
response to viral RNA from SARS-CoV-2 and other
coronaviruses. Recognition of viral RNA by TLR7 expressed by
dendritic cells triggers signalling cascades that result in the
production of large amount of IFN-I. TLR7 is also sex biased
as it is encoded by X chromosome and escapes X inactivation in
B cells through epigenetic modifications (22). Thus, the increased
expression of TLR7 in females compared to male can potentiate
priming of IFN response by ER signalling, providing prompt
antiviral defence and subsequent antibody production.
Accordingly, it has been recently showed that loss of function
in TLR7 gene resulted in a severe disease in young male patients
after being infected with SARS-CoV-2 (23).

Estrogen can also modulate adaptive responses displaying a
diphasic effect ranging from immunosuppressive at high
concentration to immunostimulatory at lower concentration
(19). For example, lymphocyte activation (e.g., proliferation
and IFN-g production) classically follows a diphasic dose-
response to estrogen concentrations—low dose stimulation and
high dose inhibition. Thus, in older women, the residual low
levels of estrogen may up-regulate T cell IFN-g, inducing effector
T helper 1 proliferation and antibody production, all factors that
sustain anti-viral immune responses. This may partially
counterbalance the age dependent decline in adaptive immune
responses (24).

Androgens present different effects on both innate and
adaptive responses, which are often opposite to estrogens, and
may explain the overall increased susceptibility to viral infections
in males compared to females. First, testosterone is immune
suppressive on dendritic cells (a main source of IFN-I) and
reduces cytokine production by such cells, which is consistent
with the reduced IFN-I response to TLR7 stimulation in males
compared to females. Second, androgens inhibit T-helper 1
differentiation, thus potentially delaying the mounting of
specific antiviral responses. Finally, testosterone directly
enhances production of the immunosuppressive cytokine IL-10
by CD4+ T-cells, leading again to suppressed IFN-I response as
well as impaired survival and differentiation of B cells (14). In a
recent report of 136 SARS-CoV-2 PCR-positive patients, low
testosterone and high estradiol were associated with disease
severity in COVID-19 patients. Furthermore, both male and
female COVID-19 patients presented elevated estradiol levels
which positively correlated with plasma IFN-g levels (25).
However, it should be noted that men with acute or subacute
illness are known to develop a transient functional secondary
hypogonadism. Therefore, testosterone assessment at hospital
admission may not reflect the real androgen status.

Therefore, the androgen and estrogen status can significantly
affect immune response to viral infection. While estrogen
promote the “anti-viral state” induced by IFN-I (innate
immunity) and the development of anti-SARS-CoV-2 specific
responses (adaptive immunity), androgen may delay the
mounting of prompt and effective anti-viral response.
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SEX HORMONES AND
IMMUNOMETABOLISM IN COVID-19

Excess adiposity may provide and sustain a proinflammatory
milieu that promotes an imbalanced immune response towards
hyperinflammation. This may trigger a cytokine storm, leading
to impaired T-cell anti-viral specific activity and exacerbate
disease severity. Sex steroids have a clear role in shaping fat
distribution. Males accumulate more visceral fat than females
and age-related decline in sex steroids in humans is linked to
greater fat accumulation in central regions. For example,
downregulation of estrogen signalling through ER-alpha
knockout lead to obesity in both male and female mice (26).
Serum estrogen decline after menopause is associated with
abdominal fat accumulation, while hormone replacement
therapy reduces visceral fat (27), implying a key role of
estrogen in regulating fat mass. Similarly, hypogonadism in
men is associated with visceral adiposity while increasing
testosterone concentration in men induces a reduction in total
fat mass (28). However, while estrogens show beneficial effects
on body fat regulation also in males, androgens have opposite
effects in females. Women with polycystic ovary syndrome
exhibit hyperandrogenism concomitant with visceral fat
accumulation (29). Moreover, treatment with anabolic steroid
having androgenic activity was associated with increased visceral
fat accumulation (30). This is consistent with experimental
evidence showing that treatment of female mice with
testosterone results in greater body weight and fat mass that
are sustained throughout adult life (31).

Female type fat distribution is associated with lower systemic
inflammation, lower risk of developing cardiometabolic diseases
and less severe COVID-19. We have recently shown that
abdominal fat distribution characterized by increased visceral
(VAT) and lower subcutaneous adipose tissue (SAT) is strongly
associated with COVID-19 severity. SAT was higher in females
than males, and inversely associated with the need of intensive
treatment. Furthermore, each millimetre increase in VAT
thickness increased risk of admission to intensive care unit by
16%, independently of body mass index (32). VAT has important
immunological functions strongly contributing to the
production of proinflammatory molecules such as IL-1b, IL-6,
and TNF-a. One-third of the circulating IL-6 is produced by
adipocytes and adipose tissue matrix (33). Low adiponectin and
leptin resistance states associated with obesity display immune
characteristics that partially resemble those seen in COVID-19
(34). In subjects with obesity, T-cell subpopulations (CD3+, CD4
+, CD45RO+, CD8+) and their proliferative response to
polyclonal mitogens are suppressed (35). These abnormalities
are reversed with energy restriction (which decreases leptin) (36).
In subjects with obesity, increased leptin levels correlate with
circulating TNF-a, which displays a suppressive effect on
lymphocytes count (35). This is in line with evidence
suggesting that COVID-19 patients have a four-fold increase in
leptin levels compared to non-infected controls (37). Adipokine
levels are also under the control of sex steroids. Estradiol levels
are directly associated with serum leptin while male steroids
December 2021 | Volume 12 | Article 726696
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decrease leptin gene expression and secretion from human
adipocytes (38). Conversely, low adiponectin levels in men vs.
women appear to be predominantly mediated by male sex steroid
hormones (39).

On the other hand, SARS-CoV-2 infection might enhance
VAT inflammation. Mesenteric VAT, which surrounds the small
intestine, is the first line of defence against pathogens
translocated from the intestine to the circulation (40). Over
50% of COVID-19 patients test positive for SARS-CoV-2 RNA
in stool, and 10% have gastrointestinal symptoms consistent with
a SARS-CoV-2 cytopathic effect on enterocytes (41). According
to single-cell RNA-sequencing data, the enterocyte is one of the
main cells co-expressing high levels of the SARS-CoV-2 entry
factors ACE2 and TMPRSS2 (42), suggesting that the gut may act
as potential entry site of SARS-CoV-2. Virus recognition by the
gut immune system may trigger an immunoinflammatory
response spreading to mesenteric VAT and exacerbating
local inflammation.

Therefore, the interaction between sex steroids, immune
response and immuno-metabolic factors may generate an
immunoendocrine environment that sustains infection and
promotes COVID-19 progression at multiple levels.
SEX HORMONES AND SEX INFLUENCE
VACCINE RESPONSES

COVID-19 vaccination campaign has started with a total of 6.5
billion vaccine doses that have been administered (https://
covid19.who.int/info) and nearly 48% of the world population
has received at least one dose of a COVID-19 vaccine (43). First
reports on COVID-19 vaccine unfortunately were not powered
to provide evidence of safety and efficacy by sex (44) although the
point estimates of efficacy for subgroups was also high, consistent
with that observed in the overall study population (45). However,
evidence on other vaccines have shown differences in response or
efficacy according to gender. For instance, the antibody response
to seasonal influenza vaccines has been shown to be at least twice
as high in females compared to males (18). A more robust
protective antibody response that can facilitate vaccine efficacy
in women was also observed after vaccination against influenza,
hepatitis A and B, rubella, measles, mumps, herpes simplex and
dengue viruses (46). This greater response may also explain why
women experienced more frequent and severe adverse effects
(18) as reported in the first month of the COVID-19 vaccine
rol lout (https : / /www.cdc.gov/mmwr). According to
EUDRAVigilance report the suspected adverse drugs reaction
of COVID-19 vaccines ranged from 59.0% to 72.0% in women
and from 26.1% to 39.1% in men (https://www.adrreports.eu/
en/). Mechanisms of these discrepancies may be related to
differences in both innate and adaptive immunity as women
have usually greater T cells activation, proliferation and cytotoxic
activity as well as higher immunoglobulin basal levels and B cells
number compared to men (47, 48). Moreover, studies in mice
have demonstrated that while estrogen promote the development
of antibodies testosterone may suppress it (47, 48). Indeed, a
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lower antibody response was observed to influenza vaccination
in men compare to women, particularly in those with higher
levels of testosterone at the time of vaccination (49). Despite this,
only few studies have so far considered sex as a possible element
that may affect COVID-19 vaccine response. Latest reports
indicated a higher and similar efficacy in the vaccine arm
compared to placebo for both men and women (50, 51).
However, a recent meta-analysis including sex-disaggregated
data from BNT162b2-BioNTech/Pfizer, mRNA-1273-Moderna,
Ad26.COV2.S-Johnson&Johnson/Janssen showed a significantly
increased efficacy in men compared to women. Males resulted to
have a 33% reduced risk of developing COVID-19 compared to
females (52). Data from a report on 248 healthcare workers
undergoing the BNT162b2 vaccine showed a tendency for
greater antibody response in females compared to males seven
days after the second dose, although this difference was not
significant (p=0.055) (53).

Current results are still controversial indicating that the
efficacy of COVID-19 vaccines has not been adequately
addressed in terms of sex and that the influence of sex and sex
hormones is still poorly understood. Larger longitudinal
studies are needed to clarify whether sex and sex steroids
significantly affect the development of effective SARS-CoV-2
vaccine response.
SEX HORMONES INFLUENCE
INFLAMMATION AND SUSCEPTIBILITY
TO TISSUE INJURY

Although there is no direct evidence available from studies
carried out in SARS-CoV-2 infected subjects, literature data
support the concept that sex steroids may influence
susceptibility or protection to tissue injury of organs targeted
by COVID-19 complications. The major morbidity and fatality
from COVID-19 is due to acute viral pneumonitis that evolves to
acute respiratory distress syndrome (ARDS) (54). This is
characterised by hyaline membrane changes, microvessel
thrombosis with exudative and proliferative phases of diffuse
alveolar damage (55), sometimes superimposed by bacterial
pneumonia. In a LPS-induced model of acute lung injury, male
mice developed increased airway hyperresponsiveness and
inflammation compared with their female counterparts (56).
Treatment with testosterone enhanced inflammatory responses
in females to a level that was similar to that showed in males. In
contrast, gonadectomy reduced airway inflammation in males
but not females suggesting that androgens sustain the
proinflammatory action of LPS-induced lung insult (56).
Ovariectomized females showed an increment in the
neutrophil content in bronchoalveolar lavage fluids,
myeloperoxidase activity in whole lung, and leak of albumin
into the lung compared with intact females (57). However,
estrogen replacement was found to be effective in reducing all
these lung injury features by suppressing cell adhesion molecules
and proinflammatory cytokines. In the carrageenan-induced
pleurisy model, which represents a well-known murine model
December 2021 | Volume 12 | Article 726696
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of inflammation, tissue damage was exacerbated by ER blockage
(58). Several mechanisms may help to explain the protective
effect of estrogen against acute lung injury and resolution of
inflammation, including regulation of apoptosis (59) and nitric
oxide production.

COVID-19 can also lead to a number of extrapulmonary
manifestations (60). Among those, cardiovascular complications
(myocardial dysfunction and arrythmias, acute coronary
syndromes, and thrombotic complications) occur in over a
third of hospitalised COVID-19 patients and are associated
with a significant mortality risk (61). Direct cytopathic
myocardial injury, systemic inflammation, virus-mediated
endothelial damage, and hypoxia are some of the potential
factors involved in these complications. Estrogen offers a
vascular protective effect that may partially explain the gender
discrepancy in COVID-19 deaths (62). Acute administration of
estrogen in male rabbit have been shown to be protective against
ischaemia, reducing infarct size by 20% (63, 64). Direct
membrane signalling mediated by estrogen lead to vasodilation
through nitric oxide release. Similarly, ER-alpha signalling
mediated preservation of endothelial cell structure and
Frontiers in Endocrinology | www.frontiersin.org 5
function by preventing apoptotic pathway activation (65).
Estrogen cardioprotective properties suggest that estrogen
status may reduce susceptibility to cardiac injury, endotheliitis
and subsequent cardiovascular complications associated with
COVID-19 (60). However, direct evidence from COVID-19
studies is needed.
WHAT IS THE CLINICAL EVIDENCE FOR
ESTROGEN AND ANTI-ANDROGENIC
THERAPIES IN COVID-19?

Evidence that pharmacological modulation of estrogen and/or
androgen signalling can prevent SARS-CoV-2 infection or disease
severity is limited to a few observational studies. A retrospective
study involving over 68,000 cases has studied the effect of exogenous
estradiol administration on COVID-19 deaths. The authors found
that death risk in women over 50 years of age receiving estradiol
treatment was significantly reduced compared to those who were
untreated (hazard ratio 0.29, 95% CI 0.11 to 0.76) (66). Montopoli
FIGURE 1 | A mechanistic model for the immunoendocrinology of COVID-19. Differences in estrogen to androgen balance due to ageing and gender may modulate
SARS-CoV-2 entry factors ACE2 and TMPRSS2 involved in virus-host interaction. Estrogen promote the “anti-viral state” induced by interferon type I (innate
immunity) and the development of anti-SARS-CoV-2 specific responses (adaptive immunity). The proinflammatory milieu associated with excess visceral adiposity
promotes SARS-CoV-2 infection and may be directly involved in the infection trough the enterocyte-adipose tissue axis.
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et al. (14) observed that men treated with androgen depravation
therapy for prostate cancer were protected against SARS-CoV-2
infection. Prostate cancer patients receiving androgen deprivation
therapy had a significantly lower risk of SARS-CoV-2 infection
compared with patients who did not receive it (4/5273 vs. 114/
37161; odds ratio 4.05; 95% CI 1.55-10.59). In another observational
study on 100 patients with androgenic alopecia and laboratory
confirmed SARS-CoV-2 infection, treatment with dulasteride,
which prevent testosterone conversion to dihydrotestosterone by
inhibiting the 5-alpha reductase, was associated with a reduction in
the frequency of clinical symptoms (67). In a double-blinded,
randomized, prospective, investigational phase III study clinical
trial involving 262 non hospitalized COVID-19 male patients
(NCT04446429), the non-steroidal antiandrogen proxalutamide
resulted in a reduction rate of hospitalization. Although such
evidence provide support to the hypothesis that estrogen and
androgen status are key players in COVID-19 pathogenesis and
potential therapeutic targets, clinical evidence is limited by the small
sample size and/or the observational nature of the findings.
Seventeen clinical trials are registered on clinicaltrials.gov using as
investigational product estrogen receptors agonists/modulators or
anti-androgenic treatments in COVID-19 patients. Clinical trials are
needed to define the role of such treatments for preventing COVID-
19 severity and complications.
CONCLUSIONS

The interaction of endocrine factors linked to gender provides a
mechanism to explain at least in part the greater severity of
COVID-19 in males compared to females. Androgen to estrogen
balance may modulate virus-host interaction and immune response
Frontiers in Endocrinology | www.frontiersin.org 6
as estrogen enhance anti-viral defences and immune activity while
androgen displays immunosuppressive action (Figure 1).

This leads not only to a greater immunity to virus infection
observed in women compared to men but also may highlights a
different response to vaccines between genders. Therefore, sex
hormones status and other gender-related factors (biological and
behavioural) may further modulate the risk of severe disease
conferred by other risk factors such as ageing and
cardiometabolic diseases. Whether sex steroids can provide a
therapeutic option for COVID-19 is still unknown. Taken
together, these data suggest that gender should be taken into
account to optimize treatment outcomes for women and men
towards gender-based personalized medicine.
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