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The description of neural dynamics, in terms of precise characterizations of action
potential timings and shape and voltage related measures, is fundamental for a deeper
understanding of the neural code and its information content. Not only such measures
serve the scientific questions posed by experimentalists but are increasingly being used
by computational neuroscientists for the construction of biophysically detailed data-
driven models. Nonetheless, online resources enabling users to perform such feature
extraction operation are lacking. To address this problem, in the framework of the
Human Brain Project and the EBRAINS research infrastructure, we have developed and
made available to the scientific community the NeuroFeatureExtract, an open-access
online resource for the extraction of electrophysiological features from neural activity
data. This tool allows to select electrophysiological traces of interest, fetched from public
repositories or from users’ own data, and provides ad hoc functionalities to extract
relevant features. The output files are properly formatted for further analysis, including
data-driven neural model optimization.

Keywords: electrophysiology, data analysis, online resources, neural models, EBRAINS

INTRODUCTION

Data analysis of electrophysiological traces is at the core of a wide range of studies in the
neuroscientific field. On the one hand, the characterization of neural activity is a necessary step
for understanding the behavior of individual cells (Petersen, 2017) and ensembles of neurons
(Shahaf and Marom, 2001) and its correlates: the sensory, cognitive and behavioral counterpart of
an electrophysiological measure (Rizzolatti and Craighero, 2004; Johansson and Flanagan, 2009).
On the other hand, experimental findings are instrumental for the construction of detailed neural
models, able to robustly and accurately reproduce the observed activity (Migliore et al., 2018).
More specifically, the broader is the range of electrophysiological features extracted from the
experimental observations (e.g., action potential amplitude and width, Inter Spike Intervals, resting
potential, etc.), the more precise and biophysically detailed is the computational model based
on those features.

Nowadays, the computational neuroscience community can rely on an increasing number
of online, freely accessible tools and platforms for neural model building and collaborative
sharing. Well-established, open and free simulation environments such as NEURON (Hines
and Carnevale, 1997), Nest (Gewaltig and Diesmann, 2007; Eppler et al., 2009), and Brian
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(Goodman and Brette, 2008; Stimberg et al., 2019) are being
constantly maintained and upgraded with new functionalities
and fervent user communities contribute to their improvement
with useful feedbacks. In addition, several platforms are
available to the community, for model sharing, testing, running
and publication, that are increasingly embodying an open
access approach. For example, ModelDB1 (Branco et al., 2010;
McDougal et al., 2015, 2017) has become a reference portal for
computational neuroscientists aiming at archiving and sharing
their work. The platform allows to: (1) upload any kind of
neural models -which must be provided with ad hoc scripts to
test their correct functioning; (2) label them; (3) run them on
a dedicated simulation platform; (4) annotate, for each model,
the relevant and/or relative scientific publications. Another
collaborative public online resource is OpenSourceBrain (OSB)
(Gleeson et al., 2019). OSB provides visualization, simulation,
analysis, and sharing tools and services for standardized neural
models. Thanks to the model description languages NeuroML
(Gleeson et al., 2010; Cannon et al., 2014) and PyNN (Davison
et al., 2009), models are defined in standardized formats that
are automatically read by OSB for simulation and model details
visualization. With respect to scientific data sharing, a number
of platforms have been recently created (e.g., DANDI,2 Zenodo,3

Dryad,4 FigShare5) and the Neurodata Without Borders6 (Teeters
et al., 2015) ecosystem is fostering the development of tools and
services for data analysis and visualization7,8. Additionally, data
analysis toolkits for electrophysiological measures are available -
such as the Elephant software (Denker et al., 2018)- and scientific
languages and environments (e.g., MATLAB, R, Python) already
provide the necessary libraries for data processing (including
analysis and visualization). Furthermore, the Allen Institute9

provides comprehensive datasets of neuroscientific images and
electrophysiological data that users can explore, download
and analyze thanks to a dedicated Software Development Kit
(SDK). Also, the Knowledge Graph (KG) of the EBRAINS
research infrastructure10 is promisingly building a reference
portal for data -as well as models and software- produced in
the framework of the Human Brain Project (HBP) (Amunts
et al., 2016) and converging into the EBRAINS European research
infrastructure.11 Unfortunately, to the best of our knowledge,
none of the existing platforms allows automated online, point-
and-click services for electrophysiological feature extraction.
Indeed, the Allen Institute portal provides feature values on sets
of neural activity data, but the number of features is limited and
the extraction process cannot be performed online but only after

1https://senselab.med.yale.edu/ModelDB/
2https://www.dandiarchive.org/
3https://zenodo.org
4https://datadryad.org/
5https://figshare.com
6https://nwb.org
7https://github.com/NeurodataWithoutBorders/nwb-jupyter-widgets/
8http://nwbexplorer.opensourcebrain.org
9https://alleninstitute.org/
10https://kg.ebrains.eu/
11www.ebrains.eu

downloading the data and launching the appropriate routines
locally (via the above-mentioned Allen SDK).

In order to address these challenges, we built a web-based
resource, the EBRAINS NeuroFeatureExtract (NFE),12 that not
only allows to extract electrophysiological features from neural
activity data, but also provides users with a user-friendly point-
and-click interface for uploading their own data and feed them
to the extraction workflow. The web application leverages the
Electrophys Feature Extract Library (eFEL) and the BluePyEfe
library (see section Methods/eFEL and Methods/BluePyEfe) and
provides result files properly formatted for further analysis
(e.g., neural model optimization via the BluePyOpt optimization
library, see section “Methods”).

METHODS

Overview
The EBRAINS NeuroFeatureExtract consists of a full stack
web-based application implemented via the Python-based
Django web framework13 and deployed on a dedicated Virtual
Machine (VM) hosted on the CINECA supercomputing
center14 and accessible/configurable through the OpenStack
interface.15 The VM configuration presents 24GB RAM and 8
VirtualCPU (VCPU).

The web application consists of a frontend (client-side) and
a backend (server-side) components that, despite residing on
the same VM, are logically separated and communicate through
dedicated Representational State Transfer (REST) Application
Programmer Interface (API) calls. The frontend provides a user-
friendly GUI that allows an easy point-and-click interaction
with the tool functionalities and is implemented via HTML,
Javascript, and CSS code. The backend serves the frontend
requests by running the data fetching and management, the
feature extraction operations and the result files creation; it
is entirely developed in Python.16 The server manages the
requests by creating dedicated folder trees, based on the file
system organization (i.e., no sandbox process is spun off;
the system resources are used instead), any time the NFE is
accessed and initialized. All data management operations are
performed by a system user with limited access and privileges
to the VM resources, in order to limit security vulnerabilities.
Finally, data and results are periodically removed (see section
Methods/File formats).

The web server fulfilling the client requests is NGINX17

used in conjunction with the uWSGI web interface18 and the
communication protocol used for accessing the web application
is the Hypertext Transfer Protocol Secure (HTTPS). The web
application is part of a larger Django project that includes a

12https://hbp-bsp-hhnb.cineca.it/efelg/
13www.djangoproject.com
14www.cineca.it
15www.openstack.org
16www.python.org
17www.nginx.com
18https://uwsgi-docs.readthedocs.io/
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web resource called Hodgkin-Huxley Neuron Builder (see section
Usage/Extracted features) in which the NFE is integrated. The
code is available to the scientific community (Gleeson et al., 2017)
on GitHub, under the LGPLv3 license.19

eFEL
The NFE core operations are based on the eFEL library, which
provides the computational engine upon which the analysis
of the electrophysiological traces relies. The software package
is available, for command line installation, on PyPi,20 and its
code and documentation are freely accessible on GitHub21 and
ReadTheDocs,22 respectively. The core of the eFEL consists of a
set of C++ libraries, which perform the low-level computations.
This layer is exposed to the user via a wrapper built through a set
Python API functions. No GUI is provided to the user.

The eFEL library provides the scientific community with a
tool allowing the automatic extraction of electrophysiological
features from in vivo, in vitro, and in silico neural activity
recordings. The library allows to select among more than one
hundred different features which are grouped by the following
three categories: (1) Spike event features; (2) Spike shape features;
(3) Voltage features.

Overall, spike event features provide information on the
timing of the detected action potentials (AP, or spikes), such
as the inverse of the timestamp of the first and last spikes, the
inverse of the first to fifth Inter Spike Intervals (ISI, namely the
time between two consecutive spikes) and the spike half width.
Spike shape features provide information on the AP shape, such
as the AP widths and heights and the AP mean amplitude. Finally,
the voltage features report voltage related indices, such as the
voltage base value (i.e., the membrane resting potential) and the
maximum voltage during a stimulus.

In order to familiarize with the tool and to verify the
correctness of the computed results, users can run, on a local
machine, the unit tests included in the eFEL Github repository.

BluePyEfe
The output of the NFE consists of a set of .pdf and text (i.e.,
.json and .txt) files that display the neural activity and stimulus
traces, report statistics on the extracted features and contain
recording protocol information properly formatted for further
processing (see section Usage/Results). Since the eFEL library
APIs return the computed features in the form of Python value
arrays and delegate to the user further post hoc analysis and
data formatting and printing, we used an eFEL-wrapper Python
package named BluePyEfe, in order to generate a consistent set of
output files. This library is entirely built in Python and is available
for installation on PyPi.23 The source code of the library is also
publicly available on GitHub.24

19https://github.com/cnr-ibf-pa/hbp-bsp-hh-neuron-builder/tree/master/efelg
20https://pypi.org/project/efel/
21https://github.com/BlueBrain/eFEL
22https://efel.readthedocs.io/en/latest/
23https://pypi.org/project/bluepyefe/
24https://github.com/BlueBrain/BluePyEfe

The BluePyEfe workflow consists of three main steps:
(1) the electrophysiological data are read and appropriately
grouped and organized in Python dictionaries; (2) the
features selected by the user are extracted and their mean
values computed; the computation of the average values
is first performed on data referring to the same cell;
then, the individual cell mean values are averaged, in
order to infer the global behavior of the provided data;
(3) several output files are generated that report: the
above-mentioned mean values (per cell and overall), the
plot of the raw stimulus and membrane voltage traces,
the values of individual feature extracted (see section
Usage/Results).

As mentioned for the eFEL library, also the BluePyEfe includes
a series of unit tests that the users can start from for familiarizing
with the tool and verifying the generated output.

File Formats
The NFE allows the users to select data from a public dataset
(currently provided by HBP members and collaborators but not
limited to these contributors) and/or to upload their own data
(see section Usage/Upload).

The platform is as much as possible agnostic with respect
to the data format of the files the user can upload and
we are aiming to extend the data upload functionality to
a set as large as possible (e.g., all electrophysiological data
formats accepted by the BluePyEfe and the Neo package;
Garcia et al., 2014). Currently, the file formats accepted for
upload are .abf (Axon Binary File), which must be uploaded
together with a metadata file in .json format) and .json
(i.e., text files with special formatting). The latter file type
is structured in such a way to guarantee a fast access to
both recorded data and related metadata. In the .json data
file, the information is structured into dictionaries where
the membrane voltage values and the timing information
on the stimulus (i.e., start and end time of the delivered
current) are grouped by stimulus amplitudes. A detailed
description of the accepted file formats is available in the NFE’s
Guidebook.25

The public data available in the NFE are currently stored
in a dedicated Object Storage container at CSCS (Swiss
National Supercomputing Centre) in .json format and are
accessible from the NFE in read-only mode. A subset
of the data collection contributed by HBP members and
collaborators are also available (in their original format),
stored, categorized and indexed in the KG, which allows public
contribution from the broader neuroscientific community
and is expected to become a standard reference for data
publication and sharing. A tight integration between the
NFE and the KG is currently under development and will
disclose to the NFE’s users a continuous and seamless
access to a plethora of electrophysiological data (see section
“Discussion”).

25https://hbp-bsp-hhnb.cineca.it/efelg/docs/
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FIGURE 1 | The NFE architecture and workflow. (A) From top to bottom: the NFE’s frontend provides a point-and-click interface to execute the trace selection,
upload, visualization as well as the parameter setting and feature selection operations. The backend performs the feature extraction on the selected traces via the
BluePyEfe library which in turn leverages the eFEL software. The traces made available to the users are stored in a CSCS container. (B) From left to right: individual
traces are selected from the public dataset or from the files uploaded by the user; if needed, the extraction parameters are appropriately set; the features of interest
are selected and, finally, the result files are downloaded and used for further analysis or model optimization.

USAGE

Overview
The NFE GUI consists of a number of point-and-click user
friendly HTML pages that guide the user through the complete
feature extraction workflow (see Figure 1). On the Overview
page, a short introduction to the tool is given and a quick-tour
section can be unfolded with basic guidelines to the use of the
web application. On the right side of the header panel, three icons

are provided, which redirect to the NFE’s homepage, the NFE’s
Guidebook and a video tutorial, respectively.

Data Selection
The “Trace selection” page is divided into three sections.
The top panel allows to configure a number of extraction
parameters, which will be fed to the BluePyEfe instance on the
backend server side. The central section allows to select the
electrophysiological traces to analyze. The current list contains

Frontiers in Neuroinformatics | www.frontiersin.org 4 August 2021 | Volume 15 | Article 713899

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-713899 August 20, 2021 Time: 14:50 # 5

Bologna et al. The EBRAINS NeuroFeatureExtract

FIGURE 2 | Trace selection page. (A) In the “Feature Extraction Parameters” panel the users can set the parameters adopted in the feature extraction process.
(B) The data files provided by HBP members and collaborators are categorized by metadata (e.g., Contributors, Species, Structure, etc.). By clicking on a specific
key, all the remaining fields are automatically updated (i.e., their color is changed) in order to reflect the available choices left to the users. (C) The upload panel
allows to upload either .abf or .json files. Any number of panels can be added (through the bottom-right “+Add Cell” button): all the files uploaded in a single panel
are considered as recorded from the same cell.
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public data and is constantly updated with the neuroscientific
community contributions. The bottom section allows the users to
upload and use their own electrophysiological data in the feature
extraction process.

Feature Extraction Parameters
Three feature extraction parameters can be currently
set by the user.

The Threshold (mV) parameter is the membrane potential
threshold adopted for action potential detection and is
particularly useful when a hard threshold (usually set to -20 or
-30 mV) is not able to detect all the recorded action potentials
(see section “Results”). The Accept zero std parameter is a flag
(i.e., can be either True or False); if set to False it will collect
(for final averaging and printing, see section Methods/BluePyEfe)
only mean feature values that present either a mean value of zero
or a standard deviation value greater than zero; otherwise, if set
to True, all mean values (different than not a number -or “nan”)
will be taken into account. We introduced this functionality in
the BluePyEfe (and exposed it through the NFE GUI) because,
while in general mean and standard deviation values make
sense (and are strictly defined) when computed from a pool of
samples, in specific cases, the users might want to account for
features (e.g., the Spikecount) extracted from individual traces,
for analysis purposes. Finally, the Convert zero feature value
applies a post extraction data correction on the computed feature
values. The user is provided with two dropdown menus on the
GUI. The leftmost menu presents two options: nan and stim_end
while the rightmost one displays a list of selectable features
(see Figure 2A). When either nan or stim_end is selected, the
values of the checked features are converted to nan or to the
stimulus end time, respectively, if their value is zero after the
feature extraction has been performed. This functionality is only
available for a subset of features and is instrumental in the fine
tuning of the model optimization process that the user might
want to undergo by adopting the NFE result files (see section
Usage/Extracted features).

Datasets
The central section of the Trace selection page allows the
user to select the electrophysiological data to be used for
the feature extraction from a pool of public data files. The
recordings are grouped by six criteria: (1) Contributors (e.g.,
contributor names); (2) Species (e.g., human, rats, mice); (3)
Structure (e.g., hippocampus, cerebellum, striatum); (4) Region
(e.g., CA1, dorsal-striatum, primary visual area); (5) Type (e.g.,
interneurons, granule-cells, principal-cells), and (6) EType (e.g.,
continuous adapting cells or cAC, continuous non-adapting cells
or cNAC) (see Figure 2B). When a value, belonging to any of
the above-mentioned categories, is selected, the metadata of the
data files fulfilling the selection are parsed in order to find any
match with the remaining categories. The entries, in any category
other than the most recently selected, that are not found in
the metadata, are grayed out in the panel. Also, if after a first
selection in a given category, only one match is found in another
selection box, the latter is set to bold. This allows to guide the
users in their further selections. An example of this logic is given

in Figure 2B, where the Contributors/Marie’s Lab, IPMC, CNRS
entry has been selected. The datasets are continuously being
updated and tightly linked to the KG (see section Methods/File
formats). We encourage the NFE users to register their data
in the KG and, successively, make them publicly available in
the dedicated NFE data section. The KG data registration is
implemented through an agile curation process and is supported
upon request at support@ebrains.eu.

Upload
In addition to the selection of contributed electrophysiological
traces, users can also upload their own data through the NFE
GUI. Uploaded files are inserted through dedicated panels
which are dynamically created/deleted via ad hoc buttons (see
Figure 2C). Once a new panel is displayed, the type of data
that will be uploaded through that panel has to be specified
(at the moment two formats are available: .abf and .json, see
section Methods/File formats). All the files uploaded via a specific
panel will be considered as referring to (namely, being recorded
from) the same cell: this will allow to group the statistics of
cell-specific features into cell-specific files (see section “Results”).
In order to specify the type of cell the uploaded files refer to,
a number of fields must be compulsorily filled out (e.g., Cell
id, Species, Structure, Region, etc.). The neural traces uploaded
by the users and the public ones can be inclusively selected
for feature extraction. The files uploaded by the users are only
temporarily stored on the server hosting the NFE, as this is
a technical requirement for the execution of the workflow. At
execution time, they are not accessible by any user other than
the one who uploaded them in that every feature extraction
process has its own unique session variables that allow to create a
dedicated folder structure in which data, results and temporary
files are stored (see section “Overview”). All uploaded files, as
well as results and temporary data, are deleted from the server
2 h after they have been created (this time window is suitable
to give the users enough time to complete the workflow) and
are not anymore retrievable by either the NFE or data owners
(a new upload is required if the users want to perform further
analysis—or repeat previous ones—on the same data).

Trace Visualization and Selection
A user-friendly interface is available for the selection of the
electrophysiological traces to be processed. All the traces
belonging to the same recording are collectively visualized in the
same plot, which is in turn embedded into a dedicated panel
showing the name of the relative file and the property of the cell
from which the neural activity has been recorded. Different colors
are adopted for different traces and individual trace labels are
coupled with the stimulus amplitude (and unit) delivered during
the signal acquisition. By clicking on a label, the corresponding
trace is selected and collected for further processing (i.e., the
feature extraction procedure, see Figure 3). For every recording,
a voltage correction value can be set in case a holding voltage has
been applied during the experiment. When applied, all the traces
belonging to the same file are shifted by the inserted value. This
functionality is part of the BluePyEfe software library and has
been implemented (and exposed in the NFE) because, in many
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FIGURE 3 | Trace selection panel. The traces belonging to individual files are displayed (together with the corresponding metadata) in interactive panels. By clicking
on the legend labels, the user selects the traces to be gathered for the feature extraction. All selected traces are highlighted for ease of visualization. Data from
Migliore et al. (2018).

cases, recordings are carried out and stored with a membrane
voltage shifted to zero (for experimental reasons) and this implies
that a standard action potential detection threshold (of about -20
or -30 mV) might fail in detecting the recorded spikes.

Feature Selection
The last step, before the actual feature extraction process is
launched, consists in the feature selection (via a point-and-click
interface, see Figure 4). The features that the users can select
are those available and documented in the eFEL python package
(except for a small number of features that require the stimulus
waveform in order to be extracted) and are grouped by category
(see section Methods/eFEL).

Extracted Features
The feature extraction results are available for download as a
.zip file, after the data processing is completed (see Figure 5A).
The results folder contains the output files generated by the
BluePyEfe Python package, which in turn leverages the eFEL

library (see sections Methods/BluePyEfe and Methods/eFEL), and
passed “as is” to the user. More specifically, in the main folder,
a subfolder for each cell is created that contains: (1) a .pdf file
displaying the electrophysiological traces from which the features
have been extracted (see Figure 5B); (2) a .pdf file displaying
the corresponding stimulus traces; (3) a .pdf file containing the
plot of the mean values and standard deviations of the extracted
features (computed on sets of traces recorded upon delivery
of the same stimulus); (4) a features.json files containing mean
values and standard deviations of the computed features grouped
by stimulus amplitude (see Figure 5C); (5) a protocols.json file
where the stimulation protocols is reported in appropriately
structured Python dictionaries. In addition to the results obtained
for individual cells, the same files listed above are generated
(and saved in the root of the results folder) where the statistics
and plots have been computed after averaging among individual
cells. In addition, the all_feature_table.txt tab-separated text file
is included, where individual features extracted from individual
traces are reported in tabular format. This notation provides the
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FIGURE 4 | Feature selection panel. About seventy features are currently available for selection via a point-and-click interface. Features are grouped by three
categories: “Spike event features,” “Spike shape features,” “Voltage features.”

users with a helpful mean to compute higher order statistics
on raw (i.e., not averaged) feature values. It is worth noting
that the result files are explicitly formatted to be compatible
with the neural optimization software library BluePyOpt (Van
Geit et al., 2016). This Python tool (freely available online on
PyPi26 and GitHub27) allows to optimize neural models via genetic
algorithms and is being extensively used by neuroscientists for
optimizing different types of neural models against experimental
data (Migliore et al., 2018; Masoli et al., 2020; Rizza et al., 2021).
The NFE is integrated in the Hodgkin-Huxley Neuron Builder
web application that provides the community with an easy-to-use
interface able to facilitate the optimization workflow.28

In order to demonstrate the usefulness of the functionalities
available in the NFE, we selected three traces from the HBP
dataset for feature extraction and went through the entire
extraction pipeline. These recordings have been acquired from
mouse cerebellar granule cells via patch clamp experiments
and are shown in Figure 6. While the signal-to-noise ratio
of all experiments is high and action potentials seem to
be unambiguously detectable, if only upon visual inspection
(Figures 6A–C), the stimulus highest values induce an activity
drift in one of the recordings (Figure 6C). This behavior is
bound to affect the validity of the extracted feature values, in
that the default spike detection threshold (i.e., -20 mV) would
fail to correctly identify a collection of action potentials occurring
jointly with the drift, for high stimulus amplitudes (Figures 6C–
E). To address this issue, the users can zoom in and out the traces,
via the trace visualization interactive panels (Figure 4), in order
to identify a suitable threshold able to guarantee a correct spike

26https://pypi.org/project/bluepyopt/
27https://github.com/BlueBrain/BluePyOpt
28https://hbp-bsp-hhnb.cineca.it/hh-neuron-builder/

detection for all the recordings. Then, via the Feature Extraction
Parameters panel (Figure 2A), the appropriate threshold can be
set before the feature extraction is triggered.

In order to quantify the impact of a wrong spike detection
threshold setting, we extracted the mean and standard deviation
of the Burst Number, Mean Frequency, Spike Count and Action
Potential Width features, for the traces shown in Figure 6 (we
only considered the 44pA stimulus amplitude for demonstration
purposes) upon adoption of two different thresholds. These
values are reported in Table 1.

DISCUSSION

In the framework of the HBP (Amunts et al., 2016), we have
developed an online tool for the extraction of electrophysiological
features from either recorded or simulated neural activity. The
NFE is a web application freely accessible on the internet that
provides the community with a user-friendly interface for: (1)
visualization and selection of neural signals; (2) selection of
electrophysiological features of interest; (3) feature extraction.

The NFE provides the users with a set of recordings
contributed by the HBP consortium and partners that are, or
are being, integrated in the EBRAINS research infrastructure
data management engine (i.e., the EBRAINS KG). In addition,
a unique feature of the NFE is the possibility to upload user’s
own data files to be analyzed individually or in conjunction
with the recordings selected from the EBRAINS available
dataset. The application currently accepts two different file
formats for the upload: (1) .abf files (i.e., axon binary format),
which needs to be provided together with a metadata file and
(2) .json files containing all the data and metadata required
to perform the feature extraction procedure. In particular,
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FIGURE 5 | Result panel. (A) All results are downloadable from the web interface in a unique .zip file. (B) The traces from which the features have been extracted are
printed to .pdf files. (C) Feature mean and standard deviation values are saved in appropriately formatted .json files, ready to be fed to the BluePyOpt neural model
optimizer. Data from Migliore et al. (2018).

the latter format has been designed so as to be created by
computational neuroscientists or experimentalists with basic
knowledge of software programming. In fact, accepted .json files
are text files that contain neural traces and related info (e.g.,
stimulus amplitude, stimulus start and end time, data units)
in appropriately structured dictionaries, easily accessible by the
underlying feature extraction software package, the BluePyEfe,
which has been purposefully extended to support this data format
(see section “Methods”).

Another key feature of NFE is the varied repertoire of the
generated outputs. Not only the .json files needed to be fed to
the BluePyOpt neural model optimizer are produced, but also
the features extracted from individual traces are stored (upon
selection of the relevant option) in a properly formatted .txt file,
easily manageable for further processing.

Finally, usability is made simpler by a dedicated
documentation and an interactive video tutorial that guide
the users through the entire feature extraction workflow.

While the NFE already offers a self-consistent means for data
analysis on electrophysiological traces, the tool is being currently
extended with further features.

For example, the interaction with the EBRAINS KG is being
made tighter: a dedicated engine that periodically verifies the
availability of suitable data for the feature extraction procedure
is currently under development. Not only will this functionality
allow to check in a (quasi) real-time manner which data
have been added to the KG and whether these data are
eligible for feature extraction (i.e., they refer to step current
experiments and contain the needed metadata), but also it
will perform a seamless interaction with the KG for data
reading and fetching.

Also, we will further develop the NFE so as to allow the users
to keep track of the data files from which the features have been
extracted, the extraction process parameters and the version of
the software packages used for the entire workflow. In order
to achieve this goal, we will leverage the EBRAINS provenance
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FIGURE 6 | Feature extraction parameter tuning. (A–C) Example of electrophysiological recordings (related to 3 different cells) acquired upon delivery of the 14
stimuli displayed in (E) (amplitudes from -8 to 44 pA, at 4 pA intervals). In (A,B) a −20 mV spike detection threshold (the default value) is appropriate for identifying all
the action potentials. In (C), an activity drift is observed for stimuli greater than 16 pA. If a −20 mV threshold is used in this case, the spike detection process would
fail to recognize a significant number of action potentials, in that they occur above the threshold itself, as shown in (D) (zoomed activity chunk for the 44 pA recording
of Cell 3). For such a scenario, the NFE trace visualization panels (see Figure 3) allows to identify an appropriate threshold that can be set through the panel
dedicated to the extraction parameters tuning (see Figure 2A). Data courtesy of Prof. E. D’Angelo.

TABLE 1 | Mean and standard deviation values of four features extracted from the traces shown in Figure 6 (for stimulus amplitude equal to 44pA).

Feature name Spike detection threshold: −20 mV Spike detection threshold: −5 mV

Mean SD Mean SD

Spike count 135.0 96.2 153.7 122.6

Mean frequency (Hz) 70.1 48.2 78.7 60.4

Burst number 7.7 2.5 6.3 4.1

Action potential width (ms) 1.7 1.4 0.7 0.2

All values are strongly affected by the computed number of action potentials, namely the activity Spike Count (a -20 mV threshold fails to detect a significant number
of spike events). Interestingly, both the mean and standard deviation values of the action potential width is much higher when a -20 mV threshold is adopted. This is
explained by the fact that one or multiple portions of the recorded firing activity entirely occur above the spike detection threshold and are consequently read as individual
action potentials with particularly large -and not biophysically plausible- width.
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tracking engine and store the relevant metadata in the
EBRAINS KG so as to allow the users to both fetch
previous processes relevant information and use them
for novel feature extraction procedures or for feature
extraction validation.
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