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Epigenetic loss of heterogeneity from low to high
grade localized prostate tumours
Sebnem Ece Eksi 1,2✉, Alex Chitsazan1, Zeynep Sayar1,2, George V. Thomas 1,3, Andrew J. Fields4,

Ryan P. Kopp5, Paul T. Spellman 1,4,6 & Andrew C. Adey 1,4,6✉

Identifying precise molecular subtypes attributable to specific stages of localized prostate

cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a

population-average, which mask the heterogeneity that exists at the single-cell level. In this

work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-

frozen prostate tumours. We observe shared chromatin features among low-grade prostate

cancer cells are lost in high-grade tumours. Despite this loss, high-grade tumours exhibit an

enrichment for FOXA1, HOXB13 and CDX2 transcription factor binding sites, indicating a

shared trans-regulatory programme. We identify two unique genes encoding neuronal

adhesion molecules that are highly accessible in high-grade prostate tumours. We show

NRXN1 and NLGN1 expression in epithelial, endothelial, immune and neuronal cells in

prostate cancer using cyclic immunofluorescence. Our results provide a deeper under-

standing of the active gene regulatory networks in primary prostate tumours, critical for

molecular stratification of the disease.
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Tumour heterogeneity in prostate cancer poses a significant
problem for molecular stratification of patients with loca-
lized prostate tumours1,2. It is well established that only a

subset of clinically identified prostate cancers leads to lethal
metastatic disease3–5. However, significant heterogeneity within a
specific tumour focus and across different tumour foci in the
prostate gland results in complex evolutionary trajectories for the
disease1,6–8. The molecular heterogeneity within a tumour focus
often leads to misclassification of the tumour grade and ineffec-
tive clinical treatment plans for many patients. The majority of
the prostate cancer genomics and epigenomics data acquired to
date originate from the bulk analysis of tumours that capture a
population-average of different cell types in the tumour9,10. This
generates a three-fold problem: (1) epithelial, endothelial, mye-
loid, lymphoid, nerve and other stromal cells that contribute to
prostate cancer progression are reduced to a single component;
(2) as a result, the dynamic bidirectional communication between
these distinct components are not captured; (3) the heterogenous
cell states within a single histopathological tumour grade are
eliminated from the analysis.

Newly emergent single-cell technologies hold the key to pro-
filing the vast heterogeneous landscapes of prostate cancer11–17.
Recently, whole genomes of 20 single cells from localized prostate
tumours were sequenced18, revealing significant cell-to-cell var-
iation in mutations and complex subclonal trajectories. However,
these microdissection-based studies do not sample enough cancer
cells to represent an unbiased image of localized prostate
tumours. Combinatorial indexing of single-cells provides a way to
profile thousands of cells from various types of tissues19–21.
Currently, this method has been applied to a select group of
cancers22,23. However, there are no current studies using these
high-throughput single-cell technologies to characterize localized
prostate adenocarcinoma.

To reveal the transformative changes in localized prostate
tumours that lead to aggressive disease, it is important to capture
the chromatin accessibility profiles of cells in low-grade and high-
grade tumours. Open chromatin regions of cells contain not only
promoter regions of actively transcribed genes, but also non-
coding regulatory sequences. These sequences reflect the active
gene regulatory networks that drive cell state transitions. There-
fore, ATAC-seq (Assay for Transposase-Accessible Chromatin
sequencing) technology provides a way to characterize both cis-
and trans-regulators of cell states during tumour progression24,25.

The current best predictor of outcome in localized prostate
cancer is the degree of differentiation or grade of the tumour26.
Grading of prostate cancer is reported through the Gleason score,
which is a composite of the two most predominant Gleason grade
patterns present in a sample26. Tumours that contain solely
Gleason pattern 3 are often clinically indolent and tumours with
higher Gleason pattern (≥4) are clinically significant and asso-
ciated with a much worse outcome. This association remains
constant even if the higher pattern tumour foci make up a small
proportion of the entire tumour population26. It should also be
noted that if followed long enough, some of the patients that are
diagnosed with Gleason pattern 3 tumours also develop aggres-
sive disease under active surveillance4,27. Therefore, determining
the treatment strategies for patients with Gleason pattern 3 and 4
prostate tumours present a clinical challenge27–29.

Understanding the transition between indolent and aggressive
disease requires determining the risk of progression30. Even
though it is important to properly stratify tumours based on the
Gleason pattern and score, confounding factors exist, such as the
surgical margin status for patients who have gone through radical
prostatectomy surgery, presence or absence of extracapsular
extension and lymph node involvement. The Cancer of the
Prostate Risk Assessment Post-Surgical (CAPRA-S) score and

post-radical prostatectomy nomogram (Memorial Sloan Kettering
Cancer Centre) take these additional factors into consideration
and provide ways to delineate the probability of disease
recurrence31–34.

Our primary objective in this study is to identify molecular and
cellular markers associated with prostate tumours that are pri-
mary Gleason pattern 3 (low-grade) and 4 (high-grade) and to
explore the heterogeneity of the localized disease. Here we show,
merging single-cell chromatin accessibility data with multiplex
imaging, the cis- and trans-regulators of localized prostate
tumours. We report that low-grade prostate tumours carry
chromatin constraints, which are lost in high-grade tumours. We
identify transcriptional factor binding signatures associated with
low- and high-grade prostate tumours. Finally, we uncover the
expression of neuronal adhesion molecules in prostate cancer and
its surrounding stroma.

Results
Single-cell chromatin landscape of primary prostate tumours.
We used combinatorial indexing to perform single-cell ATAC-
seq (sci-ATAC-seq) from fresh-frozen prostate tumours collected
from 18 patients via radical prostatectomy (Fig. 1a). FFPE tissue
blocks were prepared from each patient, and both H&E sections
and unstained adjacent sections for immunofluorescent (IF)
staining were obtained from each block (Fig. 1a). Our cohort
consists of six low-risk, nine intermediate-risk and two high-risk
patients based on their CAPRA-S scores and Memorial Sloan
Kettering Cancer Centre (MSKCC) nomograms (Supplementary
Data 1)31,33. The majority of the tumours consist of primary
Gleason pattern 3 (low-grade) and 4 (high-grade) (Supplemen-
tary Data 1).

We analyzed the distribution of captured open chromatin
regions across different functional genomic elements such as the
promoter, 3′UTR, 5′UTR, exon, intron and distal regions (Fig. 1b).
We observed that aggregated sci-ATAC-seq data from all
tumours exhibit a similar distribution across functional genomic
elements when compared to bulk ATAC-seq results from the
prostate adenocarcinoma (PRAD) TCGA data sets (Fig. 1b and
Supplementary Fig. 1). This result indicates that sci-ATAC-seq is
not biased in capturing open chromatin regions from specific
genomic regions35.

To confirm the quality of our acquired sci-ATAC-seq data sets,
we aggregated peaks from Gleason pattern 3 and ≥4 tumours. We
called 125,569 peaks and identified differentially accessible peaks
around the promoter regions of several key genes in prostate
cancer such as MYC and KLK3 (Fig. 1c). To further validate the
quality of our sci-ATAC-seq data sets, we examined differential
accessibility to the region that encodes for SCHLAP1 long non-
coding RNA in tumours with Gleason pattern ≥4 as compared to
pattern 3. SCHLAP1 is a prognostic marker that exhibits high
expression in metastatic and high-grade prostate cancers36,37. In
agreement with this, our results show higher accessibility to
SCHLAP1 in Gleason pattern ≥4 tumours (Fig. 1c).

Following several quality control procedures (Supplementary
Fig. 1, “Methods”), 14,424 cells were recovered with high-quality
sci-ATAC-seq reads from 18 primary prostate cancer samples
(Fig. 2a and Supplementary Fig. 1). snapATAC analysis of our
sci-ATAC-seq data, using the Latent Dirichlet Allocation method,
identified 16 clusters of cells38,39. Based upon cisTopic, each
cluster of cells shares accessibility profiles grouped in 30 Topics
(Fig. 2b)40. 16 clusters are visualized by the Uniform Manifold
Approximation and Projection (UMAP) (Fig. 2a, b)41,42. A
heatmap of topic scores across clusters shows distinct chromatin
accessibility profiles of cells (Fig. 2c). Topics 4, 12 and 5 are
mainly shared across cells from all clusters whereas Topics 20, 6
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and 16 show very specific profiles for a small number of clusters
(Supplementary Fig. 2a). We visualized putative gene transcrip-
tion by quantifying the chromatin accessibility surrounding
annotated transcription start sites (TSSs) (Fig. 2e).

sci-ATAC-seq captures immune and stromal cell types. Lym-
phoid, myeloid and other stromal cells have very different
chromatin accessibility profiles compared to epithelial prostate
cancer cells. Based on previous work, we expect that immune and
stromal cell types associated with different prostate tumours
would form distinct clusters of cells on the UMAP43–45. To
examine this point, we used a cluster dendrogram of clusters to
analyze the hierarchical relationship between the topics (Sup-
plementary Fig. 2B). We observed Clusters 7, 12 and 14 attract
cells from all tumour samples (Fig. 2a, b). To identify the
accessible chromatin regions that define these Clusters, we ana-
lyzed all Topics using Genomic Regions Enrichment of Annota-
tions Tool (GREAT) that takes a set of genomic regions as its

input, finds the associated cis-regulatory regions and outputs
annotation terms that are significantly enriched within the input
genomic regions46. Topics 20 and 6 show an enrichment for GO
terms related to the immune system process and immune
response (Supplementary Fig. 2A). More specifically, immune
Topic 20, which is enriched in cluster 14, contains GO terms
associated with leukocyte and neutrophil activation, whereas
immune Topic 6, which is enriched in cluster 12, contains GO
terms associated with lymphocyte and T cell activation (Fig. 2c,
d). Similarly, we observed an enrichment for genomic regions
associated with extracellular matrix organization for stromal
Topic 16, which is enriched in cluster 7 (Supplementary Fig. 2A).
Altogether, our results show that cluster 7 consists of stromal
cells, cluster 12 consists of lymphocytes and cluster 14 consists of
myeloid immune cells. We eliminated clusters 7, 12 and 14 from
our downstream analyses to identify the gene regulatory network
changes that specifically occur in epithelial prostate cancer cells
(Fig. 2d).
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Fig. 1 sci-ATAC-seq captures the chromatin accessibility landscape of prostate tumours with Gleason pattern 3 and 4. a Diagram of experimental
design. Flash-frozen prostate tumour samples were recovered from radical prostatectomies. Nuclei from each tumour were extracted and sorted into 96-
well plates using unique combinatorial indices attached to transposase. FFPE tissue sections were collected from each patient along with an adjacent H&E
section. Image created with BioRender.com. b Bar graph showing the percentage of peak distribution among functional genomic elements: promoter (<1 kb,
1−2 kb, and 2−3 kb), 3′UTR, 5′UTR, exon, intron, downstream (<300 kb) and distal regions. All aggregated peaks from Gleason pattern 3 and 4 tumours
and TCGA bulk ATAC-seq results are shown. c sci-ATAC-seq peaks aggregated from Gleason pattern 3 (red) and 4 (blue) tumours. Called peaks are
represented by dark blue rectangles. Examples of selected genomic regions: MYC gene (top), KLK3 (middle) and SCHLAP1 (bottom) are shown.
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Fig. 2 cisTOPIC identifies 16 clusters of cells spanning 30 topics from 14,251 cells. a Single-cells from 18 prostate samples were clustered using
cisTOPIC based on their chromatin accessibility profiles. Cells are coloured according to their sample IDs on the UMAP. b Single-cells from 18 prostate
samples formed 16 clusters based on their shared chromatin accessibility profiles. Cells are coloured according to their cluster IDs on the UMAP.
c Heatmap showing the topic distribution across 16 clusters. d Epithelial and stromal cell types are identified in localized prostate tumours. Lymphoid,
myeloid and fibroblasts (grey tones) are removed from downstream analyses. Outer clusters show high-MYC accessibility (blue tones). The middle cluster
shows higher accessibility to genes associated with inflammatory response (red tones). e Gene scores are shown for epithelial cell type markers luminal
(KRT8), basal (KRT5 and KRT14) and neuroendocrine (Chromogranin A); common prostate epithelial cell markers AR, TMPRSS2 NKX3.1; prostate cancer
cell markers AMACR, EPCAM, CDH1, C-MYC and PTEN.
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Epithelial prostate cancer cells carry markers of inflammatory
response. We used GREAT analysis in addition to the gene-based
annotation tools of snapATAC to annotate the rest of the clusters
identified through the topic analysis. We inferred the gene
expression of marker genes for prostate tissue KRT8 (luminal
epithelial), KRT5 (basal epithelial), KRT14 (basal epithelial),
Chromogranin A (neuroendocrine), AR, TMPRSS2 and NKX3.1
(Fig. 2e). We also examined markers for prostate cancer such as
AMACR, EPCAM and C-MYC as well as molecular markers
CDH1 and PTEN (Fig. 2e). Our results show that the majority of
our cells come from luminal epithelial cells as expected, with high
accessibility to cancer markers AMACR and EPCAM (Fig. 2e).
Neuroendocrine cells, which normally constitute a small per-
centage of the epithelial cell population, do not form independent
clusters on the UMAP (Fig. 2e). Basal cells are observed in a small
cluster defined by Topics 8 and 10 (Fig. 2e). GREAT analysis
shows an enrichment for regions associated with early inflam-
matory response in cells that form the main cluster island on the
UMAP. Topics 9, 15, 19 and 21 define the cells in the main
cluster, which include gene terms related to IL-6 signalling,
wound healing, viral response and leukocyte activation, respec-
tively (Fig. 2d and Supplementary Fig. 3). We observed high
accessibility for C-MYC for the three outer clusters (Fig. 2e). One
of these outer clusters, also shows high accessibility for ERG and
the other for FLI1 (Supplementary Fig. 7A). We decided to fur-
ther delineate the biological differences between the main cluster
and the three distant clusters of cells on the UMAP (Fig. 2e).

Differentially accessible regions of Gleason pattern 4 prostate
tumours. To investigate the chromatin accessibility profiles of
epithelial prostate cancer cells, we projected the clinical grades of
the patient cohort on the UMAP (Supplementary Data 1 and
Fig. 3a). We observe that the majority of the cells extracted from
low- and intermediate-risk prostate patients (Gleason 3+ 3,
Gleason 3+ 4) contribute to the single large cluster in the
dimensionally reduced UMAP space (Fig. 3a and Supplementary
Fig. 3). In contrast, single cells from one intermediate-risk
(Gleason 4+ 4) and two high-risk (Gleason 4+ 4) prostate
patients form the three distinct outer clusters (Fig. 3a and Sup-
plementary Data 1). One intermediate-risk prostate tumour
(Gleason 3+ 4), which consists of 70% Gleason pattern 3 cells
and 30% Gleason pattern 4 cells, has cells mostly clustering with
low-grade prostate tumours, and a small group of cells clustering
with high-grade prostate tumours (Fig. 3a). Based on these
results, we assigned single-cells to either Gleason pattern 3 or 4
categories on the UMAP (Fig. 3b), to examine the cis-regulatory
and trans-regulatory differences observed in cells from Gleason
pattern 3 (low-grade, main cluster) and Gleason pattern 4 (high-
grade, outer clusters).

Differential accessibility functions of snapATAC (“Methods”39,)
identified top regions (Fig. 3c and Supplementary Figs. 4, 5) that
are significantly accessible in Gleason pattern 4 tumours as
compared to Gleason pattern 3 tumours. GREAT GO terms
associated with accessible regions enriched in Gleason pattern 4
tumours include neuronal membrane adhesion, embryonic
skeletal system morphogenesis, palate development and
L-alanine transport (Fig. 3d). Notably, genomic regions associated
with the neuronal adhesion genes, NRXN1, NLGN1 and CDH9,
are highly accessible in Gleason pattern 4 vs. 3 tumours (Fig. 3d
and Supplementary Fig. 5).

To determine if Gleason pattern 3 tumours would form
separate clusters when analyzed in isolation, we eliminated all
Gleason pattern 4 tumours from our analysis and performed
topic analysis on Gleason pattern 3 tumours alone. We observed
that Gleason pattern 3 tumours again formed one single cluster

and did not form patient-specific clusters, suggesting certain
chromatin accessibility features are shared across all Gleason
pattern 3 tumours (Supplementary Fig. 6).

We also profiled all cells based on their accessibility for known
prostate cancer molecular subtypes (Supplementary Fig. 7)47.
ERG, ETV1, ETV4 and FLI1 display patient-specific patterns even
though accessibility of these markers do not drive clustering of
cells within the data (Supplementary Fig. 7A). Samples 4 (Gleason
score 4+ 4) and 16 (Gleason score 3+ 4) contain cells with high
ERG accessibility, whereas the rest of the samples show
heterogenous distribution for ERG accessibility (Supplementary
Fig. 7A)48. Topics enriched in Samples 4 and 16 include genes
such as AR, GRHL2, FOXA1, SLC43A1, WNT7B, which are
known downstream players active in prostate cancers with ERG
expression49,50. Sample 3 contain cells with high FLI1 accessi-
bility. ETV1 and ETV4 show a heterogenous distribution
(Supplementary Fig. 7A). We demonstrated the accessibility
profiles for some of the recurrently mutated genes MYC, SPOP,
PTEN and IDH1 across all our samples (Supplementary Fig. 7B).
We observed higher accessibility to the promoter region of MYC
in Gleason pattern 4 prostate tumours (Supplementary Fig. 7B).

Gleason pattern 4 tumours are enriched for neuronal adhesion
molecules. Next, we used Cicero to examine the putative reg-
ulatory interactions around the NRXN1, NLGN1 and CDH9
loci51. Cicero is a single cell ATAC-seq method that finds putative
regulatory interactions between regulatory sequences based on
the co-accessibility of chromatin regions51. We observed an
increase in the number of predicted cis-regulatory interactions
around the NRXN1 locus in Gleason pattern 4 prostate tumours
(Fig. 3e). Several regions distal to the NRXN1 promoter and
intronic sequences within the gene body that are inaccessible in
Gleason pattern 3 tumours, are accessible in Gleason pattern 4
tumours (Fig. 3e). Even though not quantitative, this result was
particularly striking since we have a smaller number of Gleason
pattern 4 cells (5,334 cells) than Gleason pattern 3 (7,383 cells).
We also observed some additional putative regulatory interac-
tions in Gleason pattern 4 tumours around the NLGN1 and
CDH9 loci, even though the increase in the number of links were
not as high as around the NRXN1 locus (Supplementary Fig. 7C).

To validate our results that show a significant enrichment in
the chromatin accessibility profiles of high-grade tumours for
neuronal adhesion molecules NRXN1, NLGN1 and CDH9, we
analyzed the bulk ATAC-seq profiles using the TCGA PRAD data
set35. TCGA PRAD data set consists of 26 patients with
intermediate- and high-grade prostate tumours (Supplementary
Fig. 8 and Supplementary Data 2). Only six patients have Gleason
score 4+ 4 tumours and none of the patients have Gleason score
3+ 3 tumours. Despite these major clinical differences in the
patient data sets, we detect a significant increase in the
accessibility of NRXN1 and CDH9 chromatin sites in high-
grade tumours as compared to intermediate-grade tumours
(Supplementary Fig. 8). Next, we analyzed the bulk RNA-seq
profiles of 497 patients from the TCGA cohort and detect
NRXN1 expression in the majority of the prostate tumours
(Supplementary Fig. 8). In contrast, we detect low levels of
NLGN1 transcripts and no CDH9 transcription in the TCGA
bulk RNA-seq data set (Supplementary Fig. 8).

Loss of heterogeneity from Gleason pattern 3 to 4. Our cluster
analysis shows Gleason pattern 4 tumours as the outlier clusters
on the UMAP whereas cells from primary Gleason pattern 3
tumours are mixed with each other in one cluster, regardless of
patient ID. To further investigate the loss of heterogeneity from
Gleason pattern 3 to 4 prostate tumours, we performed Silhouette
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analysis to measure the distances between aggregated cells from
Gleason pattern 3 and 4 tumours. Our results show cells from
Gleason pattern 4 tumours to have decreased heterogeneity
(Fig. 3f). To measure the level of heterogeneity within each pri-
mary Gleason pattern 3 and 4 samples, we also examined the
Silhouette scores separately and found cells from Gleason pattern
3 tumours to consistently have higher heterogeneity as compared

to Gleason pattern 4 (Fig. 3f). To determine how this loss of
heterogeneity is observed at the level of trans-regulators, we
decided to examine the transcription factor (TF) binding motif
analysis in Gleason pattern 3 and 4 prostate tumours.

Distinct trans-regulatory networks of Gleason pattern 3 and 4
tumours. sci-ATAC-seq gives a snapshot of all active genetic
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programmes in individual cells19,52. To understand the active
gene regulatory networks in Gleason pattern 3 and 4 tumours, we
aggregated all epithelial cells from Gleason pattern 3 and 4
tumours separately and analyzed the enriched TF binding motifs
in each group using HOMER motif enrichment analysis53. We
observe an enrichment for Fra1, Fra2, JunB, Atf3 and AP-1 in
tumours with Gleason pattern 3 whereas tumours with Gleason
pattern 4 show an enrichment for FOXA1, HOXB13 and CDX2
(Fig. 4a).

Next, to determine if different Gleason pattern 4 tumours from
different patients share similar trans-regulatory networks, we
analyzed the TF binding motifs of each Gleason pattern 4 tumour
individually. We observe that each Gleason pattern 4 tumour is
enriched for FOXA1, HOXB13 and CDX2 binding motifs,
suggesting that higher-grade prostate tumours converge on the
same trans-regulatory landscape (Fig. 4b). Specifically, we observe
Sample_3 and Sample_4 to have a very similar TF binding motif
enrichment profile, in terms of strong enrichment for FOXA1,
HOXB13 and CDX2. Interestingly, Sample_15, a Gleason pattern
4 tumour, shows high enrichment for FOXA1, HOXB13 and
CDX2, followed by Fra1/2, Atf3, JunB and AP-1 binding sites
enriched in Gleason pattern 3 tumours, suggesting a transitionary
state between the two regulatory states (Fig. 4b).

We observe increased accessibility for the promoter region of
TFs HOXB13 and AR in prostate tumours with Gleason pattern 4
as compared to pattern 3 (Supplementary Fig. 9). FOXA1 is
accessible across most prostate cancer cells and CDX2 shows
higher accessibility, specifically in one of the Gleason pattern 4
tumours (Supplementary Fig. 9A). We also checked the patient
outcome data using the Cistrome cancer database for TF profiles
of FOXA1, HOXB13 and CDX2 in the TCGA PRAD data set54,55.
We observe that patients with PRAD tumours have higher
expression of FOXA1 and HOXB13 compared to the normal
prostate tissue and poor survival is associated with high FOXA1
expression (Supplementary Fig. 10).

To validate the findings from our cohort, we compared the
trans-regulatory landscapes of prostate tumours with different
Gleason grades using the TCGA PRAD data set. In parallel to our
observations, we found FOXA1, HOXB13 and CDX2 to be highly
enriched in prostate tumours with primary Gleason pattern 4
(Gleason score 4+ 4 and 4+ 5 patients) as compared to tumours
that are predominantly Gleason pattern 3 (Gleason score 3+ 4)
(Fig. 4c). Similarly, we also observed Fra1/2, Atf3, JunB and AP-1
binding sites are enriched in predominantly Gleason pattern 3
tumours as compared to higher grade prostate tumours (Fig. 4c).
When we analyzed the trans-regulatory differences between
prostate tumours with a secondary Gleason pattern 5 (Gleason

score 4+ 5) to tumours with Gleason pattern 4 (Gleason score
4+ 4) we find an enrichment of binding sites for class I steroid
receptors, androgen (ARE), glucocorticoid (GRE) and progester-
one (PG) (Fig. 4c). Interestingly, tumours with Gleason pattern
4 still show an enrichment for FOXA1, HOXB13 and CDX2, as
well as for AP-1 like TFs as compared to tumours with a
secondary Gleason pattern 5 (Fig. 4c).

Epithelial, endothelial, immune and neuronal cells in prostate
tumours express NRXN1 and NLGN1. Neuronal adhesion
molecules identified through our sci-ATAC-seq experiments,
NRXN1 and NLGN1, are primarily expressed in the central
nervous system and function in neuronal cell communication56.
NRXN1 belongs to the family of neurexins, which is localized to
the presynaptic membrane and interacts with neuroligins such as
NLGN1, which is localized to the postsynaptic membrane57. The
expression and function of NRXN1 and NLGN1 in prostate
cancer have not been characterized before. Cyclic immuno-
fluorescent (cyclic IF) microscopy provides in-depth information
about molecular composition and spatial distribution of cellular
heterogeneity by allowing the capture of more than 30 markers
from single tissue sections58,59. To determine the expression
pattern of NRXN1 and NLGN1 in prostate cancer across different
cell types, we performed cyclic IF staining on tissue sections from
eight patients in our cohort, using cell-type specific markers. To
profile the spatial heterogeneity of NRXN1 and NLGN1 expres-
sion across distinct cell types, we marked basal (CK5, CK14),
luminal (CK8) and neuroendocrine (Chromogranin A) epithelial
cells within the prostate glands, as well as the endothelial (CD31),
neuronal (NCAM) and immune cells (CD45, CD3) in the pros-
tate cancer microenvironment (Fig. 5 and Supplementary Fig. 11).
We validated antibodies against NRXN1 and NLGN1 using a
brain tissue section as positive and colon tissue as negative
control60,61 (Supplementary Fig. 11).

We show that both NRXN1 and NLGN1 are expressed in basal,
luminal and neuroendocrine cells in the prostate glands (Fig. 5d, e
and Supplementary Fig. 12). We observe a slight increase in the
number of neuroendocrine cells that express NRXN1 and
NLGN1 in tissue sections from high-risk patients (Fig. 5d, e).
We observe NRXN1 and NLGN1 are expressed in blood vessels
in the prostate cancer tissue sections (Fig. 5a, d, e). Both our sci-
ATAC-seq data and our cyclic IF results indicate NRXN1 and
NLGN1 expression in immune cells infiltrating the prostate
tumours (Supplementary Fig. 4A and Fig. 5d, e). Finally, we
observe that both NRXN1 and NLGN1 are expressed in the
N-CAM positive neuronal cells within the prostate tumour

Fig. 3 Tumours with Gleason pattern 4 have distinct chromatin accessibility profiles compared to tumours with Gleason pattern 3. a cisTOPIC-UMAP
of 18 prostate samples coloured based on the Gleason score of each patient, which is a sum of two Gleason patterns: Gleason score 3+ 3 (red), Gleason
score 3+ 4 (olive green), Gleason score 4+ 3 (green), Gleason score 4+ 4 (blue) and Gleason score 4+ 5 (magenta). b Gleason pattern 3 single-cells
are red, while 4 are blue and assigned according to their cluster. c Distinct chromatin regions that are significantly more accessible in Gleason pattern 4
cells were identified (red). d Gene ontology results of the differentially accessible regions are shown (top). 15 peaks were linked to three neuronal adhesion
genes, NRXN1, NLGN1 and CDH9. (+) sign indicates 3′ distal sequences, (−) sign indicates 5′ distal sequences to the transcription start site (TSS). e The
putative interactions between the distal regulatory regions and promoter sequences of NRXN1 in Gleason pattern 3 (red) and Gleason pattern 4 (blue)
tumours. Co-accessibility scores are shown on the y-axis and the dotted lines represent the threshold. Cicero links around the NRXN1 loci are significantly
higher in number in Gleason pattern 4 vs 3 tumours. f Silhouette analysis using topic modelling for single-cells aggregated from each Gleason score 3+ 3
(red) and 4+ 4 (blue) prostate resolved by patient samples and all Gleason pattern 3 (red) and 4 (blue) prostate tumours aggregated. Sample
1= 551 cells; Sample 2= 796 cells; Sample 3= 1087 cells; Sample 4= 912 cells; Sample 5= 1956 cells; Sample 6= 95 cells; Sample 7= 86 cells; Sample
8= 122 cells; Sample 9= 819 cells; Sample 10= 387 cells; Sample 11= 1582 cells; Sample 12= 293 cells; Sample 13= 439 cells; Sample 14= 128 cells;
Sample 15= 3757 cells; Sample 16= 244 cells; Sample 17= 167 cells; Sample 18= 821 cells. Quartiles are 25, 50 and 75% and 50% shows the median.
The interquartile range is the difference between the 75th and 25th percentile. The upper whisker is the maximum value of the data that is within 1.5 times
the interquartile range over the 75th percentile. The lower whisker is the minimum value of the data that is within 1.5 times the interquartile range over the
25th percentile. Outlier values are considered any values over 1.5 times the interquartile range over the 75th percentile or under the 25th percentile.
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stroma, with overall slightly higher expression profiles in high-
risk patients (Fig. 5d, e).

Discussion
Prostate cancer exhibits significant heterogeneity at the mole-
cular, cellular and tissue level, hampering efforts to accurately

determine the risk of progression for localized prostate cancer.
Single-cell technologies provide unique opportunities to accu-
rately delineate the stages of prostate tumour heterogeneity prior
to metastasis. However, single-cell technologies can also generate
large data sets that may be difficult to validate and mechan-
istically resolve at the context of the tissue. Therefore, it is crucial
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Fig. 4 Common trans-regulatory networks exist in Gleason pattern 4 versus 3 prostate tumours. a Transcription factor binding motifs enriched in
aggregated single-cells from Gleason pattern 4 (top) and Gleason pattern 3 (bottom) tumours. Binding motifs are shown based on sequence similarities.
Log scales vary due to differences in peak number and coverage. b Transcription factor binding motifs were enriched in aggregated single-cells from three
different Gleason pattern 4 tumours. c Transcription factor binding motifs were enriched in prostate tumours from the TCGA cohort. Bulk ATAC-seq
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to merge these single-cell sequencing technologies with spatial
imaging to provide an understanding of the transitionary states
between indolent and aggressive cancers.

Using sci-ATAC-seq, we identified a co-accessibility pattern in
neuronal adhesion molecules, NRXN1 and NLGN1, that distin-
guishes Gleason pattern 4 prostate tumours from Gleason pattern
3. Recent evidence shows that both the peripheral nervous system

and progenitors from the central nervous system may influence
prostate cancer progression62–64. Neuronal cells within the
prostate cancer microenvironment can release neurotransmitters
that may modulate the behaviour of prostate cancer cells65,66. It
has been shown that non-neuronal cells expressing neurexins and
neuroligins result in pre- and post-synaptic specialization in
neurons and these calcium-dependent synaptic molecules can
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exploit calcium channels present in surrounding cells for their
biological activity67–69. More interestingly, NLGN1 has shown to
be cleaved enzymatically at its N-terminal ectodomain and
secreted at excitatory synapses by enzymatic cleavage70,71. Simi-
larly, NLGN3 has been shown to be secreted in an activity-
dependent manner in glioma, promoting cell division and glioma
growth72. Our cyclic IF analysis revealed the spatial distribution
of NRXN1 and NLGN1 in prostate cancer and identified cell-type
specific expression patterns for both proteins. We observed
prostate epithelial cells, as well as immune and neuronal cells
express these synaptic molecules in prostate cancer. Based on our
findings, we propose that the expression of neuronal adhesion
molecules in prostate cancer cells mark tumours for a more
aggressive, potentially metastatic phenotype. Our findings suggest
the possibility that NRXN1 and NLGN1 expression and secretion
in high-grade prostate tumours may modulate the activity
between cancer cells and neurons, which may contribute to
perineural invasion or neoneurogenesis in prostate cancer64,73,74.

Our study has provided an atlas of the regulatory landscape of
low-grade (Gleason pattern 3) and high-grade (Gleason pattern 4)
prostate tumours. Interestingly, we did not observe regulatory
heterogeneity among single-cells from Gleason pattern 4
tumours. This may be because aggressive prostate tumours
acquire distinct evolutionary trajectories that involve different
types of chromosomal arrangements75–77. For instance, we
observed at least one of the Gleason pattern 4 tumours had high
levels of accessibility for the ERG promoter that led to a very
distinct chromatin accessibility landscape for cells from this
tumour. On the other hand, Gleason pattern 3 tumours exhibited
significant cell-to-cell heterogeneity that led to clusters of cells
from multiple Gleason pattern 3 tumours. Interestingly, all cells
from Gleason pattern 3 tumours were bound by chromatin
restraints that were lost in Gleason pattern 4 tumours. Further
genomic studies are necessary to provide links between the
common chromosomal rearrangements and single-cell epige-
nomic states of prostate cancer cells.

Our results also indicate unique trans-regulatory signatures for
different grade localized prostate tumours. We found low-grade
prostate tumours were significantly enriched for the AP-1 family
of TF binding sites (JUN, JUNB, JUND and FOS, FOSB and
FRA1, and the closely related activating TFs: ATF and CREB), in
contrast to high-grade prostate tumours that were enriched for
FOXA1, HOXB13 and CDX2. Interestingly, we observed at least
one of the high-grade prostate tumours possessed signatures for
both transcriptional regulatory programmes. We do not know
whether this tumour represents a case that is undergoing a
transition in chromatin structure, i.e., the low-grade prostate
tumour regulatory marks are still present even though the tumour
transitioned to a more aggressive state.

It is also important to point out that AP-1 family of TFs are
responsible for the early inflammatory response in cancer and the
top GO GREAT terms enriched in Gleason pattern 3 tumours are

all related to inflammation. In other words, both our cis- and
trans-regulatory analyses independently show that low-grade
prostate tumours carry markers of inflammatory response, which
supports previous studies that show a correlation between
inflammatory markers and low-grade prostate cancer78,79.

We also observed that all Gleason pattern 4 tumours in our
cohort share the same trans-regulatory circuit, even though they
formed distinct clusters of cells based on their chromatin acces-
sibility profiles. Strikingly, we were able to identify the same
trans-regulatory signature in Gleason pattern 4 and higher
tumours in the TCGA data set. Our results, combined with the
analysis of the TCGA data set, show that prostate tumours with
Gleason pattern 4 share a common transcriptional regulatory
programme defined by an enrichment of FOXA1, HOXB13 and
CDX2 binding sites. This finding is particularly interesting since
prostate cancers usually have low numbers of recurrent
mutations47,76,80. Future research will determine whether dis-
parate genomic changes observed in prostate cancer converge on
common epigenomic profiles and if these present druggable tar-
gets in non-metastatic tumours.

Identification of gene regulatory programmes shared by high-
and low-grade tumours present a strong opportunity to identify
biomarkers for patient stratification despite the overwhelming
molecular and cellular heterogeneity that exists in prostate cancer.
There are several drugs in development targeting FOXA1 and
HOXB1381–83. Our results suggest that these therapies could
potentially benefit patients with high-grade non-metastatic
prostate tumours. However, further mechanistic studies are
required to better evaluate the potential effect of these drugs on
chromatin structure and transcriptional regulation in localized
tumours.

It is unclear whether the enriched binding sites for FOXA1,
HOXB13 and CDX2 are dependent or independent of AR activity
in single cells from high-grade tumours. It is known that FOXA1,
HOXB13 and GATA2 act as pioneer TFs in the prostate tissue to
facilitate androgen receptor (AR) transcription during prostate
carcinogenesis84. However, their AR-independent activity has not
been studied extensively. We anticipate that there is a similar
synergy between FOXA1, HOXB13 and CDX2 TFs in remodel-
ling the chromatin structure in high-grade prostate tumours.
Previous studies show colocalization of TFs FOXA1 and HOXB13
at the reprogrammed AR binding sites in human prostate cancer
cells and draw a link between TMPRSS2-ERG fusion and co-
option of FOXA1 and HOXB13 to specific regulatory elements
across the genome85. Interestingly, we observed an enrichment
for FOXA1 and HOXB13 in Gleason pattern 4 tumours inde-
pendent of their ERG accessibility (Supplementary Fig. 10).
However, it is not possible to infer any details about the coop-
eration of these TFs with each other, their synergy with AR, and
their functional impact on transcription based on our results.
Additional characterization of histone modification markers is
necessary to understand the details of the synergy between these

Fig. 5 Neuronal adhesion molecules NRXN1 and NLGN1 are expressed in the epithelial, endothelial, immune and neuronal cells in prostate cancer.
Protein expression of NLGN1 (yellow) and NRXN1 (red) in tumours with Gleason pattern 3, characterized by well-formed discrete glands with wide lumens
(Sample_8) (a) and Gleason pattern 4, characterized by irregular glands with cribriform and branching architecture (Sample_4) (b). Supplementary
Figure 10 shows H&E images and ROIs for each sample. Scale bars (white line) show 200 pixels. c Expression of NRXN1 and NLGN1 across different cell
types from three tissue sections acquired from high-risk patients with Gleason pattern 4 prostate tumours in our cohort. X-axis shows cell types and Y-axis
shows the total number of segmented cells (top) or percentage population of cells positive for that marker (bottom). NRXN1 expressing cells are shown in
blue and NLGN1 in green. Cells that express both proteins are shown in purple and cells that do not express either are marked with pink. d Expression of
NRXN1 and NLGN1 across different cell types from five tissue sections acquired from low-risk patients with Gleason pattern 3 tumours in our cohort. X-axis
shows cell types and Y-axis shows the total number of segmented cells (top) or percentage population of cells positive for that marker (bottom). NRXN1
expressing cells are shown in blue and NLGN1 in green. Cells that express both proteins are shown in purple and cells that do not express either are shown
in pink.
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TFs on downstream gene expression in Gleason pattern 4 vs 3
prostate tumours.

Methods
Our research complies with all relevant ethical regulations of Knight Cancer
Institute at Oregon Health & Science University. Samples from patients undergoing
radical prostatectomy were collected via informed consent through: (1) OHSU
Knight Cancer Institute (KCI) Biolibrary under IRB#4918 and (2) Dr. Ryan Kopp’s
prostate cancer MRI study under IRB#18321. Participants were not compensated.

Isolation of prostate cancer cells from radical prostatectomy samples. Radical
prostatectomy samples from 18 patients were obtained from the Biolibrary at
OHSU. Fresh-frozen prostate samples positive for prostate adenocarcinoma were
recovered from each radical prostatectomy specimen. H&E images were reviewed
by a pathologist to confirm the Gleason grade and score of each sample, as well as
the score assigned by the Biolibrary. Five unstained adjacent 5-micron tissue sec-
tions were obtained from each sample for immunofluorescent microscopy studies.

Risk stratification of the patient cohort. The Cancer of the Prostate Risk
Assessment Post-Surgical (CAPRA-S) score and post-radical prostatectomy
nomogram from Memorial Sloan Kettering Cancer Centre (MSKCC) were used to
identify patients with low-, intermediate- and high-risk prostate cancer31,34.
CAPRA-S score is calculated based on factors such as pathological Gleason score,
surgical margin status and presence or absence of extracapsular extension and
lymph node involvement for patients who have gone through radical prosta-
tectomy surgery to estimate the probability of disease recurrence32. These factors
were used to determine the specific clinical features of our patient cohort in
comparison to the TCGA’s cohort.

We also analyzed bulk ATAC-seq profiles of 21 patients available through the
TCGA data set. We calculated the CAPRA scores for these patients and found that
the majority of them were either intermediate- or high-risk as opposed to our
cohort of patients that consisted mainly of low- or high-risk patients based on
CAPRA risk stratification (Supplementary Data 2).

Whole-mount sample acquisition. Radical prostatectomy specimens were
obtained via standard of care surgery and processed in the OHSU Pathology lab.
Subjects consented to study OHSU IRB #18321. Under this protocol, an annotated
radiology worksheet depicting the location of the MRI-detected tumour foci were
completed by the radiologist, and a copy was sent with the specimen to the
pathologist and grossing technician. Fresh prostate specimens were inked and
sectioned at 5 mm intervals using a prostate slicing device (Procut P/5, Milestone
Medical), followed by a gross examination to correlate gross findings with the
annotated radiology worksheet. Fresh tissue was collected from tumour area with a
5 mm punch biopsy and removed for research purposes. A frozen section from this
research tissue sample was used to confirm the presence of tumour. The entire
remaining prostate was then submitted and processed for whole mount histology.
Formalin fixed paraffin embedded (FFPE) tissue blocks and slides for standard
clinical annotation were generated. This work was done under the supervision of a
subspecialized genitourinary pathologist.

sci-ATAC-seq sample processing
Sample preparation and nuclei isolation. The nuclei isolation protocol was
improved and barcode space was extended to increase the multiplexing ability of
the combinatorial indexing protocol. Frozen prostate tissue samples (0.1–0.8 g)
were homogenized in Nuclei Isolation Buffer (NIB, 10 mM TrisHCl pH7.4, 10 mM
NaCl, 3 mM MgCl2, 0.1% Igepal, 1 protease inhibitor tablet (Roche, Cat.
11873580001)) using a dounce homogenizer. Isolated nuclei were washed three
times with ice cold 1XPBS and centrifuged down at 500 × g for 5 min at 4 °C.
Washed nuclei were passed through a 35 µm cell strainer (Corning) and stained
with 5 μL (5 mg/ml) DAPI to mark the nuclei.

Tn5 transposome assembly. Tn5 enzyme was purified and loaded with specific oligo
sequences86. Tn5 adaptor sequences synthesized at Integrated DNA technologies
(Supplementary Data 3). Briefly, oligonucleotides for ME-rev (phosphorylated 19-
basepair mosaic end) and i5 or i7 were incubated in equimolar amounts (100 μM
each) for 5 min at 95 °C and cooled down slowly on the thermocycler in 3 °C
increments. 0.25vol adaptor sequences, 0.4 vol 100% glycerol, 0.12 vol 2X dialysis
buffer (100 mM HEPES–KOH at pH 7.2, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT,
0.2% Triton X-100, 20% glycerol), 0.1 vol Tn5 (50 μM), 0.13 vol water. Uniquely
indexed transposomes were stored in 96-well plates at −20 °C.

Cell sorting. For the first sort plate, 3000 DAPI stained nuclei were sorted into 96-
well plates using the BD FacsAria Fusion cell sorter (FACSDiva v8.0.3). Each well
contained 10 μL tagmentation buffer (5 μL NIB and 5 μL TD buffer from Illumina).
For the second sort plate, 22–25 DAPI stained nuclei were sorted into 96-well
plates using FacsAria cell sorter. Each well contained 8.5 μL master mix (0.25 μL
20mg/ml BSA, 0.5 μL 1% SDS, 7.5 μL distilled water and 2.5 μL i5 and i7 PCR
index primers).

Tagmentation. Tagmentation reaction was carried out at 55 °C for 30min after the
1st nuclei sort. Once the reaction was at room temperature the plates were placed on
ice and samples from each well were pooled in an Eppendorf tube. Pooled nuclei
were passed through a 35 µm cell strainer (Corning) and stained with 5 μL (5mg/ml)
DAPI before the second nuclei sort. Samples were incubated at 55 °C for 15min to
denature the transposase after the second sort.

PCR indexing. Nuclei were amplified using RT-PCR (QuantStudio v1.7.1) for
20–25 cycles to insert unique i5-i7 DNA oligo sequences in each well based on the
previously published protocol52 (Supplementary Data 3). 7.5 μL NPM PCR mix
(Illumina), 4 μL distilled water, 0.5 μL 100X SYBR Green dye was added to each
well and the following PCR amplification cycle was followed: 75 °C for 5 min, 98 °C
for 30 s, (for 22–25 cycles) 98 °C for 10 s, 63 °C for 30 s, 72 °C for 60 s, plate read at
72 °C for 10 s.

Sample purification and fragment analysis. 5 μL of sample from each well was
pooled from each well and the library pool was purified using Qiagen PCR pur-
ification kit followed by AMPure bead purification. Each library pool was analyzed
using Bioanalyzer to assess the quantity and distribution of fragment size before
sequencing. Libraries were sequenced on the Next-seq platform (Illumina, Next-
Seq500 NCS v4.0) using a 150-cycle kit with a custom sequencing recipe (Read 1:
47 imaged cycles; Index 1: 8 imaged cycles, 27 non-imaged/dark cycles, 10 imaged
cycles; Index 2: 8 imaged cycles, 21 non-imaged / dark cycles, 10 imaged cycles;
Read 2: 47 imaged cycles)20.

Immunohistochemistry. Each formalin fixed and paraffin embedded (FFPE)
prostate tissue block was serially sectioned. One Hematoxylin-and-Eosin (H&E)
stained section and five adjacent unstained sections with 5-micron thickness were
acquired from all tumours. FFPE tissue sections were deparaffinized as follows58:
each tissue section was incubated in a 65 °C oven for 1 h and then immediately
transferred in Xylene solution. Slides were sequentially immersed in fresh Xylene
solution two times, 5 min each; 100% ethanol two times 5 min each; 95% ethanol
two times 2 min each; 70% ethanol two times 2 min each and distilled water two
times 5 min each. Antigen retrieval was done in a medical decloaking chamber
filled with 0.5 L distilled water. Tissue slides were placed in a plastic jar that
contains Citrate buffer (pH= 6) and incubated at high pressure for 15 min. Each
slide was then dipped in distilled water and incubated in pH9 buffer for 15 min
before being transferred to distilled water at room temperature to complete antigen
retrieval. Slides were blocked with 10% NGS, 1%BSA in PBS for 30 min at room
temperature inside a humidity chamber. Primary antibodies conjugated to Alexa
Fluor dyes were prepared in 5% NGS, 1%BSA in PBS buffer. Conjugated primary
antibodies used in this study are shown in Supplementary Fig. 9. All slides were
imaged using Zeiss Axioscan.Z1 microscope (Zen2) located at the Knight Cancer
Institute Research Building.

Cyclic immunofluorescence microscopy. For each round of immunofluorescent
staining primary antibodies conjugated to Alexa Fluor dyes 488, 555, 647 and 750
were mixed in 1% BSA, 5% NGS solution using the following dilutions: NRXN1,
Millipore Sigma, Concentration (1:100), Cat# ABN161-I; RRID:AB_11211973;
NLGN1, Millipore Sigma, Concentration (1:100), Cat# MABN742; CK5, Biolegend,
Concentration (1:200), Cat# 905501; RRID:AB_2565050; CK8, Concentration
(1:100), Abcam, Cat# ab192468; CK14, Thermo Fisher, Concentration (1:200),
Cat# MA5-11599; RRID:AB_10982092; NCAM1, Abcam, Concentration (1:100),
Cat# ab215981; ECAD, Abcam, Concentration (1:100), Cat# ab201499; ERG,
Abcam, Concentration (1:50), Cat# ab214796; CD31, Abcam, Concentration
(1:100), Cat# ab218582; RRID:AB_2857973; CD3, Concentration (1:100), Abcam,
Cat# ab213608; Chromogranin A, Concentration (1:100), Abcam, Cat# ab215276;
AR, Cell Signalling Technology, Concentration (1:100), Cat# 8956; RRI-
D:AB_11129223. Slides were incubated either for 2 h at room temperature or
overnight at 4 °C and washed four times in 1X PBS for 5 min. Tissue sections were
mounted in Slowfade Gold DAPI mounting media and imaged using a Zeiss
Axioscan.Z1 microspcope. After a successful scan was obtained, the fluorophore
signal was quenched via soaking slides in a quenching solution (10% 10X PBS,
0.4% 5M NaOH, 3% H2O2) under broad-spectrum light for an hour. Slides were
washed three times in 1X PBS for 5 min and mounted in Slowfade Gold DAPI
mounting media and imaged with Axioscan to confirm quenching of the signal. We
acquired images of each slide post-quenching to measure the autofluorescence
levels at rounds 3 and 6 (Supplementary Fig. 9).

Antibody conjugation. Buffer exchange has been done using Amicon ultra 10 KDa
spin columns for antibodies that had sodium azide as preservative. Alexa Fluor
dyes were prepared by dissolving each dye in DMSO to a final concentration of
10 mM. Each antibody was mixed with 1M NaHCO3 in 10:1 volume ratio. 0.6 μl of
Alexa Fluor dye was added per 100 μg of antibody. Conjugation reaction was
carried out on a rocker for 2 h at room temperature in dark. A buffer exchange
using Amicon ultra 10 KDa spin columns was performed to remove the excess
Alexa Fluor dye.
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Cell lines. PC3 (ATCC CRL-1435) and LNCaP (ATCC FGC CRL-1740) human
prostate epithelial cells were maintained in RPMI 1640 medium with 10% FBS at
37 °C and 5% CO2 at recommended densities. Adherent cells were detached using
TrypLE Express (Gibco) and were collected at mid-log phase for all experiments.
After collection, cells were washed twice with ice cold 1X PBS. Cells were then
filtered with a 35 μm cell strainer (Corning). Cell viability and concentration were
measured with Trypan blue on the Countess II FL (Life Technologies). Cell viability
was greater than 90% for all samples.

Cell line fixation, staining and imaging. PC3 cells and LnCAP cells were plated at
20k/well and 40k/well concentrations respectively on 96 well plates with #1.5
polymer coverslip bottoms (Cellvis). After reaching 80% confluence, cells were
washed once with 1X DPBS(-) and fixed with 4% PFA diluted from a freshly
opened 16% PFA (Electron Microscopy Sciences) ampoule, for 15 min at RT. Fixed
cells were washed with 1X DPBS(-) once and permeabilized and blocked in a 3%
BSA solution (Thermo Fisher) with 0.5% Triton-X-100 (Sigma-Aldrich). Primary
antibodies for NLGN1 and NRXN1 were prepared at 1:100 dilution in 3% BSA
solution and incubated with cells for 2 h at RT or overnight at 4 °C. Secondary
antibodies were prepared at 1:500 dilution in 3% BSA and incubated for 1 h at RT,
followed by application of 0.01 mg/mL DAPI in 1X PBS (Thermo Fisher) (5 mg/ml
diluted 1:500) for 10 min at RT. After each staining step cells were washed with 1X
DPBS(-) three times. Cells were imaged using a Zeiss/Yokogawa CSU-X1 spinning
disk confocal setup with a 40× objective.

sci-ATAC-seq data analysis and visualization
Read alignment and pre-processing. Analysis of reads was done using snapATAC
(Single Nucleus Analysis Pipeline for ATAC-seq)39. Bases were converted to fastq
format using bcl2fastq. Reads were then aligned using snaptools (v1.1) aligned-
paired-end command using all of the default parameters. Reads were aligned to
hg19 using the – bwa parameter, which utilizes the bwa aligner87. Reads were than
preprocessed using the snaptools snap-pre command using the default parameters:
-min-mapq=30 -min-flen=0 -max-flen=1000 -keep-chrm=TRUE -keep-sin-
gle=TRUE -keep-secondary=False -max-num=1000000 -min-cov=100.

sci-ATAC-seq binned counts matrix and peak counts matrix generation and quality
control (QC). Two count matrices were used in this study, one being a binned
matrix where each counts were generated for each 5 kb bin in the genome. This
matrix was used for clustering. The binned counts were generated using the
snaptools - snap-add-bmat command. For the peak matrix, the R package sna-
pATAC command runMACS was used using the MACS288 parameters: -nomodel
-shift 100 -ext 200 -qval 5e-2 -B –SPMR. The peak matrix was then generated and
added using the createPmat function in the snapATAC. To ensure that peaks were
not dominated by high input samples, peaks were called on: (1) every sample
individually, (2) each cluster individually, (3) the entire combined dataset as a
whole. Then all peaks were combined into one master peak matrix which was used
for downstream processing. This master peak set consisted of 125,569 peaks.

Single-cell clustering and visualization. The matrix of binned counts was used
binarized and inputted into a latent dirichlet allocation dimensionality reduction
utilizing the method described by the tool cisTopic40. This was done using the
snapATAC runLDA function using 30 topics. The Uniformed Manifold Approx-
imation and Projection (UMAP) algorithm was then applied to the top 30 topics
using the snapATAC runUMAP function. To further cluster the cells, the
runCluster function was applied utilizing the Louvain method for community
network detection89.

Differentially accessible regions analysis. Differential accessibility was performed on
the MACS2 callpeak matrix using the findDARs function in snapATAC. This
function utilizes the edgeR package using the exactTest method90. P values were
than adjusted using the Benjamini−Hochberg method. Two differentially acces-
sible lists were generated for each comparison, one with p values < 0.05 and
another with FDR < 0.05.

GREAT analysis. To further understand the epigenetic factors in cell groups, the
top 1500 peak regions per topic were saved and fed into Genomic Regions
Enrichment of Annotations Tool (GREAT v4.0.4). Further, differentially accessible
regions from individual comparisons were also used as input to GREAT46.

HOMER analysis. Motif enrichment was done using the homer findMotifsGen-
ome.pl command using a bed file of interest with the parameters: -size 200 -mask
using HOMER v4.1153.

Cicero analysis. Cis-regulatory interactions and co-accessibility scores were plotted
with the R package using the function plot_connections using Cicero 1.0.051.

Silhouette analysis. Silhouette Coefficients were calculated per cell for each sample
using the R package cluster with the function silhouette. A distance matrix was
used as input from the topic-cell matrix using the base R dist function.

TCGA data analysis. TCGA bulk ATAC-seq and RNA-seq data were downloaded
and analyzed from gdc.cancer.gov filtering for PRAD datasets. Data were then
normalized and analyzed for differential accessibility and differential gene
expression using the edgeR package.

Image registration and background subtraction. Raw TIFF image files from each
round of cyclic IF imaging were registered using the nuclear DAPI image from the
first round as reference91. Background subtraction was done using a blank imaging
cycle with no fluorescently tagged antibodies to remove the tissue autofluorescence
signal from the images using a matrix subtraction operation91.

Single-cell segmentation, feature extraction and quantification. DAPI image
from the very last round of imaging was used to account for the tissue loss over
cycles. Nuclei and cytoplasm segmentation were done using the QiTissue software
(http://www.qi-tissue.com/) with the following parameters: Nuclei segmentation
method (Advanced Morphology for Tissue), Use nuclei cycle (8), Detection Sen-
sitivity (100%), Min/Max Diameter (28/29 pixels), Separation Force (100%),
Cytoplasm segmentation method (Donut), Detection Sensitivity (100%), Max
Diameter (150 pixels), Perinuclear region (3 pixels), Donut width (10 pixels),
Neighbour Touch Region (8 pixels).

Average signal intensity of each marker in nucleic and cytoplasmic
compartments, nucleic x and y coordinates, nucleus and cell size features were
extracted for each segmented cell using QiTissue’s “Measure Cell Features” options.

Cells with abnormal size features that did not fall within approximately the 5-to-
95 percentile range were assumed to be incorrectly segmented, either multiple cells
merged together or a fragment of the cell segmented and excluded from the analysis.

Three regions of interest (ROIs) were selected from each tissue section based on
the H&E images reviewed by a pathologist. ROIs were selected to avoid areas of
tissues with edge effects or staining gradients. Within each ROI thresholds for
NRXN1, NLGN1 and different cell type markers were determined. Using the
thresholds for cell type markers, we identified luminal (CK8), basal (CK5, CK14)
and neuroendocrine (Chromogranin A) epithelial cells, immune cells (CD3),
endothelial cells (CD31) and neuronal cells (N-CAM). Based on the cell type and
marker (NRXN1 and NLGN1) thresholds, we identified cells that express only
NRXN1, only NLGN1, both NRXN1 and NLGN1 or neither for each cell type. The
quantities of each of these categories for each cell type was plotted using the
“ggplot2” library of R, version 3.4.3.

Survival analysis. We used the Cancer Transcription Factor Targets pipeline
within the Cistrome Cancer (“the set of cis-acting targets of a trans-acting factor on
a genome-wide scale, also known as the in vivo genome-wide location of [tran-
scription factor binding-sites] or histone modifications”)54. Survival Analysis was
plotted using the TCGA PRAD data set, selecting for transcription factors FOXA1,
HOXB13 and CDX2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw single-cell ATAC-sequencing files and processed data files generated in this
study are available under the super series GSE accession number: GSE171559. The TCGA
bulk ATAC-seq data used in this study are available here: https://gdc.cancer.gov/about-
data/publications/ATACseq-AWG. The TCGA bulk RNA-seq publicly available data
used in this study are available in the gdc database under accession code: prad-2015. hg19
reference genome used in the study is available here: https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.39. Source data are provided with this paper. The remaining
data are available within the Article, Supplementary Information or Source Data
file. Source data are provided with this paper.

Code availibility
Code used for the analysis of sci-ATAC-seq data in this study is available on Github
(https://github.com/AlexChitsazan/ProstateTumorATACCode). Code used for cyclic IF
analysis in this study is available on GitHub (https://github.com/zeynepsayar/
Neuronal_cyclic_R). Both codes are also deposited to Zenodo: https://zenodo.org/record/
5644071#.YYLw7NbMI8M and the corresponding DOI is as follows: https://doi.org/
10.5281/zenodo.5635457. Source data are provided with this paper.
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