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Abstract 14 
Identification of neuron type is critical to understand computation in neural circuits through 15 
extracellular recordings in awake, behaving animal subjects. Yet, modern recording probes have 16 
limited power to resolve neuron type. Here, we leverage the well-characterized architecture of 17 
the cerebellar circuit to perform expert identification of neuron type from extracellular 18 
recordings in behaving non-human primates. Using deep-learning classifiers we evaluate the 19 
information contained in readily accessible extracellular features for neuron identification. 20 
Waveform, discharge statistics, anatomical layer, and functional interactions each can inform 21 
neuron labels for a sizable fraction of cerebellar units. Together, as inputs to a deep-learning 22 
classifier, the features perform even better. Our tools and methodologies, validated during 23 
smooth pursuit eye movements in the cerebellar floccular complex of awake behaving monkeys, 24 
can guide expert identification of neuron type during cerebellar-dependent tasks in behaving 25 
animals across species. They lay the groundwork for characterization of information processing 26 
in the cerebellar cortex. 27 

 28 

Impact statement 29 
To understand how the brain performs computations in the service of behavior, we develop 30 
methods to link neuron type to functional activity within well-characterized neural circuits. Here, 31 
we show how features derived from extracellular recordings provide complementary information 32 
to disambiguate neuron identity in the cerebellar cortex. 33 

 34 

Introduction 35 
Our goal is to understand how neural circuits generate behavior in awake, behaving monkeys by 36 
recording the extracellular activity of participating neural populations during carefully contrived 37 
behaviors1,2. Within any given neural circuit, different neurons feature different molecular, 38 
anatomical, connectional, and functional properties3–11. Thus, analysis of the coordinated 39 
processing by multiple, distinct neuron classes will be necessary to reveal the computational 40 
organization of the brain11,12. Yet, our main tool for studying how the neural circuits generate 41 
behavior, extracellular recording, is poorly suited to identification of neuron type.  42 

We and many other laboratories now use multi-contact probes in both monkeys and mice, with 43 
the shared ability to recording from more than a few units simultaneously13 but the shared 44 
weakness that extracellular recordings offer poor access to identification of neuron type. 45 
Optogenetic identification of neuron type is not an ideal solution. It is feasible (but fraught with 46 
challenges14) in awake mice, but normally gives access to a single cell type in a given 47 
preparation. Even under ideal conditions, genetic tagging of multiple specific cell types is limited 48 
by the overlapping spectral activation functions15,16 of a limited number of opsins and the limited 49 
genetic accessibility beyond rodents17. Here, we develop a strategy that allows us to cluster and 50 
label different neuron types recorded in a single circuit during sensorimotor behavior.  51 

In the structure we study, the cerebellum, the classical circuit diagram (Figure 1A) includes 52 
multiple neuron types18 and two distinct groups of input fibers. Owing to their distinct 53 
extracellular signatures, neurophysiologists have focused primarily on the mossy fibers19–24 and 54 
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climbing fibers25,26 that provide the main inputs to the cerebellum as well as one neuron type: the 55 
Purkinje cells13,21,25–30 that form the only output from the cerebellar cortex. Other neurons that 56 
likely perform critical computations inside the circuit have been comparatively ignored, 57 
including granule cells, unipolar brush cells, Golgi cells, and molecular layer interneurons. Thus, 58 
standard approaches address the question of how the output from the cerebellar cortex 59 
contributes to behavior in a few model systems, but not how the circuit works, what it computes, 60 
or how it transforms mossy fiber and climbing fiber inputs into Purkinje cell outputs. The 61 
strategies we explore here largely overcome that limitation by allowing direct mapping from 62 
features of extracellular recordings onto the identify of a neural unit. 63 

In a multi-lab collaboration14, we and others showed recently that deep-learning neural networks 64 
can use features derived from high-density extracellular recordings to disambiguate ground-truth 65 
cerebellar cell types identified via optogenetic stimulation31. Now, we extend the previous study 66 
to allow neuron-type identification from features alone, without optogenetic stimulation. First, 67 
we provide tools and methods for expert labeling of neuron types from extracellular recordings 68 
in behaving non-human primates where viral tools for ground-truth labeling are still in their 69 
infancy17. The strong correspondence between our expert labels and the predictions of the 70 
ground-truth classifier validates our labeling approach14. Second, we extend the ground-truth 71 
classifier by exploring whether and how well we can inform neuron identity by high-dimensional 72 
features that are measured readily from extracellular recordings, in contrast to previous 73 
cerebellar cell-type classifiers that relied on scalar metrics32–34.  74 

Our strategy uses data recorded from the cerebellar floccular complex during smooth pursuit eye 75 
movements. Using deep-learning approaches, we test the informativeness of 4 features for 76 
neuron identification: classical auto-correlograms; “3D” auto-correlograms that normalize for 77 
behaviorally-driven fluctuations in firing rate; the complete time course of waveform; and the 78 
spike-triggered LFP as an index of the local electrical environment. Each electrophysiological 79 
feature separately provides impressive information about neuron type, but as expected, the best 80 
classification performance is achieved by a classifier that uses multiple features. We hope that 81 
the next steps would: deploy the identification of neuron type to reveal circuit operation; use 82 
multiple electrophysiological features to identify additional cerebellar neuron types; and possibly 83 
implement a similar strategy in other brain regions.   84 

 85 

Results 86 
The cerebellar circuit is composed of discrete neuron types3,18 arranged in a relatively uniform 87 
cytoarchitecture (Figure 1A). We can think of the circuit as performing a computation that 88 
transforms the cerebellar input signals from mossy fibers into the output from Purkinje cells. As 89 
a field, we already know how to identify recordings from mossy fibers and Purkinje cells in non-90 
human primates19,20,35. Now, our goal was to provide an objective, quantitative basis for 91 
establishing the neuron types of the other single units recorded extracellularly from the cerebellar 92 
circuit using high-density probes in awake, behaving, non-human primates. We want to enable 93 
analysis of how circuits compute by providing a validated platform for neuron-type identification 94 
that goes beyond previous efforts.  95 
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Figure 1. Properties of the neurophysiological recordings used to identify cerebellar 
neurons from monkeys. (A) Diagram of the canonical cerebellar circuit, simplified. (B) 
Exemplar recording from the floccular complex using a 16-contact Plexon S-Probe; the 8 
traces show electrical activity on 8 channels in one column. Red box denotes an identified 
complex spike across contacts. (C) Distribution of signal-to-noise ratios across our full sample 
of neurons computed on the primary channel. (D) Distribution of the percent of spikes that 
occur within an assumed absolute refractory period of 1 ms across our full sample. Red lines in 
C-D denote the mean across all recorded units. (E) Distributions of scalar firing rate statistics 
of n=1,152 recorded units shown as histograms. Left: the mean firing rate computed across 
each complete recording session. Middle: the mean CV236. Right: the log of the coefficient of 
variation32,33. 

 96 
Our challenge was to identify neuron type by taking advantage of the information available from 97 
knowledge of the cerebellar connectome (Figure 1A) and gleaned from extracellular recordings 98 
(Figure 1B). Our strategy was to record from the floccular complex of rhesus macaques during a 99 
behavior controlled by this part of the cerebellum37, smooth pursuit eye movements. Recent 100 
efforts14,38–40 suggest that we could discern neuron type from a combination of the statistics of 101 
discharge patterns, the shape of extracellular action potentials or their distribution across 102 
contacts, and the local electrical properties near the recordings. A critical first criterion for 103 
success is that spike-sorting, required for essentially all extracellular recordings with multi-104 
contact probes, delivers well isolated single-units. We ensured excellent isolation by manual 105 
curation of the sorter’s output to ensure that all units had a high signal-to-noise ratio (mean ± SD, 106 
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5.6 ± 2.9, Figure 1C) and minimal violations of a 1-ms refractory period (mean number of 107 
violations, 0.6 ± 2.5%, Figure 1D). 108 

The discrete metrics used in previous studies to automatically label cerebellar neuron types32,33 109 
failed when applied to our recordings. Distributions of firing rate and discharge regularity did not 110 
show multiple peaks in their distributions that could have indicated potential heterogeneity of 111 
metrics across cell types. The distribution of mean firing rates across our population (Figure 1D, 112 
left) was broad (SD=28 spikes/sec) and unimodal (Hardigan’s dip test, D=0.008, p=0.95). “CV2” 113 
(Figure 1D, middle), a metric of discharge regularity that has been used previously to identify 114 
cerebellar cell types33, shows at most a hint of a non-significant (D=0.01, p=0.43) multi-modal 115 
distribution. We note that the majority of neurons had firing rate patterns that were more regular 116 
than Poisson (mean CV2=0.52 ± 0.28). Finally, the logarithm of the coefficient of variation (CV-117 
log) across our sample (Figure 1D, right), a metric used previously to disambiguate cerebellar 118 
cell types34, revealed no evidence of a multimodal distribution (D=0.008, p=0.93).  119 

 

Figure 2. Firing rate properties of ground-truth identified Purkinje cell simple and 
complex spikes. (A) Example recording of a Purkinje cell’s simple spikes and complex spikes 
aligned to the 250 random occurrences of a complex spike (black arrowhead). Note the 
complex-spike-induced pause in the Purkinje cell’s simple spikes. (B) Simple spike cross-
correlogram aligned to the occurrence of a complex spike at t=0 ms (top, red) and simple spike 
auto-correlogram (blue, bottom), both for the Purkinje cell shown in (A). (C) Distribution of 
the duration of complex-spike-induced simple spike pauses across n=111 ground-truth 
Purkinje cells. (D) Primary channel waveforms of ground-truth Purkinje cell simple spikes, 
normalized. (E) Same as (D) except for ground-truth Purkinje cell complex spikes. Black 
arrowhead points to presumed somatic complex spikes whereas red arrowhead points to 
dendritic complex spikes. (F) Probability of cell-type labels generated by a previously 
established classification algorithm32 when supplied with ground-truth Purkinje cell simple 
spikes from our data as input.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2025. ; https://doi.org/10.1101/2025.01.29.634860doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.29.634860
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 6 

Ground-truth recordings from cerebellar Purkinje cells 120 
A subset of Purkinje cells can be identified definitively, using either single electrodes or multi-121 
contact probes, through simultaneous recording of their simple and complex spikes. In an 122 
example recording of a Purkinje cell (Figure 2A), we aligned individual voltage traces to the 123 
onset of n=250 complex spikes (black arrow). We summarize the quintessential pause in simple 124 
spike activity following the occurrence of a complex41,42 in a complex-spike-triggered cross-125 
correlogram (Figure 2B, top). In our sample of 111 ground-truth Purkinje cells, the duration of 126 
complex-spike-induced simple spike pauses ranged mostly from 10 to 25 ms, with a few longer 127 
pauses (Figure 2C).  128 

Other properties of ground-truth Purkinje cells were consistent across our sample. We will show 129 
later in summary graphs that the statistics of firing rate, as assessed by construction of auto-130 
correlograms (ACGs, Figure 2B, bottom), were similar across ground-truth Purkinje cells. We 131 
also observed consistency in the simple spike action potential waveform as measured on the 132 
contact with the largest potential (Figure 2D). To allow comparison of the waveform shape 133 
across neurons, we normalized each waveform to its peak and reflected it, if necessary, so that 134 
the first major deflection always was negative. The primary channel waveform of complex 135 
spikes (Figure 2E) divided into two classes, with impressive uniformity within classes. Broad 136 
waveforms likely correspond to calcium spikes in the distal dendrites43 (red arrow); waveforms 137 
that show discrete spikelets (black arrow) likely correspond to post-synaptic climbing fiber 138 
responses recorded at or near the Purkinje cell soma43.   139 

Given the ability to identify and characterize ground-truth Purkinje cells, we were able to test 140 
how well a previous cerebellar cell type classification algorithm32 would generalize to data from 141 
awake, behaving, non-human primates. The prior study showed excellent classification of 142 
recordings from Purkinje cells in awake rabbits (86% accuracy) based on mean firing rate, local 143 
firing rate regularity assessed via CV2, and the median absolute deviation of interspike intervals 144 
from the median. For our sample of ground-truth Purkinje cells, the previous algorithm classified 145 
only 57% (63/111) correctly as Purkinje cells (Figure 2F). The majority of incorrectly classified 146 
Purkinje cells were assigned by the other criteria in the classifier as molecular layer interneurons 147 
(39/111).  148 

Strategy 149 

We develop our strategy for expert-identification of neuron type in five steps. 1) We leverage 150 
identification of the Purkinje cell layer to devise a quantitative approach to assign layers to 151 
different contacts on the probes. 2) We use layer information and cross-correlograms to identify 152 
molecular layer interneurons. 3) We develop quantitative criteria to divide neurons recorded in 153 
the granule cell layer into Golgi cells, unipolar brush cells, and mossy fibers. 4) We use deep-154 
learning to test the informativeness of multiple, individual features of cerebellar recordings for 155 
neuron-type identification. 5) We demonstrate that a classifier based on the combination of 156 
multiple features yields neuron-type identification that agrees well with the ground-truth and 157 
expert assessments available to us in primates.   158 

Layer identification anchored by ground-truth Purkinje cells 159 
The cerebellar cortex is a laminar structure: different neuron types with different 160 
electrophysiological signatures reside in different layers. The somas of Purkinje cells form a 161 
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monolayer, termed the Purkinje cell layer, which can be identified in many multi-contact 162 
recordings by the presence of ground-truth Purkinje cells and transitions of complex spike 163 
waveforms from dendritic complex spikes recorded in the molecular layer to discrete spikelets 164 
recorded nearer the Purkinje cell soma43. Because recordings do not always yield a ground-truth 165 
Purkinje cell, we looked for discrete electrical signatures that could demarcate layers in the 166 
absence of a ground-truth Purkinje cell. For instance, previous work in the cerebral cortex has 167 
used current source density analysis derived from local field potentials (LFPs) to identify cortical 168 
layers44–50. In addition, a prior report showed consistent current source density profiles across 169 
layers from records in the cerebellum of anesthetized rats51, suggesting that layer-dependent 170 
signatures in the current source density analysis might extend to behaving cerebellar 171 
preparations.  172 

 

Figure 3. Identification of cerebellar layer from extracellular recordings. (A) Current 
source density computed from the local field potential for an example recording session. 
Horizontal lines denote the depth relative to the tip of the probe for the primary contact of 
simple spikes (black) and complex spikes (white) for a ground-truth Purkinje cell. (B) 
Complex spikes (red, left) and simple spikes (blue, right) for the ground-truth Purkinje cell 
recorded in (A) across contacts. Vertical position of each trace corresponds to the depth axis in 
(A). Arrowheads show the primary channel for the complex (white) and simple spikes (black). 
(C) Mean current source density across all recordings with a ground-truth Purkinje cell. 
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Current source density maps were aligned with the primary channel of Purkinje cell simple 
spikes at a relative depth of 0 µm across recordings. Each recording was reflected about the 0 
µm axis, if necessary, to ensure that the primary channel of the Purkinje cell complex spike 
had a positive value of relative depth. (D) Relative power of the LFP as a function of 
frequency across channels for the same recording from A-B. (E) Relative power of the LFP 
across channels, averaged across recording sessions with a ground-truth Purkinje cell. 
Preprocessing was performed as in (C). (F) Relative power of the LFP computed on primary 
contacts identified in the granule, Purkinje cell, and molecular layers. (G) Primary channel 
waveforms recorded in the identified granule (left), Purkinje cell (middle), and molecular 
(right) layers. We used K-means clustering following principal component analysis to split 
each layer’s waveforms into clusters (insets).  

 173 
To demonstrate that LFPs could establish cerebellar layer, we aligned our current source density 174 
analysis to the onset of smooth target motion in discrete trials, a sensorimotor stimulus known to 175 
strongly drive activity in the floccular complex13,27,29,30. The magnitude of the current source 176 
density shows a clear pattern across the depth of the electrode in an exemplar recording (Figure 177 
3A). Direct comparison with the depth of the maximum-amplitude complex and simple spike 178 
waveforms of a ground-truth Purkinje cell recorded in the same session (Figure 3B, arrows; 179 
Figure 3A horizontal dashed lines) links the current source density profile to cerebellar layers. 180 
The same pattern of sources and sinks appears in the mean current source density map computed 181 
across all recordings with a ground-truth Purkinje cell (Figure 3C). Here, we aligned each 182 
recording to the electrode contact with the largest simple spike amplitude, corresponding to our 183 
estimate of the Purkinje cell soma. We reflected the current source density map computed for 184 
each recording, if necessary, to ensure that the primary complex spike channel was located at the 185 
top of the map. The stereotypical current source density profile in Figure 3C allows layer 186 
identification even in the absence of a ground-truth Purkinje cell in the associated recording. 187 

To ask whether the same approach could work in areas of the cerebellar cortex where the neuron-188 
behavior relationship is unknown or the behavior isn’t structured into trials, we tested an 189 
alternative strategy to identify cerebellar layers using current source density analysis. A recent 190 
study in the cerebral cortex demonstrated that normalizing the LFP response across electrode 191 
contacts was sufficient to disambiguate layer52. We found complementary results in the 192 
cerebellar cortex. In a map of normalized frequency content across electrode contacts using the 193 
same recording as Figure 3A-B (Figure 3D), the Purkinje cell layer shows strong power in the 194 
upper frequency bands (50-350 Hz). The characteristic response persisted in averages across 195 
recordings with our full sample of ground-truth Purkinje cells (Figure 3E) when we aligned the 196 
depth based on the location of the contact with the largest simple spike waveform using the same 197 
convention as Figure 3C. Finally, averages of the normalized frequency spectra within layers 198 
identified manually revealed that the responses were substantially different for each layer (Figure 199 
3G). We conclude that our use of local field potentials can generalize beyond situations such as 200 
in Figures 3A-C to establish the cerebellar layer of each recording contact. It is not necessary to 201 
align each current source density to the onset of the stimulus for eye movement or another 202 
behavior, or to collect data in trials.  203 

Layer identification proved qualitatively useful for cell-type identification. We used 204 
unsupervised methods to cluster the action potential waveforms recorded in each layer identified 205 
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through the analysis of the local field potentials (Figure 3G). Within each of the 3 layers, 206 
waveforms segregated into discrete clusters, shown by the different colored symbols in a space 207 
defined by the first two principal components of the waveforms (inset). Inspection of the 208 
waveforms reveals that they differed qualitatively between layers, as well as between clusters. 209 
The success of the qualitative analysis in Figure 3G encouraged us that information about 210 
waveform and layer would make major contributions to neuron-type identification. 211 

Functional identification of molecular layer interneurons 212 
We identified molecular layer interneurons by their location in the molecular layer, a criterion 213 
used previously53, as established by normalized LFP and current source density profiles. For a 214 
subset of non-Purkinje cells recorded in the molecular layer, we were able to document an 215 
inhibitory connection at monosynaptic latencies to a simultaneously recorded ground-truth 216 
Purkinje cell. In the example pair illustrated in Figure 4A, we aligned simultaneously-recorded 217 
voltage traces of a putative molecular layer interneuron (top) and a nearby Purkinje cell (bottom) 218 
to 250 randomly selected spikes of the putative molecular layer interneuron (arrowhead). There 219 
is a noticeable reduction in the density of Purkinje cell simple spikes (Figure 4A, bottom) in the 220 
milliseconds following a spike in the putative molecular layer interneuron. We demonstrated 221 
inhibition from the molecular layer interneuron with a cross-correlogram of simple spike 222 
responses for the Purkinje cell aligned to the occurrence of spikes in the putative molecular layer 223 
interneuron (Figure 4B, bottom). We confirmed the quality of the isolation of the putative 224 
molecular layer interneuron with an auto-correlogram (Figure 4B, top) and the ground-truth 225 
identify of the Purkinje cell through a complex-spike triggered cross-correlogram of simple spike 226 
firing (Figure 4B, middle). 227 

 

Figure 4. Functional identification of molecular layer interneurons. (A) Example recording 
aligned to the time of spikes in a functionally-identified putative molecular layer interneuron. 
Top: superimposed traces from the molecular layer interneuron’s primary channel, aligned at 
the arrowhead to n=250 randomly selected spikes. Bottom: the simultaneously-recorded 
primary channel of a ground-truth Purkinje cell’s simple spikes aligned to the same spikes and 
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time points as the top plot. Note the subtle decrease in density of Purkinje cell simple spikes 
following the occurrence of a spike in the molecular layer neuron. (B) Top: auto-correlogram 
for the molecular layer interneuron in (A). Middle: simple spike cross-correlogram aligned to 
the time of a complex spike for the ground-truth Purkinje cell shown in (A). Bottom: simple 
spike cross-correlogram aligned to the time of a spike in the functionally identified molecular 
layer interneuron. (C) Mean cross-correlogram across 23 paired recordings showing the change 
from baseline of ground-truth Purkinje cell simple spike firing rates, aligned to the time of a 
simultaneously recorded putative molecular layer interneuron spike. (D) Normalized primary 
channel waveform for functionally identified molecular layer interneurons. (E) Primary 
channel waveforms of molecular layer interneurons identified functionally via their interaction 
with ground-truth Purkinje cells or their presence in the molecular layer. Waveforms shown in 
(D) are a subset of those in (E). Grey and black waveforms show the results of splitting the full 
sample based on hierarchical clustering into two groups with different typical waveform 
profiles. (F) Evidence for gap-junction coupling between a pair of molecular layer 
interneurons. Plot shows the rate-corrected cross-correlogram13 denoting the relative firing rate 
of the first molecular layer interneuron aligned to the time of a spike in the second molecular 
layer interneuron at t=0 ms. 

 228 
Across our complete database of cerebellar neurons, we found n=23 examples where the simple 229 
spikes of ground-truth Purkinje cells show inhibition at monosynaptic latencies after a spike in a 230 
putative molecular layer interneuron (Figure 4C). The waveforms of the 23 putative molecular 231 
layer interneurons that inhibited a neighbor Purkinje cell (Figure 4D) form two groups: one 232 
group shows an early positivity with relatively little repolarization after the negativity; the other 233 
group shows initial negativity followed by a large positive deflection.  234 

To identify putative molecular layer interneurons that may not directly inhibit Purkinje cells, we 235 
included all units with somatic spikes located in the molecular layer in our analysis. Consistent 236 
with prior reports14,53, we observe two classes of molecular layer interneuron waveforms (black 237 
versus gray) that could be separated by hierarchical clustering (Figure 4E). We found no 238 
evidence that molecular layer interneurons with a specific waveform shape were functionally 239 
connected to a Purkinje cell, with the caveat that we might have failed to document some 240 
molecular layer interneurons that inhibit Purkinje cells if we were not recording from a 241 
neighboring Purkinje cell at the same time.  242 

Finally, in agreement with a previous report53, we found evidence for gap junction coupling in 2 243 
of 16 simultaneously recorded pairs of molecular layer interneurons. The short latency peaks at -244 
0.5 ms and +1.0 ms in the example cross-correlogram (Figure 4G) are indicative of gap junction 245 
coupling. 246 

Classification of granule layer elements 247 
To provide expert labels for cerebellar units recorded in the granule cell layer, we began by 248 
considering action potential shape. Extracellular recordings from distal axons usually have 249 
thinner action potential waveforms than those recorded near the cell soma54. In our recordings 250 
from the granule cell layer, the distribution of peak-to-trough durations is strongly bimodal 251 
(D=0.06, p = 2.2 x 10-16) and many have thin action potentials with peak-to-trough durations 252 
shorter than 0.2 ms.  253 
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Within the waveforms from Figure 5A with durations shorter than 0.3 ms, many exhibited 254 
prominent negative-after-waves20,55. Our previous results with optogenetic activation of mossy 255 
fibers in mice14 established that the presence of a negative after-wave is sufficient, but not 256 
necessary, to identify mossy fibers in vivo. To be conservative, we used the presence of a 257 
negative after-wave (Figure 5B, arrow) as a necessary criterion for identification of putative 258 
mossy fibers. Many mossy fibers in our sample could fire at remarkably high firing rates, as 259 
indicated by the distribution of interspike intervals for an example unit (Figure 5C). 260 

 

Figure 5. Characterization and identification of neural units in the granule cell layer. (A) 
Distribution of waveform durations on each neural unit’s primary channel, measured from the 
waveform’s peak to its trough. Arrow denotes the peak of the subpopulation of units with very 
brief waveforms. (B) Putative mossy fiber waveforms, with amplitude normalized. Arrowhead 
highlights the presence of a negative after wave. (C) Interspike-interval distribution for an 
exemplar mossy fiber. Red arrow highlights the short absolute refractory period of this fiber. 
(D) Normalized primary channel waveforms across a population of putative Golgi cells. (E) 
Rate-corrected cross-correlogram across unique pairs of simultaneously recorded Golgi cells. 
(F) Distribution of the 95th percentile of the instantaneous firing rate for putative Golgi cells 
(left, green) and mossy fibers (right, pink) shown as a swarm plot. (G) Exemplar putative 
unipolar brush cells (UBCs) identified functionally by their response aligned to bursts of 
simultaneously recorded mossy fibers. Olive and orange traces show an exemplar on- and off-
UBC. (H) Primary channel waveforms for the On- and Off-UBCs shown in (G). (I). Scatter 
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plot showing that CV-log and mean firing rate together do not discriminate granule layer 
neurons. Green, red, and orange symbols show data for putative Golgi cells, mossy fibers, and 
UBCs, defined by our criteria for expert identification. 

A second distinctive class of action potentials recorded in the granule cell layer (Figure 5D) 261 
featured a stereotypically broad waveform, consistent with previously reported recordings from 262 
Golgi cells20,56–60. Their instantaneous firing rates provide additional evidence that the broad-263 
waveform units in the granule cell layer are likely to be Golgi cells56,57,60 (Figure 5F). For each 264 
neuron, we measured the distribution of instantaneous firing rate, calculated from the inverse of 265 
each interspike interval across the full recording, and found the value of firing rate at the 95th 266 
percentile of the distribution. This noise-immune measure of maximum firing rate was 267 
significantly different between putative Golgi cells and mossy fibers (independent samples t-test, 268 
t(244)=19.6, p = 4.7 x 10-52). Use of the 95th percentile as an estimate of maximum firing rate, 269 
rather than the mean or maximum instantaneous firing rate themselves, eliminates potential 270 
artifacts from the infrequent addition of spikes from noise or other neurons. Finally, across our 271 
sample of n=188 putative Golgi cells, we saw limited evidence of gap-junction coupling in the 272 
form of millisecond synchrony of action potentials, previously reported in vitro61. However, 273 
simultaneously recorded pairs of Golgi cells (n=408 pairs) showed some degree of 274 
synchronization over longer time scales (Figure 5E), potentially limited to longer time scales by 275 
active millisecond-scale desynchronization during behavior62. 276 

A third group of neurons called unipolar brush cells (UBCs) exists in abundance in the 277 
vestibulocerebellum and portions of the cerebellar vermis63,64. To identify UBCs, we took 278 
advantage of known response properties from in vitro recordings65. Mossy fiber bursts driven by 279 
electrical stimulation in vitro cause post-synaptic responses in UBCs that span a range of time 280 
scales and can be depolarizing (on responses) or hyperpolarizing (off responses). Thus, we 281 
reasoned that we could identify putative UBCs in our sample of granule layer neurons by 282 
averaging the firing rates of units aligned on spontaneous, brief (<100 ms) bursts in mossy fibers 283 
that were recorded simultaneously. Putative on- and off-UBCs show responses with different 284 
time courses (Figure 5G) and have spike waveforms that are distinct from those of either mossy 285 
fibers or Golgi cells (Figure 5H).  286 

The analysis in Figure 5 shows that action potential shape and functional properties such as the 287 
maximum instantaneous firing rate are likely to be quite informative about the identity of 288 
different neuron types recorded in the granule cell layer. In contrast, traditional approaches to 289 
cell-type identification in the cerebellum, such as plots of log-CV versus mean firing rate33,34, 290 
appeared unlikely to differentiate granule layer neuron types66 (Figure 5I). We noted earlier 291 
(Figure 2F) that a published classification method32 failed on our population of ground truth 292 
Purkinje cells; it assigned labels based on mean firing rate, local firing rate regularity assessed 293 
via CV2, and the median absolute deviation of interspike intervals from the median. Finally, 294 
unsupervised learning algorithms based on discrete waveform or firing metrics proved largely 295 
unsuccessful for disambiguating neuron types66, not a surprise given the unimodality of these 296 
features previously used to classify cerebellar cell types (Figure 1E). Therefore, we turn next to a 297 
classification strategy that was able to take advantage of multidimensional features.  298 
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Potentially informative features of extracellular recordings 299 
A deep-learning classifier, trained on a ground-truth library of neuron types determined in mice 300 
by optogenetic stimulation14, validated with >90% accuracy our expert labels for 585 units that 301 
were recorded in monkeys and classified according to the criteria outlined in Figures 2-5. Our 302 
next step is to ask which quantifiable features of our library of expert-classified neurons provide 303 
a basis for neuron-type identification. We consider measures of firing statistics, waveform, and 304 
local electrical effects.   305 

Firing statistics. We developed an approach to assess firing statistics in a way that generalizes 306 
across tasks and species. We assess regularity properties independent of a neuron’s firing rate by 307 
constructing what we call “3D-ACGs”. We calculated the time-varying firing rate of each neuron 308 
and constructed separate ACGs, binned by firing rate decile, based on the local firing rate 309 
measured at each spike. For the example UBC shown in Figure 6, the 3D-ACG (Figure 6A) 310 
shows multiple bands of spike times that widen systematically as firing rate decreases, a pattern 311 
that is typical of a neuron with highly-regular firing rates that modulate reliably and strongly in 312 
relation to a behavior. 313 

 

Figure 6. A tool to assess intrinsic regularity properties independent of stimulus- and 
response-related modulation of firing rate. (A) 3D-ACG for an example putative unipolar 
brush cell recorded in the granule cell layer. (B) Conventional (2D) auto-correlogram for the 
same neuron used in (A). The auto-correlogram is computed across the duration of the 
recording session. (C) The color axis shows the mean firing rate for the example UBC shown 
in A as the monkey fixated a stationary dot at each of nine points on a grid. (D) Conventional 
auto-correlograms for the same neuron shown in A-C, stratified based on the monkey’s vertical 
eye position. Colors of the traces in D correspond to the horizontal rectangles in C showing the 
monkey’s vertical fixation position.  

 314 
The use of 3D-ACGs mitigates the impact of sensory stimuli and behavioral responses on scalar 315 
metrics of discharge regularity such as CV or CV2. As an example of the failures of the 316 
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traditional ACG, we show analysis of a putative UBC recorded in the granule cell layer. The 317 
ACG computed across the duration of the experimental session (Figure 6B), without regard for 318 
the behavioral responses of the monkey, looks irregular and non-standard. The explanation is 319 
that firing rate varied systematically and strongly as the monkey varied its eye position. To 320 
demonstrate the relationship between firing rate and eye position, in a subset of trials the monkey 321 
fixated different stationary targets (Figure 6C). When the monkey fixated below the horizontal 322 
meridian (-10°), firing rate increased. Three ACGs contingent on the vertical fixation position 323 
(Figure 6C) have more traditional shapes but are quite different from each other. Not only the 324 
mean firing rate but also discharge regularity depended on the vertical position of the monkey’s 325 
eyes. When the monkey fixated below the horizontal meridian at -10° versus at 0°, the mean 326 
CV2 was 0.50 versus 0.68, corresponding to increased regularity for the targets located below 327 
the horizontal meridian.  328 
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Figure 7. Features of expert-identified neurons in the primate cerebellum. (A)  
Conventional (2D) auto-correlograms for a random subset of n=40 neurons for each putative 
neuron type. (B) 3D-ACG for a representative example neuron of each cell type. (C) Primary 
channel waveform for all neurons of each type. (D) Spike-triggered LFP recorded on each 
neuron’s primary channel. Waveforms in (C) and spike-triggered LFPs in (D) have normalized 
amplitudes and potentially have been inverted, as described in the text.  

 329 
Visual inspection of the 2D-ACGs (Figure 7A) separated according to their expert label showed 330 
reasonable consistency within neuron types and differences across neuron types. The same is true 331 
of 3D-ACGs (Figure 7B), though challenges of visualization preclude showing more than an 332 
example for each neuron type.   333 

Waveform. In our previous paper, we used the complete time series of a neuron’s primary 334 
channel waveform as feature for classification of ground-truth identified neurons in mice14, a 335 
feature that has proven useful for neuron identification across brain areas38,40. Visual inspection 336 
of Figure 7C and our previous unsupervised classification approach in Figure 3G suggests that 337 
waveform is likely to be a similarly useful feature for classification of neuron type in our expert-338 
classified recordings.   339 

Local electrical effects. We were inspired by previous attempts in the cerebellar literature to 340 
automatically identify complex spikes during spike sorting67–69 using the distinctive complex-341 
spike triggered deviations of the LFP as one potential feature. To test the possibility that the LFP 342 
contains additional information about cell types not present in the typical spike band action 343 
potential, we quantified LFP deflections aligned to each neuron’s action potential. The resulting 344 
spike-triggered LFP time series was subsequently normalized and reflected, if necessary, using 345 
the same procedure we use for primary channel waveform. Inspection of Figure 7D again 346 
suggests strong similarity of the spike-triggered LFP within neuron types and systematic 347 
variation across neuron types. In evaluating Figures 7C and D, note the difference in the time 348 
scale of the traces in the two columns.   349 

Information about neuron type from different features of extracellular recordings 350 
To achieve a quantitative answer to the question of which features of extracellular recordings are 351 
most informative about neuron type, we leveraged a deep learning classifier in combination with 352 
a principled approach for equalizing the dimensionality of different features. To mitigate 353 
differences in the overall parameter space for different inputs, we compressed each input into the 354 
same dimensionality latent vector using separate variational autoencoders70,71 (Figure 8A). We 355 
trained variational autoencoders to reconstruct each feature, one at a time, by sampling from a 356 
compressed 10-dimensional latent space (see Methods). Following training and optimization of 357 
the autoencoders, we could leverage a common classifier architecture to evaluate the information 358 
content of different features for cerebellar neuron type classification. Using leave-one-out cross 359 
validation, we quantified the information contained in the compressed space and asked whether 360 
each individual feature could correctly identify the type of the withheld neuron.  361 

Each of the features we tested was somewhat informative about neuron type. We quantify the 362 
performance of each feature with “confusion matrices” (Figure 8B-G) where each column in the 363 
matrix reports the distribution of expert labels as a function of the neuron type predicted by the 364 
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classifier. We summarize each confusion matrix using the “micro-average” of assignments that 365 
agreed with expert classification across all 585 neurons in the sample. The use of micro-average 366 
accounts for different sizes of the samples by reporting the percentage of correct identification 367 
across the whole population, not the average across the diagonal. Of the features, the 2D-ACG 368 
(Figure 8B) was the least informative (micro-average: 73.0%), the 3D-ACG (Figure 8C) was 369 
more informative (micro-average: 79.0%), the waveform (Figure 8D) was most informative 370 
(micro-average: 84.1%), and spike-triggered LFP (Figure 8E) was comparable to 3D-ACGs 371 
(micro-average: 78.5%).  372 

 

Figure 8. Assessment of classifier performance for expert-identified neurons across 
waveform and regularity features. (A) Deep-learning strategy for an unbiased quantification 
of information content for classification based on differently-sized input features. Diagram 
shows a variational autoencoder that encodes high dimensional inputs into a lower dimensional 
bottle neck (squared regions). A decoding arm learns to sample from the encoder and 
recapitulate the inputs. (B-E) Cross-validated classification performance for various 
extracellular features, each compressed via an optimized variational autoencoder. Each panel 
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shows a “confusion matrix” where each column in the matrix reports, as percentages, the 
distribution of expert labels as a function of the neuron type predicted by the classifier. (F) 
Performance of a “full” classifier that takes 3 features as inputs: 3D-ACG, primary channel 
waveform, and spike-triggered LFP.  (G) Full classifier performance when we threshold its 
output according to a confidence ratio14 computed across 25 training replicates. Far right 
column in (G) denotes the percentage of each expert-labeled neuron type that did not exceed 
the confidence threshold of 2.0.  

 373 
More granular examination revealed that different metrics were less informative for different 374 
neuron types, lending hope that they would be more informative together. Using either 2D-ACG 375 
or 3D-ACG alone, the classifiers performed poorly on mossy fibers and unipolar brush cells. 376 
Using only waveform, the classifier performs better compared to 2D-ACG or 3D-ACG at 377 
identifying mossy fibers. However, there was significant classifier confusion between molecular 378 
layer interneurons and UBCs using waveform. In contrast, classification using spike-triggered 379 
LFP (Figure 8E) showed less confusion between molecular layer interneurons and UBCs (13% 380 
versus 30.4% misclassified).  381 

Given that different features appear to contain complementary information about neuron-type 382 
(Figure 8B-E), we tested whether classification on the combination of all inputs would achieve 383 
robust performance. Indeed, a classifier that took three features (3D-ACG, primary channel 384 
waveform, and spike-triggered LFP) as inputs resulted in an improvement to a micro-average 385 
classification performance of 88.0% across all neurons (Figure 8F). Classifier performance was 386 
improved further to 93.2% (Figure 8G) by applying a threshold on the relative confidence of 387 
classifier labels14. Application of a confidence threshold caused fewer than 20% of the units we 388 
recorded to be excluded from our labeled sample. Overall, we conclude that single metrics, even 389 
if high dimensional, are helpful but insufficient to obtain accurate neuron-type identification. 390 
Rather, the multiple metrics available to us appear to encode complementary information and 391 
together they allow automated classification of neuron type in cerebellar recordings.  392 

 393 

Discussion 394 
Understanding the processing in neural circuits requires the ability to identify the information 395 
transmitted between neuron types4,8,12. Here, our goal was to use a combination of logic, circuit 396 
architecture3,18, and prior observations19,20,35,55,58–60 to assign labels to cerebellar neurons 397 
recorded in behaving primates. Further, we provide a quantitative analysis of the information 398 
about neuron type in various readily-accessible features of extracellular recordings in the 399 
cerebellum. Together, these steps form the foundation for understanding circuit-level processing 400 
in the service of complex cerebellar-dependent behaviors. 401 

Our approach succeeded. A cascade of objective criteria allowed automated identification of 6 402 
cerebellar neuron-types from their extracellular features: Purkinje cells, climbing fibers, 403 
molecular layer interneurons, Golgi cells, mossy fibers, and unipolar brush cells. While we did 404 
not obtain ground-truth identification through optogenetics, our expert neuron-type identification 405 
agreed impressively with ground-truth identification in mice14. Further, we used machine-406 
learning technology70,71 to verify that the units we identified by expert criteria clustered on the 407 
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basis of electrophysiological features, and that those features were quite informative about 408 
neuron type. Thus, we are quite confident in our expert neuron-type identification and we now 409 
possess an automated approach to identify neurons that were not tested with the explicit criteria 410 
used for our original expert-identification. Next steps are: (i) use knowledge of neuron-type to 411 
evaluate how the cerebellar circuit computes and learns; (ii) extend cerebellar neuron-type 412 
identification beyond the neuron types we already can classify; (iii) facilitate application of the 413 
same neuron-type identification strategy to non-cerebellar structures with similar richness of 414 
neuron types.  415 

A strategy for expert identification of cerebellar neuron type 416 
We are confident that our conservative approach ensures that we assigned the correct label to the 417 
almost all of our neural units. Our strategy to assign an expert label to an individual neural unit 418 
required a preponderance of evidence. We used different criteria to identify different neuron 419 
types, drawing from the layer of the recording, firing rate statistics, functional interactions with 420 
other identified units, and waveform shape. Regardless, label assignments for all neuron types 421 
(beyond ground-truth Purkinje cells and complex spikes) required some degree of subjective 422 
assessment of the available information.  423 

We took pains to ensure that our sample of neurons represented well-isolated single units 424 
because the criteria we used to disambiguate neuron types relied on features of extracellular 425 
recordings, such as primary channel waveform and regularity properties. During post-sorting 426 
curation of the recordings, we removed any units with low signal-to-noise ratios, evidence of 427 
instability across the recording session, refractory period violations, or any other evidence of 428 
contamination by multi-unit activity. Differences in our ability to obtain sufficiently isolated and 429 
stable recordings likely biased the number of units in our sample across neuron classes. For 430 
instance, the relatively small sample sizes of molecular layer interneurons and UBCs (n=32) 431 
might be due to their smaller size relative to other neurons in the cerebellar circuit. 432 

We used functional interactions within the cerebellar circuit to identify several neuron types. For 433 
instance, we identified a class of putative molecular layer interneurons by their interaction with 434 
ground-truth Purkinje cells, as assayed via their cross-correlogram. A statistically-significant, 435 
properly-timed inhibition of Purkinje cell simple spikes seems like a definitive metric to identify 436 
molecular layer interneurons. Yet, the stringent criteria of monosynaptic inhibition of a 437 
simultaneously recorded Purkinje cell likely excludes many molecular layer interneurons 438 
because either a Purkinje cell was not recorded simultaneously, the recorded Purkinje cell was 439 
not a target for the molecular layer interneuron under study, or the molecular layer interneuron 440 
might solely inhibit other molecular interneurons rather than Purkinje cells53. Therefore, while 441 
monosynaptic inhibition of a Purkinje cell is likely sufficient for identification of molecular layer 442 
interneurons, we also used the layer of the recording to establish the identity of molecular layer 443 
interneurons in the absence of such functional interactions. 444 

To assign units as putative mossy fibers, we required the presence of a negative after wave on the 445 
neuron’s primary channel waveform, corresponding to a recording near a glomerulus14,55. As a 446 
negative after wave was not always present in ground-truth mossy fiber recordings14, we assume 447 
that we excluded from our sample a subset of mossy fibers not recorded near the glomerulus.   448 
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Automated identification of cerebellar neuron-type 449 
Our choice to move forward with new approaches to separate cerebellar neuron classes was 450 
reinforced by 1) the poor classification performance of the previous algorithm based on data 451 
from awake and anesthetized rabbits32, 2) the unimodal nature of the discrete metrics previously 452 
used for cerebellar classification in awake monkeys33,34, and 3) our failure to derive meaningful 453 
clusters using unsupervised techniques. 454 

The challenge we set out to address is to provide accurate and reliable identification of neuron 455 
type using approaches that do not depend on subjective judgements by self-acclaimed experts. 456 
Validation by the ground-truth classifier developed for mice14 implies that our conservative 457 
reliance on the preponderance of evidence yielded accurate neuron-type identification. Even 458 
across species and distinct cerebellar areas, classifiers trained on ground-truth identified neurons 459 
in mice predicted labels that agreed on more than 90% of neurons with our “expert” labels. 460 
Armed with a believable set of identities for our expert-classified sample, our next step was to 461 
deploy deep learning to ask which features of electrophysiological recordings are informative 462 
about neuron-type. We then developed a classifier that can be used for automated neuron-type 463 
identification in larger samples of neurons.   464 

Overall, we found that different features derived from extracellular recordings provide 465 
complementary information about neuron-type. All the electrophysiological features we tested 466 
were quite informative, but their weaknesses appeared for different types of neurons:  467 

 3D-ACGs provided comparable or improved classification performance across all classes 468 
compared to traditional ACGs: yet both performed poorly on mossy fibers and unipolar brush 469 
cells. As a tool for neuron-type classification, it is likely that the superiority of 3D-ACGs is a 470 
general finding. At the very least, in the case where a neuron’s activity is largely 471 
unmodulated across a recording, the resulting 3D-ACG would have the same information as 472 
a traditional ACG.  473 

 Spike-triggered LFP was able to distinguish molecular layer interneurons and UBCs while 474 
waveform was particularly useful for identification of mossy fibers. It is likely that waveform 475 
and spike-triggered LFP represent different ‘views’ of the same neuron because of their 476 
different, albeit partially overlapping, frequency content. The spike-triggered LFP depends 477 
on a combination of neuron morphology72 and post-synaptic/circuit-level effects47,73. 478 
Therefore, it seems reasonable that LFP signals would differ across neuron types given their 479 
different locations in the cerebellar connectome3,18.  480 

Not surprisingly, a combination of all features was more informative about neuron type than any 481 
of the individual features. Further, our final classifier performed at greater than 90% accuracy on 482 
the expert-classified dataset, especially when we insisted on a threshold for classifier confidence. 483 
We conclude that we can use the combined classifier in the future to identify neuron type.  484 

Cerebellar layer identification 485 
Identification of the layer of a recording is extremely useful for neuron-type identification. Here, 486 
we used two tools that have proven useful for layer identification in the cerebral cortex and 487 
demonstrated that both current source density analysis44–50 and the normalized LFP52 allow 488 
identification of cerebellar layers. The current source density analysis requires a behavior or 489 
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sensory stimulus that drives activity to temporally align individual trials44,52; a challenge for 490 
some studies. The normalized LFP52 removes the necessity to identify a temporally discrete 491 
modulatory sensory or behavioral stimulus, but introduces other limitations. For instance, the 492 
bands of activity are less distinct and layers more difficult to identify in an electrode penetration 493 
that crosses multiple layer boundaries. With short electrodes, recordings that do not span 494 
cerebellar layers due to the orientation of the electrode relative to the laminar structure of the 495 
cerebellum will be challenging to interpret. Recording with more contacts or longer probes might 496 
exacerbate the problem of multiple layer crossing, though the use of “local” rather than “global” 497 
normalization might mitigate some of these issues. Finally, we note that both the current source 498 
density and normalized LFP analyses require measurements of differential LFP activity across 499 
recording contacts; neither analysis is possible with recordings from single electrodes.  500 

Known unknowns in the cerebellar circuit 501 
Several cerebellar neuron types either are inaccessible to extracellular recordings or are 502 
sufficiently rare in number that we don’t seem to have recorded a sufficient sample. For instance, 503 
we don’t think we can record granule cells on our current probes given the relatively low 504 
impedance (1-2 MΩ) and contact size (7.5 µm diameter) of our electrodes, as well as the small 505 
size, closed electrical field, and high density of granule cells. Further, relatively rare cerebellar 506 
cell types, such as Purkinje layer interneurons18,74 and candelabrum cells75,76, escaped our ability 507 
to identify and label them. The relative dearth of information about the connectivity profiles, 508 
electrical signatures, and response properties of these neuron types makes assignment of expert 509 
labels to them impossible at this time. 510 

Applicability to other brain regions 511 
Can the methods and procedures outlined here to identify cerebellar neurons also be applied to 512 
other regions of the brain? We believe that our strategy is general enough to potentially 513 
disambiguate cells in other brain regions. For instance, waveform shape contains information for 514 
neuron type identification in the cerebral cortex38,40,77–80. Differences in action potential shape 515 
and regularity properties are inherently the result of differences in morphology, ion channel 516 
content, and circuit connectivity. We think that spike-triggered LFP might be particularly 517 
informative in non-cerebellar structures, including those without clear layers. Therefore, in brain 518 
regions where neuron types of interest show distinct anatomical, connectivity, or ion channel 519 
dynamics, the methods we outline here may be sufficient to “label” and subsequently classify 520 
neuron type. 521 
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Methods 536 
All experiments were performed on three rhesus macaques (macaca mulatta, male, 10-15 kg). A 537 
portion of the dataset described in this study was reported in two previous publications13,14. All 538 
experimental procedures were approved in advance by the Duke Institutional Care and Use 539 
Committee (Protocols A085-18-04, A062-21-03, and A016-24-01) and performed in accordance 540 
with the Guide for the Care and Use of Laboratory Monkeys (1997). 541 

General procedures 542 
Each monkey underwent several surgical procedures prior to data acquisition. Each surgical 543 
procedure was performed using sterile technique while the monkey was deeply anesthetized with 544 
isoflurane. Monkeys received analgesics post-op until they had recovered. In the first surgical 545 
procedure, we implanted a head-restraint system that would allow us to measure eye movements 546 
uncontaminated by changes in head position. In a separate surgery, we sutured a small coil of 547 
wire to the sclera of one eye81, allowing us to measure the monkey’s eye position with high 548 
temporal and spatial precision using the search coil technique82. The monkey subsequently was 549 
trained to perform discrete trials of smooth pursuit eye movements in exchange for a fluid 550 
reward. Once the monkey had demonstrated proficiency in tracking the visual target with 551 
minimal intervening saccadic eye movements, we performed a final surgical procedure to 552 
implant a recording cylinder allowing electrode access to the floccular complex of the cerebellar 553 
cortex. We implanted the recording cylinder 11 mm lateral to the midline, angled 26° backwards 554 
from the coronal plane, and directed at the interaural axis.  555 

Behavioral procedures 556 
The general procedures for recording monkeys’ smooth pursuit behavior have been described in 557 
detail previously13. Briefly, monkeys were seated in a dimly lit room with their heads fixed 30 558 
cm in front of the CRT monitor (2304x1440 pixels with an 80 Hz refresh rate). Visual targets 559 
(0.5° diameter black spots) were presented on the monitor in discrete trials, controlled by our 560 
lab’s custom Maestro software. During some ‘fixation-only’ trials, the visual target appeared in 561 
one of nine discrete locations (spanning a 10°x10° visual square). The monkey received a small 562 
liquid reward for fixating the target within ±1° for one second. The vast majority of the 563 
experimental session consisted of discrete trials of smooth target motion. The target appeared in 564 
the center of the screen at the start of each trial. The monkey was required to maintain fixation 565 
on the target within an invisible bounding box of ±3° for a uniformly random interval of 400 to 566 
800 ms. At the end of the fixation interval, we shifted the position of the target in one direction 567 
by 0.15|𝑡̇| degrees and moved it smoothly in the opposite direction at a constant velocity of 𝑡̇ 568 
degrees/sec83. The backwards step minimizes the number of catch-up saccades during the 569 
initiation of the smooth pursuit eye movement84. All monkeys had extensive experience 570 
performing smooth pursuit tasks prior to data collection. With the exception of the current source 571 
density analysis (see below), analyses were not contingent on the task-related performance of the 572 
monkeys. We digitized separately at 1 kHz the horizontal and vertical position of the monkey’s 573 
eyes as measured from the scleral coil system and stored the data for later offline processing.  574 

Neurophysiology procedures 575 
We acutely inserted either tungsten micro-electrodes (FHC, ~1 MΩ) or, more commonly, custom 576 
manufactured Plexon S-Probes through a craniotomy into the floccular complex of the 577 
cerebellum. Plexon S-Probes had 16 contacts arranged in two columns on a grid with spacing at 578 
50 µm. Each contact was a tungsten micro-wire with a diameter of 7.5 µm. Each day, we drove 579 
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the electrode through the cerebellar cortex using a Narishige microdrive (MO-95/MO-97) with 580 
the goal of recording activity from the region of the flocculus and ventral paraflocculus that 581 
controls smooth eye movement, a region that we call the floccular complex. We recognized the 582 
floccular complex by its strong response to smooth pursuit eye movements as well as the 583 
occasional occurrence of Purkinje cell complex spikes. After arriving in the floccular complex, 584 
we waited a minimum of 30 minutes (up to several hours) before recording extracellular spiking 585 
activity. The waiting period maximized the signal-to-noise ratio and minimized the drift of 586 
neural units across the electrode during the recording.  587 

We used a 4-pole low-pass Butterworth hardware filter prior to digitization of continuous voltage 588 
signals from the contacts of the recording electrode to ensure that the voltage signals were 589 
uncontaminated by interference from the scleral coils. Wideband data were digitized 590 
continuously at 40 kHz using the Plexon Omniplex system.  591 

After each recording session, we post-processed the data by applying a 300 Hz high-pass first-592 
order Butterworth filter to the continuous wideband data recorded on each electrode. This 593 
preprocessing step mimicked the hardware filter used on Neuropixels probes, allowing 594 
comparisons between the neurophysiological signatures of our data in the monkey with our 595 
previously reported results across species14. Following pre-processing, we assigned individual 596 
action potentials to neural units using the semi-automated “Full Binary Pursuit” (FBP) spike-597 
sorter85. As we were interested in leveraging potential monosynaptic interactions between 598 
simultaneously recorded neural units as a criterion for expert labeling, we chose FBP due to its 599 
superior ability to disambiguate action potentials that are within close temporal and spatial 600 
proximity. Following sorting, we manually curated the sorted units to ensure that each had a high 601 
signal-to-noise ratio and a low percentage of interspike interval contamination. We defined the 602 
signal-to-noise ratio based on the peak-to-trough amplitude of the waveform on the primary 603 
channel relative to the standard deviation of the noise on that channel, computed as 1.96 times 604 
the median absolute deviation of the complete voltage timeseries on the primary channel. Use of 605 
the median absolute deviation to compute the standard deviation of the channel noise ensured 606 
that voltage fluctuations due to action potentials did not bias our estimate of the noise amplitude. 607 
We defined the percentage of ISI violations by determining the percentage of spikes that 608 
occurred during an assumed absolute refractory period of 1 ms. The 1 ms assumed refractory 609 
period represents an upper bound on the percentage of ISI violations as we were able to routinely 610 
isolate putative mossy fibers whose instantaneous firing rates intermittently exceeded 1,000 611 
spikes/second. 612 

We computed the LFP time series by applying a causal 2nd order bandpass Butterworth filter to 613 
the wideband voltage recordings (high-pass cut-off: 5 Hz, low-pass cut-off: 500 Hz). We 614 
subsequently downsampled the filtered voltage time series to 2500 Hz. We chose these 615 
parameters to mimic the parameters of Neuropixels recordings, although we note that we 616 
implemented an additional high-pass filter to minimize interference from very low frequency 617 
signals. 618 

Auto- and cross-correlograms 619 
We computed conventional auto- and cross-correlograms in the same manner as we described 620 
previously13. Briefly, we computed the probability of observing a spike in millisecond-wide bins 621 
relative to a ‘trigger spike’. For an auto-correlogram, we considered each spike as the trigger 622 
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spike and then measured the probability of the same neuron spiking at each millisecond relative 623 
to that spike. We normalized the probability by the bin size (1 ms, 1000x) to ensure that the 624 
shape and magnitude of the auto-correlogram were independent of the chosen bin size and to 625 
convert the units of the auto-correlogram to spikes/second. By convention, we set the t=0 ms bin 626 
to zero when computing auto-correlograms. We computed cross-correlograms in the same 627 
manner, except we assayed the probability of spiking in a second neuron, N2, relative to the time 628 
of each spike in a first neuron, N1: 629 

𝐶𝐶𝐺(𝑡)  =  
𝑃𝑟(𝑁2(𝑡) = 1 | 𝑁1(𝑡 = 0) = 1)

𝛥𝑡
 

(1) 

In Equation 1, the probability of N2 firing rate some time t is assessed relative to each spike of 630 
N1. The bin width, 𝛥𝑡 (1 ms), in the denominator expresses the CCG in units of spikes/second.   631 

3D auto-correlograms 632 
Our goal was to identify the intrinsic regularity properties of units without contamination by 633 
stimulus-related or movement-related changes. Our approach centers on the construction of 634 
stacked (3D) auto-correlograms that are stratified by the local firing rate responses of each 635 
neuron spike. We described the general process to construct a 3D-ACG previously14. Briefly, we 636 
computed the instantaneous firing rate of each neuron across the complete recording session 637 
using the inverse interspike interval method86. We then smoothed the instantaneous interspike 638 
interval using a noncausal boxcar filter with a width of 250 ms. We measured the value of the 639 
smoothed instantaneous firing rate time series at the time of each action potential. The resulting 640 
distribution of smoothed instantaneous firing rates were divided into equal sized deciles. We 641 
computed separate conventional auto-correlograms for each decile by selecting the spikes used 642 
as the trigger spike (i.e., t=0 ms) whose smoothed instantaneous firing at the time of the trigger 643 
spike fell in each decile. We visualized the 10 resulting auto-correlograms as a surface, where 644 
the color axis corresponds to the firing rate computed from individual ACGs via Equation 1, the 645 
x-axis corresponds to the time relative to the trigger spike, and the y-axis corresponds to the 646 
firing rate decile from the slowest firing rate to the fastest. 647 

Classification of neuron type 648 
Previous studies largely focused on a combination of scalar metrics to disambiguate neuron types 649 
both in the cerebellum32–34 and in other areas of the brain36,80. While such metrics have proven 650 
successful in some instances, they are often not robust40,66 to different recording methodologies, 651 
laboratory procedures, or species. Therefore, our approach14 is to leverage semi-raw data to 652 
establish robust, albeit high-dimensional, metrics for neuron-type classification.  653 

Neuron waveforms and spike-triggered local field potentials 654 
Mean waveforms were computed following spike sorting by applying the drift-shift 655 
algorithm14,87 to correct misalignments in spike sorter output on a spike-by-spike basis and avoid 656 
adverse effects of spike timing jitter on the mean waveform. The drift-shift algorithm also 657 
strategically chooses individual action potentials to average for the mean waveform, with the 658 
goal of removing very low (potential noise) or very high amplitude (potential artifacts) events 659 
from the mean waveform.  660 
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Briefly, we specified the primary channel of each spike as that with the largest peak-to-trough 661 
amplitude. We selected up to 5,000 individual spike events whose primary channel corresponded 662 
to the unit's overall primary channel, using only events up to the 95% percentile of spike 663 
amplitudes to avoid potential inclusion of high amplitude artifacts in the average. Then, we 664 
iteratively shifted individual action potentials to maximize the cross-correlation across the 665 
sample of action potentials. Finally, we used the mean across the selected and time-shifted action 666 
potentials as the neuron’s mean waveform. We note that our results do not depend on the drift-667 
shift algorithm. Because our sample contained mainly units with high signal-to-noise ratios and 668 
minimal drift across contacts, the drift-shift aligned waveforms appeared qualitatively similar to 669 
those obtained by simply averaging the output from spike-sorting. We used a similar procedure 670 
to measure the mean spike-triggered LFP response. Here, we downsampled the spike times of 671 
each unit as measured by the spike sorter to 2500 Hz, corresponding to the sampling rate of our 672 
LFP. We used the primary channel for spikes as the primary channel for the LFP and otherwise 673 
aligned individual LFP “clips” in the same manner as traditional spikes.  674 

For all subsequent analyses of waveform and spike-triggered LFP, we normalized the amplitude 675 
of the voltage trace. Normalization is important for both visualization as well as classification, as 676 
amplitude differences are due primarily to proximity of the recording contact to the neuron. If 677 
necessary, we inverted the neuron’s mean waveform/LFP to ensure that the primary deflection 678 
used for normalization was negative.  679 

Current source density and local field potential analysis 680 
We performed current source density or normalized LFP analysis only for recordings made with 681 
16-contact S-Probe recordings, as those analysis techniques are not amenable to single-channel 682 
recordings. For the 16-contact recordings, we began by averaging the LFP time series across the 683 
two columns of contacts, yielding eight LFP time series, one for each row of contacts (spacing 684 
50 µm). We filtered each contact’s LFP signal in time using a 3rd-order Savitzky-Golay filter 685 
and subsequently computed the current source density as the second spatial derivative of LFP 686 
signal across contacts using a 2nd-order Savitzky-Golay filter. We temporally aligned the 687 
resulting derivative map to the onset of target motion during discrete smooth pursuit trials. 688 
Alignment was not contingent on the direction of target motion, but all visual stimuli moved at a 689 
constant speed of 20 °/sec. For the purpose of visualization, we upsampled the measured current 690 
source density at 5 µm resolution using 2D-spline interpolation. 691 

We computed the normalized LFP (the “spectrolaminar pattern”) using established procedures 692 
from the macaque cerebral cortex52. Briefly, after averaging the LFP signal across columns, we 693 
computed the spectral power at each frequency (resolution 2.5 Hz) using the multi-taper 694 
method88. We smoothed the resulting power estimate in the frequency domain using a boxcar 695 
filter with a 25 Hz width. Finally, for each frequency bin, we computed the normalized LFP 696 
response by dividing by the maximum power across channels according to Equation 2: 697 

𝑁𝑃௜(𝑓)  =  
𝑃௜(𝑓)

𝑚𝑎𝑥(𝑃(𝑓))
 

(2) 

In Equation 2, 𝑁𝑃௜(𝑓) represents the normalized power of the i-th contact in the f-th frequency 698 
bin. The normalized power on each channel was computed as the measured power of that 699 
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frequency on the i-th contact, 𝑃௜(𝑓), divided by the maximum power in that frequency bin 700 
measured across all contacts. 701 

Assaying information for classification using variational autoencoders 702 
Our goal was to quantitatively measure the information present in high dimensional features that 703 
could be used for classification of cerebellar neuron types. Yet, the features that we wished to 704 
measure had different dimensions and different modes of information content. For instance, 705 
primary channel waveform in our dataset was represented by a single time series (160 elements) 706 
whereas a 3D-ACG was represented by an image with much higher dimensionality (10 x 250 707 
pixels). To quantify the information content present in these various inputs, we devised a strategy 708 
to perform principled dimensionality reduction and compress the input feature space into a lower 709 
dimensional representation. A common-sized low dimensionality representation of each input 710 
space then could be used directly in a simplified classification architecture with a structure that 711 
was chosen a priori. Together, the common input space and shared classification architecture 712 
equalized the number of fitted parameters across classification models and ensured that we were 713 
not overfitting the classifier on our dataset. Thus, the common classification framework allows 714 
direct comparison of each low dimensional feature space to classify cerebellar neuron cell types.  715 

We used variational autoencoders to reduce the unconstrained size of each input parameter into a 716 
lower dimensional (10-element vector) representation71,89. We reasoned that the demixing nature 717 
of the variational autoencoder would result in improved classification performance compared to 718 
traditional autoencoders. We trained a separate variational autoencoder for each type of high 719 
dimensional feature (waveform, spike-triggered LFP, auto-correlogram, and 3D-ACG). For each 720 
autoencoder, we used our full sample of neurons recorded from the floccular complex (n=1,152), 721 
including both neural units that had an expert label (n=585) as those that did not have an 722 
assigned expert label (n=567). The autoencoder was trained via stochastic gradient descent90 to 723 
minimize a cost function that included the weighted contribution of the mean squared error of the 724 
reconstruction from the input as well as the deviation of the low dimensional representation from 725 
a set of standard Gaussians (zero mean, unit variance) using the Kullback-Leiber divergence71. 726 
The relative weights of these two error terms were set using β-normalization70 and modulated 727 
using a cosine annealing schedule91 that improves convergence during training. The total cost 728 
function corresponds to the evidence lower bound (ELBO), which was minimized across 729 
iterations. For each input type, we hand-tuned both the autoencoder architecture and parameters 730 
(e.g., number and size of hidden layers, learning rate, size of convolutions, type and size of 731 
pooling layers) to minimize the total cost as assayed on a withheld validation sample consisting 732 
of 30% of the complete sample of recorded neurons. This optimization procedure ensured that 733 
we had maximized the amount of compressed information in the low-dimensional encoded 734 
representation while simultaneously ensuring demixing of the low-dimensional representation.  735 

After optimizing the variational autoencoder architecture for each respective high-dimensional 736 
input type, our goal was to quantify the amount of information in the compressed representation 737 
that could be used to classify different cerebellar cell types. As each representation was 10-738 
dimensional, we could use identical architectures and training procedures to evaluate 739 
classification performance across features. The architecture and training procedure for our 740 
classifier was established a priori to ensure an unbiased comparison across inputs. The classifier 741 
used a multi-layer perceptron network, consisting of a 10-dimensional input layer (to receive the 742 
output of the optimized variational autoencoder latent representation), a 100-unit hidden layer 743 
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with rectified linear activation functions92, and an ultimate output layer with a softmax activation 744 
function. Each element in the output layer corresponded to a single expert-identified cerebellar 745 
cell type.  746 

We evaluate classifier performance using leave-one-out cross validation. For each neuron, we 747 
trained 25 models with random initial conditions. We split the remaining n-1 expert-labeled 748 
neurons into separate training (70%) and validation (30%) sets. Because our expert-labeled 749 
dataset contained an unequal number of samples in each neuron class, we randomly 750 
downsampled over-represented classes to ensure they represented no more than 2-fold the 751 
number of samples in the smallest class. We then used random over-sampling to resample any 752 
under-represented classes, thereby equalizing the number of samples per class. Finally, we 753 
trained our multi-layer perceptron classifier using stochastic gradient descent90 to minimize the 754 
cross-entropy computed on the validation set. We used early termination to stop the training 755 
procedure when the cross-entropy as evaluated on the withheld validation set increased for more 756 
than five iterations. This “early stopping” procedure was implemented to prevent over-fitting to 757 
the training set and thereby promote generalization. Following training, we evaluate the 758 
prediction for the left-out neuron for each of the 25 random replicates of the classifier model. 759 

After we had established the complementary information content across available input types, we 760 
trained a classifier that used multiple inputs to optimally classify our expert-labeled cerebellar 761 
cell types. As above, we used leave-one-out cross-validation to evaluate the performance of our 762 
ultimate classifier. For each withheld neuron, we trained a multi-armed neural network to predict 763 
the cell type labels of the remaining neurons. One arm of the neural network featured a 764 
convolution neural network whose architecture was identical to the penultimate latent layer of 765 
optimal convolution neural network we established by training the 3D-ACG variational 766 
autoencoder. The second and third arms provided inputs for the normalized waveform and spike-767 
triggered LFP. Each arm supplied input to a common 100-unit hidden layer with rectified linear 768 
activation functions. Again, the final layer of the merged classifier featured a single unit per cell 769 
type with a softmax activation function. Training with early stopping proceeded as above and 770 
was terminated when the cross entropy of the validation set increased for consecutive training 771 
iterations. We repeated this procedure 25 times for each with-held neuron, providing an 772 
ensemble of models93 with different initial conditions and training and validation sets.  773 

To threshold the output of our final classifier based on the ‘confidence ratio’, we used a 774 
previously established technique14. For each of the 25 randomly instantiated classifier models per 775 
leave-one-out sample, we obtained separate probability distributions for each cell type by 776 
aggregating the softmax outputs of each classifier. Dividing the mean of the most probable cell 777 
type distribution by the mean of second most probable cell type provided us with the confidence 778 
ratio. Neurons with a confidence ratio less than 2, indicating that two cell-type labels had similar 779 
mean probabilities, were deemed unclassifiable (below threshold) and thus were not included our 780 
evaluation of classifier accuracy.  781 

Data availability 782 
All data for this study have been deposited into the Open Science Framework Database by the 783 
date of publication. Additional requests for data can be made to the corresponding author. 784 
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